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Chiral magnetic skyrmions with arbitrary topological charge
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We show that continuous and spin-lattice models of chiral ferro- and antiferromagnets provide the existence
of an infinite number of stable soliton solutions of any integer topological charge. A detailed description of
the morphology of new skyrmions and the corresponding energy dependencies are provided. The considered
model is general, and is expected to predict a plethora of particlelike states which may occur in various chiral
magnets including ultrathin films, e.g., PdFe/Ir(111), rhombohedral GaV4S8 semiconductor, B20-type alloys as
Mn1−xFexGe, Mn1−xFexSi, Fe1−xCoxSi, Cu2OSeO3, and acentric tetragonal Heusler compounds.
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I. INTRODUCTION

The existence of stable localized magnetic vortices in the
presence of so-called chiral interactions was predicted in
1989 [1]. Nowadays, it is common to use the term chiral
magnetic skyrmions for these vortices. In contrast to baby
skyrmions [2,3], and superconducting skyrmions [4], chiral
magnetic skyrmions are not related to the model of baryons
proposed by Skyrme [5,6] neither explicitly nor implicitly [7].
Similarly to the aforementioned skyrmions, these magnetic
vortices can be characterized by a nonzero topological charge
Q. The corresponding micromagnetic Hamiltonian contains
competing terms of different powers of spatial derivatives
with respect to the order parameter mimicking the Skyrme
mechanism of stabilization [8]. The presence of competing
terms highlights the model of a chiral magnet among many
other models in nonlinear physics where the Hobart-Derrick
theorem forbids the existence of stable localized solutions [9].

The research in this field has gotten a powerful impetus
after the direct observation of magnetic skyrmions in cubic
chiral magnets of B20 type employing transmission electron
microscopy [10]. Later, the existence of magnetic skyrmions
has been confirmed in many other materials [11–15]. Several
new phenomena have been reported recently: different ap-
proaches for the nucleation of magnetic skyrmions [11,16],
electric current induced motion of skyrmions [17], and attrac-
tive and repulsive interskyrmion interactions [18,19]. The pos-
sible utilization of magnetic skyrmions in spintronic devices
is also under intensive study [20–25].

A fundamental question concerning the diversity of possi-
ble skyrmion solutions remains unaddressed in the literature
despite the large number of experimental and theoretical
works published within the last decade. Indeed, some of the
two-dimensional (2D) models, such as baby Skyrme [2,3]
and isotropic ferromagnet [26], possess a wide variety of
solutions with an arbitrary integer Q. Some solutions with
|Q| > 1 are also known [27–30] in the model of frustrated
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magnet with competing exchange interactions [31]. However,
in the frame of an underlying model of chiral magnet, it was
assumed that the diversity of skyrmions is limited to topologi-
cal charge Q = ±1 [32–34]. This underlying model [1,35,36]
contains only three energy terms: the exchange interaction,
chiral Dzyaloshinskii-Moriya interaction (DMI) [37,38], and
potential term. The latter one represents the interaction with
an external magnetic field Bext and/or magnetic anisotropy,
meaning the presence of energetically preferable directions
for magnetization vector M(r).

First, the static skyrmion solution with Q = −1 has been
reported in Ref. [1]. There is a generalization of this solu-
tions nowadays known as Bogdanov-Hubert kπ vortices [39]
characterized by alternating Q = −1 and Q = 0 for odd and
even k, respectively. For convenience, we employ the term π

skyrmion [40] referring to 1π vortex with Q = −1 and the
term skyrmionium [41,42] for 2π vortex with Q = 0.

Following the classification of skyrmion solutions given in
Ref. [1], one can show (see also the discussion in Ref. [43])
that by applying trivial operations of reflection and rotation
to the magnetization vectors, the solutions corresponding
to the different type of crystal symmetries can be always
mutually transformed one into another. Thus, these solutions
belong to the same class. An important consequence of such
classification is that stable magnetic textures recently dis-
covered in tetragonal Heusler alloy [14] and named “anti-
skyrmion” in fact belongs to the same class of π -skyrmion
solutions.

In the work by Zhang et al. [44] it was concluded that
in a conventional model of a chiral magnet a skyrmion with
|Q| � 2 cannot exist as a static stable solution. The authors
observed a skyrmion with |Q| = 2 in numerical simulations as
a nonequilibrium dynamical object only. Moreover, Koshibae
and Nagaosa argued [45] that in a conventional model of
a chiral magnet even the coexistence of stable skyrmion
solutions with Q = −1 and Q = 1 is impossible.

In this paper, it is shown that in fact, a conventional
model of chiral magnet possesses an infinite set of skyrmion
solutions with different value and sign of topological charge
and diverse morphology.
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II. MODEL

The energy functional for the continuous two-dimensional
model of a chiral magnet can be written in the following form
[1]:

E =
∫ (

A
∑

i

(∇ni )
2 + Dw(n) + U (nz )

)
t dx dy, (1)

where n ≡ n(r) is a continuous unit vector field (n2
x + n2

y +
n2

z = 1) determining the direction of the magnetization n =
M/Ms and A and D are the micromagnetic constants for
exchange and DMI, respectively. t represents the layer thick-
ness. The last term in (1) is the potential term, which con-
sists of the Zeeman energy: UZ = Bext Ms (1 − nz ), and/or the
energy density of uniaxial anisotropy Ua = K (1 − n2

z ). The
DMI term w(n) represents a linear combination of Lifshitz
invariants:

�
(k)
i j = ni

∂n j

∂rk
− n j

∂ni

∂rk
,

which in turn is defined by the underlying symmetry of the
crystal.

The results presented below are valid for a very wide
class of chiral magnets of various lattice symmetries: for the
systems with Néel-type chiral modulations [11,13,46] where
w(n) = �(x)

xz + �
(y)
yz , for the tetragonal compounds of D2d

symmetry [14] with w(n) = �(x)
zy + �

(y)
zx , and for the crys-

tals with bulk-type DMI and Bloch-type chiral modulations
[10,47,48] where w(n) = �(x)

zy + �
(y)
xz + �(z)

yx = n · (∇ × n).
For systems with bulk-type DMI, e.g., B20-type crystals, the
solutions discussed below should be considered as a new kind
of skyrmion tubes (or strings) that were previously known
only for the case of a π skyrmion [19,49–53]. Note, when
the term �(z)

yx play a significant role [49,54] one should solve
a three-dimensional problem.

For the case of magnetic multilayers and heterostructures
with interface-induced DMI [55], the demonstration of the
stability of the solutions displayed further might suggest that
isolated π domains (also known as bubble skyrmions) [56–59]
belong to the category of chiral skyrmions. In the eventuality
where such a scenario fails, one can conclude that the mag-
netic dipole-dipole interaction represents the core mechanism
for the stabilization of those domains. This in turn indicates
that such objects are magnetic bubbles [60] rather than chiral
skyrmions.

For convenience, all parameters such as the lengths, the
value of the external magnetic field, and the energy are given
in relative dimensionless units of: the equilibrium period of
helical spin spiral [61,62] LD = 4πA/|D|, the critical field
of the cone spiral transition into saturated state [62] BD =
D2/(2MsA), and the energy E0 = 2At . Thereby, only two
dimensionless parameters which define the state of the system
are required:

h = Bext/BD, u = K/(MsBD).

III. TOPOLOGICAL CHARGE

The localized solutions are the excitations on the homoge-
neous background, in other words n(r) → n0 for |r| → ∞.

Thus, the domain of the definition of the order parameter n(r)
can be mapped to a sphere which can be associated with a
Riemann sphere (R2 ∪ {∞} ↔ S2). The space of the order
parameter n is in turn a sphere S2

spin. The map S2 → S2
spin

leads to an homotopy classification of localized solutions in
2D with topological invariants related to an integer index

Q = 1

4π

∫
[n · (∂xn × ∂yn)]dxdy. (2)

For topologically nontrivial textures Q �= 0 a continuous
transformation into a homogeneous state n(r) = n0 is impos-
sible. We follow the sign convention for a topological charge
given in Ref. [63], and for definiteness we assume the polarity
with n0 = (0, 0, 1).

Note, Eq. (2) often represents a useful quantity for the
estimation of the number of π skyrmions in the clusters
appearing due to the geometrical confinement of the sample
[64,65] or under the pressure of surrounding nonuniform
helical phase [66], as well as π skyrmions under the impact
of spatially varying external stimuli [67] or different pinning
effects [68]. The topological charge |Q| of these clusters can
be greater than one. However, it is essential to distinguish
between a cluster of particles and a single skyrmion with
topological charge Q. This aspect can be easily explained by
analogy to the Skyrme model for atomic nuclei. In this model
the topological charge B corresponds to the baryon number
of the nuclei. For instance, the helium-4 atom has B = 4 and
its nucleus is a single skyrmion, while deuterium molecule
D2 has the same B = 4 but includes two nuclei and thus
represents the cluster of two skyrmions.

IV. RESULTS AND DISCUSSIONS

The earlier stable solution was found for π skyrmion
with an energy below [1] and above [69] the saturated state,
which represents only a single example of the vast variety
of topologically nontrivial solutions, see Fig. 1. For the case
of u = 0 and high magnetic fields h � 2 it was shown [63]
that π skyrmion is energetically most favorable among all
other hypothetical configurations with Q �= 0. It will be shown
below that π skyrmion and skyrmionium with Q = 0 are the
key elements or “building blocks” of which the whole variety
of other skyrmions is “constructed.”

One may highlight two main reasons why stable skyrmion
solutions with Q < −1 and Q > 0 have been overlooked
earlier: (i) the interparticle repulsion of π skyrmions [8] and
(ii) an extremely limited set of axisymmetric critical points
[70] of the Hamiltonian (1). Both effects obstruct the merging
process of π skyrmions into one particle, and instead result
in them moving apart which is the so-called dichotomy [71].
Consequently, naive attempts to stabilize Q = −N skyrmion
by using N isolated π skyrmions as an initial guess cannot
lead to the nucleation of a big single skyrmion in numerical
simulation.

To find energetically stable solutions, we performed a
direct energy minimization of the functional (1) based on
a nonlinear conjugate gradient method which in our imple-
mentation has been massively parallelized and optimized for
NVIDIA CUDA architecture. We used a finite-difference dis-
cretization scheme of the fourth order with a meshes varying
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FIG. 1. Morphology of stable chiral skyrmions with topological charges Q = −3, −2, . . . , 2. Top row of images (a) corresponds to zero
magnetocrystalline anisotropy (u = 0) in external magnetic field applied perpendicular to the plane h = 0.65. Bottom row of images (b)
corresponds to the case of uniaxial anisotropy u = 1.3 and zero external field h = 0. All images are given in the same scale. Colors encode the
direction of the n vectors according to a standard scheme [54]: black and white denote up and down spins, respectively, and red-green-blue
reflect the azimuthal angle with respect to x axis.

from 6402 to 51202 nodes (see Appendix A). The values of the
variables A and D have been chosen such that the parameter
LD equals 52 internode distances.

Supplementary movies [72] illustrate the process of craft-
ing the initial states for different anticipated morphologies of
skyrmion solutions and the energy minimization process (see
Appendix B for details).

To obtain a Q < −1 skyrmion, we put Ncores = |Q| number
of π skyrmions inside a “sack” representing a closed 2π

domain wall, i.e., skyrmionium which has topological charge
Q = 0 (see Fig. 1). This closed domain wall plays the role of
the shell of the skyrmion and has a tendency to shrink down
to the equilibrium size of skyrmionium. Interparticle repulsion
of π skyrmions in turn prevent such shrinking. Similar to the
effect of surface tension, the balance of external and internal
pressures results in the stability of this spin texture. For a
skyrmion with Q > 0 the role of a sack or a shell is played by
a closed π domain wall which possesses a nonzero topological
charge Q = −1 as a π skyrmion. The domain within the
closed loop has magnetization opposite to the surrounding
ferromagnetic background. Due to the opposite polarity, each
π vortex inside such a sack has a self-topological charge
Q = 1. In Fig. 1 see Q = 1 and 2, they look like “holes” inside
the white domains. As a result, the total topological charge (2)
gives Q = (Ncores − 1), where the amount of cores is equal
to the number of holes. We found solutions with absolute
values of Q equal to units, tens, hundreds, and even thousands
(see Appendix C for details). Thereby there is every reason
to expect that Q can be equal to any arbitrary large integer
number.

The dependence of the skyrmion energy as a function on
its topological charge is found to be well approximated by
a piecewise linear function for small |Q|, while some points
slightly deviate from the linear law (Figs. 2 and 3). Note,
the linear law dependence E (Q) is known to be a good
approximation in the baby Skyrme model [2,3], while for
an isotropic ferromagnet model [26] the relation is strictly
linear. Our analysis shows (see Appendix C) that the curves
Easpt = E0 (α(±)Ncores + β(±)

√
Ncores) are good candidates for

the true asymptotics when Q → ±∞. Moreover, a detailed

numerical analysis with a high precision confirm the equality
α(−) = EQ=−1/E0 (for details see Appendix C).

Let us first consider the case where u = 0 (Fig. 2) and
some arbitrary chosen h above the field of the elliptical
instability [73] and below the field of the thermodynamic
stability of π skyrmion, EQ=−1 < 0 [74]. The right branch of
the “spectrum” for Q � −1, Fig. 2, increases monotonically
with Q. In contrast to that the left branch of the spectrum (Q <

−1) displays the opposite behavior and the energy decreases
with |Q|. This feature reflects the fact that the global energy
minimum corresponds to a hexagonal lattice of π skyrmions
[74], and the big skyrmions Q 
 −1 on the left branch of
the spectrum form a kind of lattice inside their shells (see
Appendix C).

Significantly, the set of the solutions contains also states
with higher energies. In Fig. 2 we have shown only the

FIG. 2. The energy of skyrmions E as function of topological
charge Q for the case of a magnet without magnetocrystalline
anisotropy u = 0. Open circles are the lowest energy solutions for
each particular Q, and solid squares are solutions with higher ener-
gies but nearest to the lowest energy state. The dotted lines are linear
fits for corresponding sets of points.
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FIG. 3. The energy of skyrmions E as function of topological
charge Q for the case of uniaxial anisotropy u = 0.65 in external
magnetic field h = 0.3 (a) and h = 0.4 (b). The slope of the solid line
is defined as tan(γ ) = 4π . The point marked by four thick arrows
in (b) corresponds to the solution expected from the linear fit of
the energy dependence and with morphology shown in the inset in
(a), but precise calculations shows instability of expected skyrmion.
The morphology of stable and energetically most favorable skyrmion
with Q = −2 is shown in the inset.

energies of those states which corresponds to the smallest
energy shift. Some of those solutions are shown in the inset.
Note that Q = −1 skyrmion in the inset of Fig. 2 corresponds
to earlier known solution of 3π vortex [39]. We believe that
the set of the solutions corresponding to the lowest energy
states, open circles in Fig. 2, represent true minimizers in the
corresponding topological sectors.

For the case of a nonzero out-of-plane uniaxial anisotropy,
Fig. 3, we used the value u = 0.65, which according to
Ref. [46], corresponds to the bilayer of PdFe on an Ir(111)
single crystal substrate. We performed calculations for two
values of h for which EQ=−1 > 0. Both branches of the
spectrum (Fig. 3) now demonstrate the same trend. Above
certain values of h, the energy of some points of the left branch
of the spectrum become higher than the critical Dirichlet
energy [26,75] shifted up on the corresponding energy of
skyrmionium, see solid line in Figs. 3(a) and 3(b). This means
that the corresponding expected solutions become unstable,
see for instance the point marked with four arrows in Fig. 3(b).
Such instability can be explained as follows: The pressure
from the shell becomes too high and leads to the shrinking
[75] of the internal π skyrmions. This may result in blow-up
behavior of the solutions [76] with an increasing magnetic
field. From that one may conclude that in the case of such a
critical phenomena, a certain solution of higher energy branch
becomes the minimizer for corresponding Q, see inset in
Fig. 3(b).

The above discussed solutions are not restricted to the con-
tinuum model and can be generalized to spin-lattice models of
chiral ferro- and antiferromagnet. In Appendix D we present
solutions for such models, and discuss their morphology and
key features.

V. CONCLUSIONS

In conclusion, we have shown that the standard micro-
magnetic model with chiral Dzyaloshinskii-Moriya interac-
tion allows the existence of chiral magnetic skyrmions with
any integer topological charge. The morphology of the new
solutions with Q < −1 and Q > 0 are described in detail, and
are found to be sufficiently different from the systems where
the interparticle attraction naturally leads to the formation of
clusters [4,77–79]. The energies of skyrmions with a high
topological charge are found to be comparable to each other
and controllable by an external magnetic field. The latter
suggests that the direct observation of a large variety of
new particlelike states presented here should be accessible in
experiment. We suppose that the nucleation of new skyrmions
can possibly be realized with a scanning tunneling microscope
equipped with the magnetic tip of a special shape [80] or by
means of a time-dependent external magnetic field or a current
induced spin torque effect in geometrically confined systems.
The stabilized solitons can be considered as information bit
carriers in a skyrmion racetrack memory and may extend a
newly proposed concept of “two particles” for binary data
encoding, as skyrmion-bobber chains in cubic chiral magnets
[24], or sequences of skyrmions and antiskyrmions in spatially
anisotropic ultrathin films [43].

Finally, one has to emphasize that the found solutions
with |Q| > 1 are natural high charge skyrmions for the cor-
responding model, while the Q = 1 solution presented in this
work should be considered as an actual antiparticle for π

skyrmion.
During the review process, we became aware of an inde-

pendent work [81] where authors report on similar theoreti-
cal findings and provide experimental evidence of so-called
“skyrmion bags” observed in liquid crystals which mimics
the skyrmions with high topological charge addressed in this
work.
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APPENDIX A: ACCURACY OF FINITE
DIFFERENCE SCHEMES

In this Appendix we discuss the accuracy of the numerical
methods employed to calculate various skyrmionic solutions
with different topological charge and morphology presented
in the main text of the paper as well as in the Appendixes.
We compared the results of energy minimization obtained by
our method with the second-order finite difference schemes
implemented in most open-source software for micromagnetic
simulations such as MuMax3 [82]. A high accuracy numerical
scheme used in our work is essential for the study of a number
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FIG. 4. Example of two solitons of nearly identical size but
different morphology and topological charge: axisymmetric 7π vor-
tex [39] with Q = −1 (a) and skyrmion with Q = −12 (b). Both
solutions corresponds to the case u = 0, h = 0.65. Both images are
given in the same scale. The color code is identical to that one used
in Figs. 1–3 in the main text.

of aspects: the stability of the solutions close to blow-up,
energy of skyrmions with extremely big topological charge,
etc. Moreover, we provide additional calculations with a very
high accuracy reducing the relative error in energy down
to 10−6. These calculations can be taken as benchmarks
and compared with the outputs provided by other methods.
Such high accuracy can be achieved only for axisymmetric
solutions [39], where the problem can be reduced to an
ordinary differential equation. An example of axisymmetric
solution is depicted in Fig. 4(a). Furthermore, we show a
nonaxisymmetric solution of a comparable size with a more
complex morphology in Fig. 4(b). The results obtained with
our precise method for axisymmetric solutions can be taken
as a reference to define a threshold for more general solutions
with lower symmetries.

The Hamiltonian (1) in the main text can be rewritten in
dimensionless units:

E = E

E0
=

∫ (
1

2

∑
i

(∇ni )
2 + 2π w(n) + 4π2 u (1 − nz

2) + 4π2 h (1 − nz )

)
dxdy, (A1)

where x = x/LD, y = y/LD, E0, and LD are defined in the main text.
In the case of axisymmetric solitons [1,39], the solution of the problem (A1) can be reduced to a second-order nonlinear

nonautonomous ordinary differential equation:

d2θ

dρ2
+ 1

ρ

dθ

dρ
− 1

ρ2
sin(θ ) cos(θ )︸ ︷︷ ︸

exchange

+ 4π

ρ
sin(θ )2

︸ ︷︷ ︸
DMI

− 4π2u sin(2θ )︸ ︷︷ ︸
uniax. anis.

− 4π2h sin(θ )︸ ︷︷ ︸
Zeeman

= 0, (A2)

where θ is the polar angle of magnetization vector, i.e., nz = cos(θ ), and ρ is the radial coordinate.
The soliton solutions of Eq. (A2) are exponentially localized [83], even in the absence of the DMI contribution [84]. The true

asymptotic of such solutions behaves as a Macdonald function [85,86]:

θ (ρ) ∼ 1√
ρ

exp(−2π
√

2u + h ρ) for ρ → ∞. (A3)

This exponential decay of the solution renders the error introduced by the finite-size domain negligible. The discretization scheme
plays a major role in the achievement of the required high accuracy. We are particularly interested in the behavior of the error
with respect to the size and morphology of the skyrmion texture. A higher accuracy can be achieved for the one-dimensional
(1D) problem (A2) since our solution θ depends only on ρ. Contrary to the 2D case the solution of such a 1D problem does
not require considerable computational efforts, and high accuracy results can be obtained on very dense meshes with internode
distance ∼0.001 (about a 1000 nodes per LD). Such high-accuracy solutions then can be used as benchmarks to verify the
accuracy of other methods.

Equation (A2) can be solved numerically by means of explicit integration relying of the Runge-Kutta method [39]. Assuming
θ (0) = kπ , where k is an integer, the proper value of the parameter θ ′(0) = dθ/dρ|ρ=0 can be found by the shooting method.
Thus, the solution is uniquely “encoded” in a single number θ ′ and every overshooting/undershooting should lead to a distortions
of the θ (ρ) profile which is expected to decrease monotonically to zero as ρ →∞. This property of the explicit integration
method can be used to verify the correctness of the results obtained with other methods. In particular, we found the solution
of the 1D problem (A2) by the unconstrained nonlinear conjugate gradient (NCG) minimization method for corresponding
Hamiltonian:

E1D = 2π

∫ ∞

0

[
1

2

(
dθ

dρ

)2

+ 1

2ρ2
sin(θ )2 + 2π

dθ

dρ
+ π

ρ
sin(2θ ) + 4π2u sin(θ )2 + 4π2h[1 − cos(θ )]

]
ρ dρ. (A4)

A very large simulation domain was used 0 � ρ � 10 and
very small internode distance 
ρ = 0.005. The values at the
boundaries θ (0) and θ (10) was fixed to kπ and 0, respectively.
A finite-difference scheme of the fourth order of accuracy

was designed assuming that θi and its spatial derivative θ ′
i

at each node i are independent variables. According to our
estimates the relative error in the calculation of the energy
marked in bold font shown in the Table I does not exceed
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TABLE I. The energies of several solitons calculated by different methods.

Energy E

MuMax3 \ 2 Atlas \ 2 Atlas \ 2 Atlas \ 4 1D \ 4
Texture type Q u h 
s = 1/52 1/52 1/104 1/52 1/200 θ ′(0)

Axisymmetric skyrmion −1 0 0.65 −3.522 −3.527 −3.556 −3.565 −3.56497 −4.553561
2π vortex (skyrmionium) 0 0 0.65 6.476 6.472 6.322 6.274 6.27244 −2.424450
7π vortex −1 0 0.65 55.45 55.46 53.63 53.02 53.0071 −8.847806
Skyrmion +1 0 0.65 17.85 17.79 17.59 17.52 not applicable not applicable
Skyrmion −3 0 0.65 6.466 6.462 5.808 5.595 not applicable not applicable
Skyrmion −12 0 0.65 −12.54 −12.54 −13.91 −14.37 not applicable not applicable
Axisymmetric skyrmion −1 0.65 0.3 0.673 0.673 0.6341 0.6220 0.621763 −3.012659
Axisymmetric skyrmion −1 0.65 0.4 2.666 2.666 2.628 2.617 2.61621 −4.561866

10−6. For additional verification we used the value θ ′
i=0 (the

value in the first node for which ρ = 0) from the found
solution as an initial input value θ ′(0) for the integration
with the fourth-order Runge-Kutta method (RK4). We used
the integration step 
ρ = 10−7 and found during a further
shooting procedure that at least the first six significant digits
of θ ′

i=0 are accurate. All calculations for the 1D problem were
carried out in double-precision format (64 bits) for floating-
point operations.

The contributions of exchange and Dzyaloshinskii-Moriya
interaction terms at each (i, j)th node with coordinates
(x, y) = (i 
s, j 
s) in 2D mesh are approximated using the
values of the unit vector field in eight neighboring nodes
with (x±
s, y±
s) and (x±2
s, y±2
s), where 
s is the
internode distance. The corresponding energy contributions
represent the products of the n-vector projections at each
node and its eight neighbor nodes multiplied by specific
factors, see for instance Ref. [87] and the Supplemental
Material in Ref. [50]. For testing purposes we have also
implemented in our code the conventional second-order finite
difference scheme. For direct energy minimization, we used
the constrained NCG algorithm where the constraint n2 = 1
is naturally satisfied because of using the atlas for the man-
ifold corresponding to the space of the order parameter.
The manifold itself represents a two-dimensional sphere S2

spin
while the atlas is composed of two coordinate charts each
of which corresponds to stereographic projection from one
of two poles of the sphere. Here we refer to this advanced
numerical scheme as “atlas.” Conceptually such a scheme is
similar to the idea of describing the macrospin in the frame of
stereographic projections with the ability to switch between
projections from both poles, presented in Ref. [88]. The key
feature of the atlas scheme is that each individual spin is
defined in one of two coordinate charts independently on other
spins. A more detailed description of the method and criteria
for switching between charts for individual spins can be found
in the Supplemental Material in Ref. [51]. Note, most of the
floating-point operations in our code have been implemented
in single-precision format (32 bits). This allows us to reach
high performance on GPU.

In Table I we present the comparison of the results ob-
tained with MuMax3 where a second order finite-difference
scheme is implemented [82] (the script is provided in [72]),
different implementation of the atlas method with second

order (see “Atlas \ 2” columns with 
s = 1/52 and more
dense mesh with 
s = 1/104), fourth order finite-difference
scheme (see “Atlas \ 4” column), and one-dimensional ap-
proach (see “1D \ 4” column). It is seen that the method
chosen in the current work provides the best accuracy with
an error lower than 0.04% as for Q = −1 skyrmions as for
more complex textures. In contrast, the second-order finite-
difference scheme widely used in micromagnetic software
shows significant error of about 8% for the same relatively
dense mesh. Increasing twice the mesh density in each of the
dimensions reduces this error only by factor 4 as expected for
the second-order scheme. A simple estimate suggests that one
requires to increase the mesh density 14 times more in each
dimension to provide an accuracy comparable to our fourth-
order scheme. Finally, it worth mentioning that the calcula-
tions for the textures with characteristic size of ∼10LD (see
for instance Fig. 4) with second-order discretization scheme
on the meshes with 
s ∼ 0.01LD provides an absolute error
in energy calculations higher than value of E0. Therefore, for
quantitative analysis of such larger textures the second-order
discretization scheme becomes unreliable.

APPENDIX B: REAL-TIME SIMULATIONS

One of the key features implemented in our code is the
graphic user interface with an interactive regime allowing
the in situ control of the magnetic configurations as well
as an easy way to construct a large variety of initial states.
In particular, when being in the interactive regime, one can
flip the spins inside a certain area under the mouse pointer.
This option provides an efficient approach for construction
of complex initial configurations composed of domains with
a magnetization pointed either up or down. After a certain
number of iterations of the energy minimization routine, the
initial configuration converges to one of the nearest energy
minimum. Beside the calculation of standard termination cri-
teria [89] one can also perform an in situ examination of the
stability by introducing small excitations and perturbations to
the simulated spin texture.

In order to emphasize the isomorphism of systems
with different Lifshitz invariants, we prepared three dis-
tinct movies illustrating the case of Cnv, D2d, and
Dn symmetries. The Supplementary Video [72] contains
three files: “movie1_Cnv.mp4,” “movie2_D2d.mp4,” and
“movie3_Dn.mp4.”

064437-6



CHIRAL MAGNETIC SKYRMIONS WITH ARBITRARY … PHYSICAL REVIEW B 99, 064437 (2019)

Q = −913 −257 202 3179

10 LD

FIG. 5. Morphology of stable chiral skyrmions with high topological charges in the case of magnetic field applied perpendicular to the
plane h = 0.65 and zero magnetocrystalline anisotropy u = 0. Note, the scale is different for all figures.

APPENDIX C: BIG AND EXTREMELY BIG SKYRMIONS

It the case of |Q|1, the kernel of the skyrmion, its major
internal part, consists of tightly packed cores representing π

vortices. The shell of such heavy skyrmions which represents
a π or 2π domain wall for positive and negative Q, respec-
tively, occupies a relatively small area along the outer perime-
ter, see Fig. 5. When increasing the number of cores (Ncores)
the structure of the skyrmion kernel becomes more regular
while the area engaged by the kernel increases proportionally
to Ncores. As a result, the energy of the skyrmion kernel
tends to be proportional to Ncores while contribution from the
boundary is proportional to the perimeter of the skyrmion and
is proportional to

√
Ncores. Thereby, the asymptotic behavior

of the energy of the skyrmions with increasing |Q| should have
the following form:

Easpt

E0
=

{
α(−)|Q| + β(−)

√|Q| (Q 
 −1),

α(+)(Q + 1) + β(+)
√

Q + 1 (Q  1),
(C1)

where α(±), β(±) are the constants which depend only on u
and h.

For the careful verification of (C1), we first calculated ten
skyrmions (five for negative Q and five for positive Q) with
relatively high topological charges in the range 100 � |Q| �
300 [see empty circles in Figs. 6(a) and 6(c)]. Then assuming
that such values of |Q| are sufficiently large for the energy
to be slightly different from the asymptote fitted with (C1)
we obtain the following fitting parameters: α(−) = −3.552,
β(−) = 7.663, α(+) = 9.885, β(+) = 2.308. The dependencies
corresponding to (C1) are represented as solid curves in
Figs. 6(a)–6(c). Finally, in order to verify the expected asymp-
totic behavior, we have calculated the energies corresponding
to the skyrmions with extremely high |Q|. As seen from
Figs. 6(a) and 6(c), the agreement is excellent.

To emphasize the deviation of E (Q) from the linear depen-
dence, we plotted results of the linear fit with the same points
assuming E ≈ c1|Q| + c2, see the dashed lines in Figs. 6(a)
and 6(c).

Despite the fact that for large |Q|, the cores form a tri-
angular lattice, the corresponding unit cell is different from
the one of the skyrmion lattice phase also known as a
skyrmion crystal. In particular, the interskyrmion distances for
an equilibrium skyrmion lattice is different from the intercores
distance found in the kernels of big skyrmions. In the case
of the equilibrium skyrmion lattice, the particles are packed

in such a way that the average energy density is minimized,
while the number of particles is assumed to be unlimited in
an infinite space. In contrast, the packing in the kernel of a
big skyrmion minimizes the total energy for a fixed number of
cores inside a limited size domain.

In the case of negative Q, if |Q| increases, then the pressure
inside the sack decreases together with the curvature of the
shell. Thereby, the stress of the internal lattice should tend to
zero as Q → −∞. For such a limiting case this lattice can
be regarded in a first approximation as a set of individual
noninteracting Q = −1 skyrmions, which means that α(−)

is equal to EQ=−1/E0. Our calculation gives EQ=−1/E0 =
−3.565 (Table I). The corresponding discrepancy is only
0.4% mostly due to the fact that the coefficients for the
asymptote are obtained for a finite value of |Q|. For the case of
uniaxial anisotropy (u = 0.65, h = 0.3), following the same
procedure we found α(−) = 0.627. The corresponding energy
EQ=−1/E0 = 0.622 (Table I).

APPENDIX D: SKYRMIONS IN LATTICE MODELS

1. Chiral ferromagnet

The results presented in this work which employs a high
accuracy method for the quantitative analysis of continuous
solutions remain valid in the discrete limit of classical spins on
lattice. In addition to that, our results are also validated by the
discrete approach for systems where the continuum approach
(1) is unsuitable. For illustration, we consider a standard spin
lattice model of a chiral magnet [90,91]:

H = − J
∑

〈i j〉,i> j

ni · n j −
∑

〈i j〉,i> j

Di j · [ni×n j]

− Ku

∑
i

n2
i,z − μsBext

∑
i

ni, (D1)

where J is the exchange coupling constant, and μs is the
magnetic moment of each spin. The unit vector ni defines the
orientation of the spin at site i. The notation 〈i j〉, i > j denotes
that the summation runs over each nearest-neighbor pair once.
We assumed that each Dzyaloshinskii-Moriya pseudovector
Di j is perpendicular to the bond between sites i and j and lies
in the (xy) plane. The modulus of vector D = |Di j | is assumed
to be fixed for all interacting pairs of spins. For definiteness,
we consider the case of a 2D square lattice with lattice
constant a; however, results presented below remain valid for
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(c)(b)(a)

FIG. 6. The energy of skyrmions E as function of topological charge Q for: Q 
 −1 (a), −25 � Q � 25 (b), and Q  1 (c). The solid
curves are fit by (C1) for the points marked with empty circles in (a) and (c). The dashed lines in (a) and (c) are the linear fit for the same points.
The solid circles in (a) and (c) and in the corresponding insets were not taken into account in the fitting process and are shown to illustrate a
high quality of the fit obtained with Eq. (C1) and deviation of E (Q)|Q|1 from the assumption of linear dependence.

other lattice symmetries as well. The dominant interaction in
the system is the ferromagnetic exchange 0 < D < J .

In the absence of uniaxial anisotropy and external magnetic
field (Ku = 0, Bext = 0) the ground state for (D1) is a spin
spiral with a period L = 2πa/arctan(D/J ) [91]. For J  D
(and therefore L  a) continuous limit (1) can be considered
as a valid approximation for the lattice Hamiltonian (D1)
with A = J/(2a), D = D/a2. The corresponding helix period
LD = 2πaJ/D. However, for J � D the continuum approach
(1) representing a second-order Taylor expansion of the lattice
model (D1) becomes invalid. For example, for D = 0.6J the
period LD turns to be underestimated by about 10%. Thus, for
such ratios between J and D the lattice effects are relevant.

For our simulations we used J = 1.0, D = 0.6. An impor-
tant feature of skyrmions in the lattice model is the discrete
degeneracy of the solutions, meaning that some in-plane
directions are more preferable for texture alignment. In Figs. 7
and 8 we illustrate two possible skyrmion configurations for
Q = −2 and Q = 1, respectively. The degree of degeneracy
depends on the symmetry of the crystal lattice and on the mor-

FIG. 7. Two energetically equivalent states for skyrmion with
Q = −2 on a square lattice, for the case of zero magnetocrystalline
anisotropy Ku = 0, μsBext = 0.25.

phology of the skyrmion spin texture. Note, the continuum
model (1) is spatially isotropic and the energy of skyrmions
does not depend on the orientation of the texture. For the
calculation of topological charge on a discrete lattice we used
the approach suggested in Ref. [92].

2. Chiral antiferromagnet

The spin-orbit interaction in antiferromagnets plays a sim-
ilar role in the stabilization mechanism of skyrmions as in
ferromagnetic mediums. Furthermore, the most realistic cases
of a two-sublattice chiral antiferromagnet can be described
in the frame of the same effective model as for a chiral
ferromagnet [93,94].

For the simulation of antiferromagnets, we used a spin
lattice Hamiltonian (D1) with J = −1, D = 0.4, Ku = 0.22,
and Bext = 0. In the corresponding phase diagram of a 2D
chiral antiferromagnet, these parameters belong to the domain
of confident stability of antiferromagnetic skyrmions [95].

For an antiferromagnet, in the absence of external magnetic
field, the net magnetization reduces to zero. Therefore, it

FIG. 8. Two energetically equivalent states for skyrmion with
Q = 1 on a square lattice for the case of no external field Ku = 0.45,
μsBext = 0.
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FIG. 9. The emergence of antiferromagnetic skyrmions with different topological charges as a result of full energy minimization starting
from a random spins distribution. (a) The initial entirely random spins distribution with zero net magnetization, (b) the spin configuration after
complete minimization, and (c) the perspective and zoomed view of the area marked in (b) as the dashed square. The color code is identical
to that in all other images in the Appendixes and in the main text. Calculations have been performed on the domain with 256 × 256 spins and
periodic boundary conditions in the plane. Texture with Q = 0 (antiferromagnetic skyrmionium) has been recently discussed in [98].

seems natural to use the configuration that meets this criterion
as the initial state. Random spins distribution represent an
inexhaustible set of initial states with a zero net magneti-
zation. It turned out that such a simple initial guess with a
regular probability leads to the appearance of skyrmions with
various Q after direct energy minimization, see Fig. 9 and
Supplemental Video 4 (“movie4_antiferromagnet.mp4”). The
topological charge of an antiferromagnetic skyrmion can be
calculated for either of the two sublattices and taking into
account its polarity (net magnetization of sublattice). Because
of the opposite polarities of the sublattices, the superimposed
or combined winding number in this case always vanishes
−Q + Q = 0. An important consequence of such vanishing

of a winding number is the cancellation of so-called Magnus
force – the force acting on topological magnetic soliton inter-
acting with the spin-polarized electric current [96,97]. Note,
cancellation of Magnus force is expected for any antiferro-
magnetic skyrmions irrespective of topological charge Q.

The feature of topological charge for an antiferromag-
net can be illustrated using Fig. 9 as follows. Let us con-
sider skyrmion with Q = +3 and three skyrmions with Q =
−1 nearby. The total topological charge of such four tex-
tures is zero, which means that there is a way to merge
these textures with further transformation into the ground
state under preservation of the continuity in each of the
sublattices.
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