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Skyrmion ratchet effect driven by a biharmonic force
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Based on micromagnetic simulation and analysis of Thiele’s equation, in this work we demonstrate that ratchet
motion of a skyrmion can be induced by a biharmonic in-plane magnetic field hx (t ) = h1sin(mωt ) + h2sin(nωt +
ϕ), provided that integers m and n are coprime and that m + n is odd. Remarkably, the speed and direction of
the ratchet motion can be readily adjusted by the field amplitude, frequency, and phase, with the maximum
speed being over 5 m/s and the direction rotatable over 360°. The origin of the skyrmion ratchet motion is
analyzed by tracing the excitation spectra of the dissipation parameter D and the skyrmion position R, and it
shows that the dissipative force plays a key role in the appearance of ratchet motion. Such a ratchet motion of
a skyrmion is distinguished from those caused by single-frequency ac drives reported in the literature, and from
that driven by pulsed magnetic fields as also predicted in this work. Our results show that skyrmion ratchet effect
under biharmonic forces shares some common features with those found in many soliton systems, and the facile
controllability of both the skyrmion speed and direction should be useful in practice.
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I. INTRODUCTION

Since the theoretical prediction [1] and their first exper-
imental evidence [2] made about a decade ago, magnetic
skyrmions have become a focus of attention from both an aca-
demic and technological point of view. Magnetic skyrmions
are a kind of whirl-like spin textures with typical sizes of 10–
100 nm, and behave like stable particles under the protection
of topology. Their presence, either as individual particles
or in crystalline form (so-called skyrmion lattice), has been
identified in a series of bulk materials with chiral magnetism,
as exemplified by B20 metal compounds (such as MnSi [3,4],
MnGe [5,6], FeGe [7,8], Fe1−xCoxSi [9,10], Mn1−xFexGe
[11], etc.), and multiferroic insulators like Cu2OSeO3 [12].
Magnetic skyrmions can be also stabilized in magnetic thin
films contacted with heavy metal layers, such as Fe/Ir [13],
Co/Pt [14], and CoFeB/Ta [15]. In most of the existing
magnetic skyrmion systems, the emergence of the skyrmion
is attributed to the Dzyaloshinskii-Moriya (DM) interaction
[16,17], which arises from an inversion symmetry breaking
in crystal lattice or at the interfaces. Due to the nontrivial
topology, magnetic skyrmions are known to carry quantized
emergent electromagnetic fields, which can effectively act on
conduction electrons and magnons, giving rising to intriguing
physical behaviors in skyrmion systems such as topologi-
cal Hall effects associated with the transport of skyrmions
[18,19], electrons [20,21], and magnons [22,23]. In addi-
tion to the nontrivial topological behaviors, the charm of
magnetic skyrmions also comes from their nanometric size
[24], topological protection [25], ultralow electric currents
required to drive their motion [26], and unique dynamics
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under microwave fields [27]. All these indicate the importance
of magnetic skyrmions in fundamental physics, and their high
potential use in future information memories and spintronic
devices.

Understanding the skyrmion dynamics in response to ex-
ternal sources is one of the important issues in the field,
and is relevant for many applications. In particular, reliable
control of skyrmion motion is the key for racetrack-type
skyrmionic devices. Previous works have shown that the
translational motion of skyrmions can be driven by a variety
of external sources, which include time-unvarying sources like
steady spin-polarized currents [28,29], electric-field gradients
[30], magnetic-field gradients [31,32], and thermal gradients
[31,32], as well as time-varying sources like single-frequency
ac drives of currents, fields, or field gradients [33–37].

For the cases of time-unvarying sources, skyrmion motion
can be understood by the model that the skyrmion center is
subjected to a steady driving force, arising from the spin-
transfer torque, the spatial asymmetric potential due to the
field gradients, or the momentum transfer caused by the
magnon flow, as is reflected by a steady and nonzero driving
force F in Thiele’s equation,

−M
··
R +G × ·

R −αD̂
·

R +F = 0. (1)

Here M is skyrmion mass, R is the collective coordinate of
the skyrmion, G = Gez = 4πQez is the gyromagnetic vector
with Q being the skyrmion charge, α is the Gilbert damping
constant, and D̂ is the dissipative force tensor. D̂ is defined
through the relation Di j = ∫

(∂im · ∂ jm)dxdy, and it becomes
Di j = δi jD in the highly symmetrical case of an isolated
skyrmion.

Situations are more complicated for skyrmion motion un-
der time-varying sources as excitation modes of a skyrmion
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are involved. Several kinds of time-varying sources have
been reported to induce a net unidirectional motion of a
skyrmion. The first way, as pointed out by Wang et al. [33],
is using an oscillating in-plane magnetic field together with
a static in-plane magnetic field, which we would like to call
a biased oscillating magnetic field. The key of this method
is the spatial symmetry breaking of the skyrmion by the
static in-plane field. The effect of such a biased oscillating
magnetic field causes a nonzero time average of the driving
force F in Thiele’s equation. The second way, reported by
Moon et al. [34], is using a tilted oscillating magnetic field
(with in-plane and out-of-plane components). While the net
motion of a skyrmion can be intuitively understood by a
mixing of the gyration and breathing modes, the dissipation
force term in Thiele’s equation plays an important role. The
tilted oscillating magnetic field leads to an oscillation of the

dissipation parameter D and the skyrmion velocity v = ·
R with

the same frequency, and consequently the time average of the
dissipation force is nonzero. It is this net dissipation force that
causes the net motion of a skyrmion. The third way, as first
demonstrated by Reichhardt et al. [35,36] and subsequently
by Stosic et al. [37], is to use oscillating drives like an ac
current together with asymmetric pinning potentials. The net
motion of a skyrmion of this way is based on the spatial asym-
metry caused by pining sources (e.g., gradient distributions
of point defects [36] or extended defects with an asymmetric
geometry [37]), and the Magnus force has a great impact
on the skyrmion motion direction. The fourth way, which
is realized by an oscillating magnetic-field gradient of high
symmetry, has been recently revealed by Psaroudaki and Loss
[38]. For this case, the time-dependent dissipation caused by
the coupling of external field with magnetic excitations is
also the key to the appearance of unidirectional motion of a
skyrmion, but arises as an effect of quantum dynamics. It is
noteworthy that such a motion exists even when the system
and the driving field are of high symmetry, in contrast to the
previous cases.

From a fundamental point of view, the unidirectional mo-
tion of a skyrmion under oscillating driving forces is relevant
to a general kind of transport phenomena of soliton systems,
named ratchet effect, where net motion of solitons is induced
by zero-average forces. In the literature, the ratchet effect has
been explored in many different soliton systems by physi-
cists and mathematicians. In particular, a large number of
works have focused on the ratchet effects with biharmonic ac
driving forces in soliton systems [39–46]. It is known that a
ratchet effect appears if the system is driven by a biharmonic
force F(t ) = f1sin(mωt ) + f2sin(nωt + ϕ), and the speed and
direction can be readily adjusted by the frequency ω and
phase ϕ, provided that m and n are two coprime integers such
that m + n is odd. It is natural to ask if magnetic skyrmions
exhibit a ratchet effect under a biharmonic driving force.
The existence of such a ratchet effect cannot only provide
us an alternative strategy to control skyrmion transport, but
also help us to gain a deeper insight into the skyrmion dy-
namics. Being captured by the Landau-Lifshitz-Gilbert (LLG)
equation or Thiele’s equation, skyrmion dynamics exhibits
complicated internal excitation modes (e.g., gyration mode,
breathing mode, and spin waves) with the change of shape

and size. While a change in the effective damping of a
skyrmion can be induced by external source designing (e.g.,
using substrates and drives with some form of space or time
asymmetry as intensively studied in other soliton systems
[39–46]), it is also strongly modified by the change of size
or shape of the skyrmion. This leads to unique features of
skyrmion ratchet effect that cannot be simply obtained by
analogy with those of other soliton systems. Nevertheless,
explorations on skyrmion dynamics under a biharmonic force
have not yet been reported.

In this paper, we study the skyrmion dynamics under bihar-
monic magnetic fields. Based on micromagnetic simulation
and analysis of Thiele’s equation, we show that a ratchet mo-
tion of a skyrmion can indeed be induced by a biharmonic in-
plane magnetic field hx(t ) = h1sin(mωt ) + h2sin(nωt + ϕ),
provided that m and n are two coprime integers such that
m + n is odd. The direction of the motion can be continuously
rotated by 360° by adjusting the phase ϕ. The ratchet motion
speed can be tuned by both the frequency and field amplitude
and is most significant near the resonant frequency of the
gyration mode. The analysis of Thiele’s equation shows that
the appearance of a net dissipative force, due to an overlapping
of the excitation modes of the dissipation parameter D and the
skyrmion poison R, is believed to be the key to the ratchet
motion. The difference between such a ratchet effect and those
driven by single-frequency oscillating driving forces as well
as that caused by pulsed magnetic fields as predicted at the
end of this work is discussed.

II. MODEL AND METHOD

The motion of an isolated skyrmion in a chiral magnet
with bulk DM interaction is numerically studied. Basing on
a Heisenberg model on a two-dimensional square lattice, we
write the following effective Hamiltonian of a chiral magnet
[47]:

H(mi ) = −J
∑
〈i, j〉

mi · m j − D

(∑
i

mi × mi+ex · êx

+
∑

i

mi × mi+ey · êy

)
−

∑
i

H(t ) · mi, (2)

where mi is the magnetization vector at site i, J is the Heisen-
berg exchange coefficient, D is the DM interaction coefficient,
and H(t ) = H0 + h(t ) is the external magnetic field which is
the sum of a constant field normal to the plane H0 = (0, 0, Hz )
and a time-varying in-plane field h(t).

The dynamics of skyrmion is captured by solving the
stochastic LLG equation,

dmi

dt
= −γ

[
mi × (

Heff
i + Lfl

i (t )
)] + α

(
mi × dmi

dt

)
, (3)

or in the equivalent form,

dmi

dt
= − γ

α2 + 1

{
mi × (

Heff
i + Lfl

i (t )
)

+ αmi × [
mi × (

Heff
i + Lfl

i (t )
)]}

, (4)
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FIG. 1. Distributions of (a) the z-axis component magnetization
mz and (b) topological charge density q of the skyrmion at static
state, with an arrow plot of the magnetization vectors projected onto
the xy plane at sites (ix, iy ) satisfying mod(ix, 2) = mod(ix, 2) = 0.
(c) Time evolution of the skyrmion position (xc, yc) after applying a
δ-function pulse of in-plane magnetic field hx (t ) = h0δ(t ) at t = 0.
Trajectory of the skyrmion after excitation is depicted in the inset.
(d) Power spectrum of the position of skyrmion (xc, yc).

where γ = gμB/h̄ is the gyromagnetic ratio, α is the Gilbert
damping coefficient, Heff

i is the effective magnetic field given
by Heff

i = − ∂H/∂mi, and Lfl
i (t ) is the stochastic field caused

by the effects of a thermally fluctuating environment interact-
ing with mi. Lfl

i (t ) satisfies 〈Lfl
i (t )〉 = 0 and 〈Lfl

iβ (t )Lfl
iλ(s)〉 =

αkBT γ −1m−1δi jδβλδ(t − s), where β and λ are Cartesian
indices, T is temperature, kB is the Boltzmann constant, and
m = |mi| = |gμB|/a3 is the norm of the magnetization vector.

Numerical simulations based on the stochastic LLG equa-
tion are performed via an explicit Euler iteration scheme.
The size of sample systems is fixed to be 128 × 128 sites
under the periodic boundary condition. The Heisenberg ex-
change J is taken to be J/kB = 50 K [32], and the strength
of the DM interaction coefficient is D = 0.15J . The spin
turn angle θ in the helical structure is ∼6° as determined
by θ = arctan[D/(

√
2J )] [47]. This results in the skyrmion

diameter of ∼30 nm if we consider a typical lattice parameter
of a = 5 Å, as shown in Fig. 1(a). The Gilbert damping
coefficient α is taken to be 0.1. The external magnetic field
normal to the plane is fixed to be Hz = 0.01, in units of
J/(gμB), which is ∼0.11 T for g equal to 6.74. The time
step is taken to be 0.01, in units of h̄/J , which is ∼1.5 fs.
The in-plane magnetic field takes a biharmonic form along
the x direction hx(t ) = h1sin(mωt ) + h2sin(nωt + ϕ). To first

obtain the steady skyrmion, the magnetic structure is initially
set with a downward magnetization in the center region and
with an upward magnetization elsewhere, and is relaxed over
a sufficiently long time (>3 ns). In the following, we focus
on the results obtained at 0 K. A finite temperature would not
change the main conclusions of this work.

To characterize the skyrmion, we calculate the topological
charge density,

q = 1

4π
m · (∂xm × ∂ym), (5)

as defined in the continuous form. The distribution of the
topological charge density of a skyrmion at static state is
shown in Fig. 1(b). The total topological charge is then given
by

Q =
∫

qdxdy. (6)

And, the position of skyrmion R = (xc, yc) can be determined
by

xc =
∫

xqdxdy

Q
, yc =

∫
yqdxdy

Q
. (7)

III. RESULTS AND DISCUSSION

A. Excitation spectrum of a skyrmion under
in-plane magnetic fields

We would like to first take a look at the excitation spectrum
of a skyrmion caused by in-plane magnetic fields. Such a
spectrum is obtained by tracing the spin dynamics of the
skyrmion after applying a δ-function pulse of in-plane
magnetic field hx(t ) = h0δ(t ) at t = 0. The time evolution
curves of the skyrmion position coordinates xc and yc are
shown in Fig. 1(c), and the trajectory of the skyrmion after
excitation is also depicted in the inset. One can see that the
pulsed in-plane field drives the skyrmion into a damping
counterclockwise (CCW) gyration around the equilibrium
position (64a, 64a). Based on the Fourier transformations
of the position coordinates xc and yc of the skyrmion, we
calculate the excitation spectrum of the skyrmion by the
power spectra of x∗

c (ω)xc(ω) and y∗
c (ω)yc(ω) as shown

in Fig. 1(d). A resonant frequency fr of about 16.4 GHz
is clearly seen, corresponding to the CCW gyration mode of
the skyrmion. Note that the gyration trajectory of a skyrmion
under a harmonic in-plane magnetic field is generally
an ellipse rather than a circle, reflecting the fact that the
trajectory is actually a supposition of the CCW and the CW
gyration modes [48]. A net CW gyration of the skyrmion is
not seen, as the resonant frequency of the CW gyration mode
is about zero and its amplitude is always smaller than that
of the CCW gyration mode for a nonbounded free skyrmion.
The resonant frequency provides us an estimation of the
skyrmion mass M ∼ −G/ωr ∼ 0.122 ns, where ωr = 2π fr is
the resonant angular frequency.

B. Skyrmion dynamics under biharmonic magnetic fields

We then study the skyrmion dynamics under biharmonic
in-plane magnetic fields along the x axis in the form of hx(t ) =
h1sin(mωt ) + h2sin(nωt + ϕ). For simplicity, in the work we
set h1 = h2. Figures 2(a) and 2(b), respectively, depict the
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FIG. 2. Snapshots of skyrmion configuration under biharmonic
in-plane magnetic fields (a) hx (t ) = 0.003[sin(ωt ) + sin(3ωt )] and
(b) hx (t ) = 0.003[sin(ωt ) + sin(2ωt )]. For each case, the snapshots
are taken at five time points during a time period after the skyrmion
reaches steady excitation, as labeled in the field profiles. The corre-
sponding trajectory for each case is also shown in the right-top panel.

snapshots of skyrmion configuration during a period of two
specific biharmonic fields, hx(t ) = 0.003[sin(ωt ) + sin(3ωt )]
and hx(t ) = 0.003[sin(ωt ) + sin(2ωt )], with the angular fre-
quency of the fields ω = 105 rad/s, the corresponding fre-
quency f = 16.7 GHz, and period T = 60 ps. That is to say,
the frequencies of the two harmonic magnetic-field com-
ponents have the relation m + n = even for the first case,
and m + n = odd for the latter case. From the field profiles,
one can also note that the first field (m, n) = (1, 3) is time
symmetric with hx(t + T/2) = −hx(t ), whereas the second
field (m, n) = (1, 2) does not have such a symmetry. The plot
settings of the skyrmion configurations are the same as that of
Fig. 1(a), with an arrow plot of the magnetization vectors pro-
jected onto the xy plane at sites (ix, iy) satisfying mod(ix, 2) =
mod(ix, 2) = 0 and a color map of the z-axis component mag-
netization mz. For each case, the snapshots are taken at five
time points during a time period from time point 20T to 21T
as labeled in the field profiles. Such a time interval is chosen to
guarantee that the skyrmion is already in a steady excitation.
The skyrmion dynamics of the two cases are quite similar at
the first sight on the snapshots of skyrmion configuration. For
both cases, the skyrmion deforms and gyrates in the CCW di-
rection. However, by tracing the skyrmion position, we found
that in the first case, the skyrmion exhibits a closed trajectory
after a period of field application, whereas for the latter case,
the trajectory is not closed after a period of field application,
with a net displacement of the skyrmion position (1 → 5).
Since all the conditions return to be the same except for the
skyrmion position after a period, one expects that the drifting
of the skyrmion in the latter case along the direction (1 → 5)
will be accumulated if one traces the skyrmion motion over
more time periods. That is to say, a ratchet motion occurs.

FIG. 3. Long-time skyrmion dynamics under biharmonic in-
plane magnetic field hx (t ) = 0.003[sin(ωt ) + sin(3ωt )] up to 1.5 ns.
The field profiles, the time evolution curves of the skyrmion position
coordinates xc and yc, and the trajectories of the skyrmion for the two
cases are shown in (a)–(c), respectively.

To clearly see the difference between the skyrmion dynam-
ics driven by these two biharmonic in-plane magnetic fields,
we further show the long-time skyrmion dynamics under the
two fields up to 1.5 ns. The field profiles, the time evolution
curves of the skyrmion position coordinates xc and yc, and the
trajectories of the skyrmion for the two cases are shown in
Figs. 3(a)–3(c), and Figs. 4(a)–4(c), respectively. It is clearly
seen that the skyrmion in the first case indeed performs a
bounded periodic motion around the equilibrium position at
rest, whereas the skyrmion in the latter case shows a ratchet
motion with a helical-like motion trajectory along a specific
angle direction. The ratchet motion speed of the skyrmion,

which can be calculated as vc =
√

vc2
x + vc2

y [with

vc
x = lim

t→∞

(
1

t

∫ t

0
xcdt − x0

c

)/
t,

vc
y = lim

t→∞

(
1

t

∫ t

0
ycdt − y0

c

)/
t,

064431-4



SKYRMION RATCHET EFFECT DRIVEN BY A … PHYSICAL REVIEW B 99, 064431 (2019)

FIG. 4. Long-time skyrmion dynamics under biharmonic in-
plane magnetic field hx (t ) = 0.003[sin(ωt ) + sin(2ωt )] up to 1.5 ns.
The field profiles, the time evolution curves of the skyrmion position
coordinates xc and yc, and the trajectories of the skyrmion for the two
cases are shown in (a)–(c), respectively.

and (x0
c , y0

c ) being the initial position of the skyrmion], is
found to be about 9.5 × 109 a/s, and the ratchet motion di-
rection, which is defined as θ = arctan(vc

y/v
c
x ), is found to be

about 313°. If we take a = 0.5 nm, the ratchet motion speed
is about 5 m/s. This value is smaller than that driven by dc
current [28,29], but is comparable to those driven either by a
biased oscillating magnetic field [33] or by a tilted oscillating
magnetic field [34] as predicted in previous works.

To confirm the occurring condition of skyrmion ratchet
motion under biharmonic in-plane magnetic fields, we fur-
ther explore the skyrmion dynamics under biharmonic in-
plane magnetic fields hx(t ) = 0.003[sin(mωt ) + sin(nωt )]
with other values of coprime integers (m, n). We still take
ω = 105 rad/s. The long-time skyrmion motion trajectories
of cases (m, n) = (2, 3), (1,4), (1,5), and (2,5) up to 1.5 ns are
shown in Figs. 5(a)–5(d), respectively. From these trajectories,
we find that ratchet motion occurs for cases (m, n) = (2, 3),
(1,4), and (2,5), whereas the skyrmion in case (m, n) = (1, 5)
exhibits a bounded motion. These results, together with the
previous two cases with (m, n) = (1, 2) and (1,3), clearly
show that a ratchet motion is induced when the frequencies of
the two harmonic-field components satisfy the relation m +
n = odd, otherwise a bounded motion would appear when
m + n = even. That is to say, despite the different physics and

FIG. 5. Long-time skyrmion trajectories under different bihar-
monic in-plane magnetic fields in form of hx (t ) = 0.003[sin(mωt ) +
sin(nωt )] up to 1.5 ns. (a) (m, n) = (2, 3); (b) (m, n) = (1, 4);
(c) (m, n) = (1, 5); and (d) (m, n) = (2, 5).

equations that describe the systems, dynamics of magnetic
skyrmion under a biharmonic force does share a generic fea-
ture found in many other soliton systems [39–46]: A ratchet
motion can appear if some temporal symmetries are broken
by time-dependent forces.

C. Tunability of the skyrmion ratchet motion

In this section, we would like to show the facile tunability
of the skyrmion ratchet motion under biharmonic in-plane
magnetic fields. For biharmonic in-plane magnetic fields in
the form of hx(t ) = hx[sin(mωt ) + sin(nωt + ϕ)], besides the
relation between m and n which determines the occurring of
ratchet motion, one can rely on the field amplitude hx, fre-
quency ω, and phase ϕ to tune the ratchet motion, in analogy
to the tunability of other soliton systems [40,45,46,49]. As an
example, we illustrate the case (m, n) = (2, 1). The results
of cases with other values of (m, n) should be similar. The
dependences of the ratchet motion speed vc and direction θ on
the field amplitude hx (up to 3.5 × 10−3 J/gμB) are depicted
in Fig. 6(a), and the long-time skyrmion trajectories (up to
1.5 ns) at different field amplitudes are depicted in Fig. 6(b).
The frequency ω and phase ϕ are fixed to be 105 rad/s and
0°, respectively. As expected, a larger field causes a more
significant gyration of the skyrmion, and consequently leads
to a more notable ratchet motion. The dependence of the
ratchet motion speed on the field amplitude is in a power
function trend as vc ∝ hε

x , with index ε = 3.32 that is quite
near the value of m + n. Note, a power-function dependence
of the ratchet motion speed on the field amplitude is a common
feature of the ratchet motion of many soliton systems [40].
Meanwhile, the motion direction changes slightly with respect
to the field amplitude. A decrease of the motion angle θ is ob-
served at large fields and becomes more significant when the
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FIG. 6. Controllability of the skyrmion ratchet motion under
biharmonic fields hx (t ) = hx[sin(ωt ) + sin(2ωt + ϕ)]. (a) Motion
speed and direction as functions of field amplitude hx . (b) Long-time
skyrmion trajectories at different field amplitudes hx . (c) Motion
speed and direction as functions of field frequency f = ω/2π .
(d) Long-time skyrmion trajectories at different field frequencies f .
(e) Motion speed and direction as functions of the phase ϕ.
(f) Long-time skyrmion trajectories at different phases ϕ.

field is larger. Note, a further simulation of skyrmion ratchet
motion driven by two harmonics with unequal amplitudes
shows that the effect of varying the amplitude of one harmonic
is quite similar to the effect of simultaneously varying the am-
plitudes of two harmonics, indicating a universal correlation
between motion speed and direction of the skyrmion ratchet
motion under biharmonic fields.

In addition to the field amplitude, the field frequency also
has a significant impact on the ratchet motion. In Fig. 6(c),
the ratchet motion speed vc and direction θ as functions of
the frequency f = ω/2π are shown, with the field amplitude
hx and phase ϕ being fixed to be 0.003 J/gμB and 0°, respec-
tively. The long-time skyrmion trajectories (up to 1.5 ns) at
different frequencies are shown in Fig. 6(d). It is found that
the skyrmion ratchet motion speed has abnormal rumplings
near the resonant frequency of the gyration mode [Fig. 1(d)].
The abnormal rumplings are believed to be caused by the fact
that a series of modes (with different frequencies) rather than a
single-frequency mode are excited in the skyrmion dynamics

driven by the biharmonic field (we will discuss this in the
next section). Not only the amplitudes but also the phases
of the excitation modes are affected by the frequency of the
biharmonic field. They together determine the ratchet motion
speed. The effect of the frequency of the biharmonic field on
the phases of the excitation modes is complicated. This is also
reflected in the dependence of the ratchet motion direction on
the field frequency. In contrast to the gentle effect of the field
amplitude [Figs. 6(a) and 6(b)], the effect of field frequency
on the ratchet motion direction is much more significant.
In particular, a large change of the motion direction occurs
nearby the resonant frequency.

The ratchet motion speed vc and direction θ as functions of
the phase ϕ between the two harmonic-field components are
shown in Fig. 6(e), and the long-time skyrmion trajectories
(up to 1.5 ns) at different phases are shown in Fig. 6(f).
Here we fix the field amplitude to be 0.003 J/gμB, and the
frequency to be 105 rad/s. Remarkably, with the phase chang-
ing from 0° to 360°, the skyrmion motion angle also has a
full 360° rotation in the CW direction. Note also that the
ratchet motion speed shows a slight anisotropy along the angle
direction, with two minimums at ϕ = 90◦ and 270° (corre-
spondingly, θ = 230◦ and 50°), and two maximums at ϕ = 0◦
and 180° (correspondingly, θ = 320◦ and 140°). Therefore,
one can readily use the field amplitude and frequency to
tune the skyrmion ratchet motion speed, and use the phase to
realize a 360° control of the skyrmion motion direction. This
feature should be very useful in practice.

D. Analysis of the skyrmion ratchet effect
based on Thiele’s equation

To understand the origin of the skyrmion ratchet effect,
we further analyze in the frequency domain the dynamics
of the skyrmion motion driven by biharmonic in-plane mag-
netic fields. The power spectra of the magnetic fields, the
dissipative parameter D, and the skyrmion coordinate com-
ponent xc (result of yc is similar) for the two cases of mag-
netic fields, hx(t ) = 0.003[sin(ωt ) + sin(3ωt )] and hx(t ) =
0.003[sin(ωt ) + sin(2ωt )], are shown in Fig. 7 and Fig. 8,
respectively. The profiles of the dissipative parameter D in
the time domain are also plotted in the insets, and those of
the magnetic fields and the skyrmion coordinate component
xc are already shown in Fig. 3. It is clear that a series of modes
with different frequencies rather than a single-frequency mode
are excited in the skyrmion dynamics by the biharmonic
field. Importantly, the excitation spectrum of the dissipative
parameter D, as well as that of the coordinate xc, shows quite
different features for the two cases. For the first case (m, n) =
(1, 3), only those modes with frequencies being even times
of ω, i.e., 2ω, 4ω, 6ω, …, are excited in the spectrum of the
dissipative parameter D, and in contrast, the important modes
of the skyrmion coordinate are those with frequencies that are
odd times of ω, i.e., ω, 3ω, 5ω, …. For the latter case with
(m, n) = (1, 2), frequencies that are even or odd times of ω,
i.e., ω, 2ω, 3ω, …, are all excited in both the spectrum of the
dissipative parameter D and that of the skyrmion coordinate.
Such a difference shows that the frequency overlapping of
the excitation modes of the dissipative parameter and those
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FIG. 7. Power spectra of the magnetic field, the dissipative
parameter D, and the skyrmion coordinate component xc for the
skyrmion motion driven by biharmonic in-plane magnetic field
hx (t ) = 0.003[sin(ωt ) + sin(3ωt )] in the frequency domain. The
profile of the dissipative parameter D in the time domain is also
plotted in the inset.

of the skyrmion coordinate is the key to the skyrmion ratchet
motion.

This is understandable, since such an overlapping would

lead to a net dissipation force αD
·

R averaged over a period in
Thiele’s equation [Eq. (1)]. Here we rewrite Thiele’s equation
in the component form as

−M
d2x

dt2
− G

dy

dt
− αD

dx

dt
− Fx = 0

−M
d2y

dt2
+ G

dx

dt
− αD

dy

dt
− Fy = 0. (8)

Here, F(t ) = [Fx(t ), Fy(t )] is the biharmonic force related to
the biharmonic magnetic field. In the following, we suppose
Fx(t ) = f1 sin(mωt ) + f2 sin(nωt + ϕ), Fy(t ) = 0, and that
such a biharmonic force would cause a multimode excitation
of the dissipative parameter D. For simplicity, we assume the
most important four modes of D are those with frequencies
2mω, 2nω, (m − n)ω, and (m + n)ω, so that we write

D(t ) = D0 + a1 sin(2mωt ) + a2 sin(2nωt + 2ϕ)

+ a3 sin[(n − m)ωt + ϕ′] + a4 sin[(n + m)ωt + ϕ′],

(9)

where ϕ′ = ϕ + π/2, D0 = 5.577π is the value of the dissi-
pative parameter without excitation, and a1, a2, a3, and a4 are
the amplitudes of the four excitation modes. The skyrmion
dynamics under such a biharmonic force Fx(t ) and the

FIG. 8. Power spectra of the magnetic field, the dissipative
parameter D, and the skyrmion coordinate component xc for the
skyrmion motion driven by biharmonic in-plane magnetic field
hx (t ) = 0.003 [sin(ωt ) + sin(2ωt )] in the frequency domain. The
profile of the dissipative parameter D in the time domain is also
plotted in the inset.

excitation modes of D can then be obtained by numerically
solving Thiele’s equation. In the following, we set α = 0.1,
M = 0.13 ns, G = −4π , D0 = 5.577π , a1 = 0.12, a2 = 0.06,
a1 = 1.22, and a2 = 0.026.

In Fig. 9, we depict two examples of long-time skyrmion
trajectories (up to 2 ns) under biharmonic driving forces
Fx(t ) = f1 sin(mωt ) + f2 sin(nωt + ϕ) with (m, n) = (1, 3)
and (m, n) = (1, 2) as predicted by Thiele’s equation, with
f1 = f2 = 400 a/s, ω/2π = 8 GHz, and ϕ varying from 0°
to 360° by a step of 18°. One can see that a ratchet motion
is found for case (m, n) = (1, 2) and the phase can realize
a 360° control of the skyrmion motion direction, whereas a
bounded motion is found for case (m, n) = (1, 2). We also
find that the excitation modes of the skyrmion coordinate
have a frequency overlapping with those of the dissipative
parameter for case (m, n) = (1, 2), whereas no overlapping
occurs for case (m, n) = (1, 3). This result is well consistent
with our previous LLG simulation results. Therefore, a net

dissipation force αD
·

R over a period due to an overlapping of
the excitation modes of the dissipative parameter D and those
of the skyrmion coordinate is indeed the key to the appearance
of skyrmion ratchet motion.

E. Discussion

We would like to further point out that the solution of a
ratchet motion driven by a biharmonic force based on Thiele’s
equation is not necessary to require a multimode spectrum of
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FIG. 9. Two examples of long-time skyrmion trajectories
under biharmonic in-plane driving force Fx (t ) = f1 sin(mωt ) +
f2 sin(nωt + ϕ) as predicted by Thiele’s equation, with f1 = f2 =
400 a/s, ω/2π = 8 GHz, and ϕ varying range from 0° to 360°.
(a) (m, n) = (1, 3) and (b) (m, n) = (1, 2). The total time of each
trajectory is 2 ns.

the dissipative parameter of D. For example, for a biharmonic
force with frequencies denoted by (m, n), one can check that
a solution of a ratchet motion is given by Thiele’s equation

even if D is assumed to have a single excitation mode at
frequency that is the submultiple of the elemental frequency,
e.g., mω or nω. This is due to the fact that, for a driving force
with a specific frequency, e.g., mω, if one assumes that an
excitation mode of D is at frequency, e.g., qω, then a series of
frequencies of the skyrmion coordinate R will be excited, in-
cluding mω, |m + q|ω, |m − q|ω, |m + 2q|ω, |m − 2q|ω, . . ..
The condition of ratchet motion is to have a frequency over-
lapping of the excitation modes of the dissipative parameter
n and those of the skyrmion coordinate R, so that there is
a net dissipation force 〈αDv〉 �= 0, and consequently 〈v〉 �= 0
according to Thiele’s equation. Thus once D has an excitation
mode at frequency that is the submultiple of the elemental
frequency, this condition is always satisfied.

In Table I, we list the dependence of the ratchet motion on
the relation between the frequencies of the biharmonic-field
components quantified by (m, n), the excitation modes of the
dissipative parameter D predicted by LLG simulations, and
the nontrivial single- or dual modes (not exhaustive) of D that
can lead to a ratchet motion predicted by Thiele’s equation.
From the table, one can see that for fields with m + n = odd,
LLG simulations show that the excitation spectrum of D cov-
ers all the frequencies which are integer times of the elemental
frequency. Such an excitation of course covers those nontrivial
single- or dual modes of D that can lead to a ratchet motion
as predicted by Thiele’s equation, and thus a ratchet motion
is observed. For cases m + n = even, LLG simulations show
that the excitation spectrum of D only covers frequencies that
are even times of the elemental frequency. Meanwhile the
nontrivial single modes of D that can lead to a ratchet motion
as predicted by Thiele’s equation are either m or n, which are
both odd numbers. A bounded motion is thus observed.

We emphasize that the ratchet effect revealed in this work
should be distinguished in both the source application and
the dynamics behind from those driven by oscillating driving
forces as reported in previous works [33–38]. The ratchet
motion, driven either by a biased oscillating magnetic field
[33] or by oscillating drives in combination with substrate
asymmetry [35–37], is intrinsically due to a spatial symmetry
breaking, as introduced by the field or by the substrate. For
the ratchet motion driven by a tilted oscillating magnetic field
[34], while the dissipation force should also play an important
role in the net motion, such a net dissipation force relies on the
coexcitation of the gyration mode caused by the in-plane field
and the breathing mode caused by the out-of-plane field. The
key to the ratchet motion under a high-symmetric oscillating

TABLE I. Dependence of the ratchet motion on the relation between the frequencies of the biharmonic-field components quantified by
(m, n), the excitation modes of the dissipative parameter D predicted by LLG simulations, and the nontrivial single- or dual modes (not
exhaustive) of D that can lead to a ratchet motion predicted by Thiele’s equation.

(m, n) Excitation modes of D Nontrivial modes of D Ratchet motion?

(1,2) 1,2,3,4 … (odd+even) 1,2, (2,4) …
√

(1,3) 2,4,6,8 … (even) 1,3 … ✗

(1,4) 1,2,3,4 … (odd+even) 1,2,4, (2,8) …
√

(1,5) 2,4,6,8 … (even) 1, 5 … ✗

(2,3) 1,2,3,4 … (odd+even) 1,2,3, (4,6) …
√

(2,5) 1,2,3,4 … (odd+even) 1,2,5, (4,10) …
√
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FIG. 10. Skyrmion ratchet motion driven by pulsed in-plane
magnetic fields up to 1.5 ns. The pulsed fields are repeti-
tive sequences of alternating positive pulse (in magnitude of
0.003 J/gμB and over a time T N1) and negative pulse (in magnitude
−0.003 J/gμB and over a time T N2) with T N1 + T N2 = T N =
60 ps.

magnetic-field gradient is also a time-dependent dissipation,
but is caused by the coupling of the external field with the
magnons [38]. In this work, the ratchet motion of a skyrmion
is driven by a biharmonic force with temporal symmetry
breaking. Such a temporal symmetry-breaking force leads to
a multimode exaction of the dissipation parameter and the
skyrmion coordinates, giving rise to a net dissipation force,
and consequently, the ratchet motion.

At the end, we would like to present a more complicated
skyrmion ratchet motion driven by pulsed in-plane magnetic
fields as shown in Fig. 10. Here, the pulsed fields are repet-
itive sequences of alternating positive pulse (in magnitude
of 0.003 J/gμB and over a time T N1) and negative pulse (in
magnitude −0.003 J/gμB and over a time T N2) with T N1 +
T N2 = T N = 60 ps. It shows that ratchet motion occurs if
T N1 �= T N2 (i.e., the pulsed field has a biased component),
and the ratchet motion is most significant when T N1 is about
half or double of T N2. The skyrmion motion under such
pulsed magnetic fields can be understood by regarding the
pulsed magnetic fields as combinations of a series of harmonic
magnetic fields and a biased magnetic field. Thus the driving
force is sort of a mixing product of both spatial and temporal
symmetry breaking. Specifically, the pulsed magnetic fields
with T N1 �= T N2 consist of a full spectrum of harmonic
components with both odd and even multiples of an elemental

frequency (i.e., ω, 2ω, 3ω, 4ω, 5ω …), and the spectrum of
D excited by such pulsed fields covers all the frequencies as
well. That is to say, such pulsed fields possess a temporal
asymmetry and can lead to ratchet motion. Moreover, as
T N1 �= T N2, these pulsed fields also have a static biased
component, and thus can be regarded as biased oscillating
magnetic fields (with multiple oscillating frequencies). As
has been shown in previous work [33], a biased oscillating
magnetic field breaks the spatial symmetry of the force density
over a period and can also cause ratchet motion. In contrast,
the pulsed magnetic field with T N1 = T N2 is time symmetric
(the excitation spectrum of such a pulsed field consists only
of odd multiples of an elemental frequency) and with a zero
static biased component. That is to say, both the mechanism
proposed in our work and that in previous work [33] are
lacking for this case, and therefore ratchet motion is not
observed. Note, zero time-averaging pulsed fields but with
a time asymmetry can be also designed to drive skyrmion
ratchet motion. It is also significant to explore a possible vari-
ety of skyrmion ratchet behaviors driven by time-asymmetric
forces in systems with more complicated skyrmion excitation
dynamics, e.g., those with pinning defects [35–37] or strong
boundary-induced DM interaction [50,51].

IV. CONCLUSIONS

Micromagnetic simulation and analysis based on Thiele’s
equation are performed to study the skyrmion dynamics under
biharmonic driving force. It shows that ratchet motion of a
skyrmion can be induced by a biharmonic in-plane magnetic
field hx(t ) = h1sin(mωt ) + h2sin(nωt + ϕ), with a facile con-
trollability of the ratchet motion speed and direction by tuning
the field amplitude, frequency, and phase, provided that m
and n are two coprime integers such that m + n is odd, that
is, when the field has a temporal symmetry breaking. We
propose that the ratchet motion is caused by an overlapping
of the excitation spectra of the dissipation parameter and the
skyrmion coordinate, which leads to the appearance of a net
dissipation force averaged over time. The demonstration of
the skyrmion ratchet effect provides further insight into the
dynamic and solitonlike features of magnetic skyrmion, and
its controllability should be useful in practice.
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