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Anatomy of electrical signals and dc-voltage line shape in spin-torque ferromagnetic resonance
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The electrical detection of spin-torque ferromagnetic resonance (st-FMR) is becoming a popular method for
measuring the spin-Hall angle of heavy metals (HM). However, various sensible analysis on the same material
with either the same or different experimental setups yielded different spin-Hall angles with large discrepancy,
indicating some missing ingredients in our current understanding of st-FMR. Here we carry out a careful analysis
of electrical signals of the st-FMR in a HM/ferromagnet (HM/FM) bilayer with an arbitrary magnetic anisotropy.
The FM magnetization is driven by two radio-frequency (rf) forces: the rf Oersted field generated by an applied
rf electric current and the so called rf spin-orbit torque from the spin current flowing perpendicularly from the
HM to the FM due to the spin-Hall effect. By using the universal form of the dynamic susceptibility matrix
of magnetic materials at the st-FMR, the electrical signals, originated from the anisotropic magnetoresistance,
anomalous Hall effect, and inverse spin-Hall effect are analyzed and dc-voltage line shapes near the st-FMR
are obtained. Angular dependence of dc voltage is given for two setups. A way of experimentally extracting the
spin-Hall angle of a HM is proposed.
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I. INTRODUCTION

Ferromagnetic resonance (FMR) is a traditional method for
extracting magnetic material parameters such as magnetiza-
tion, magnetic anisotropy and damping coefficient [1–13] by
either measuring microwave absorption or detecting electrical
signals [14–37]. The microwave absorption spectroscopy is
the first generation of FMR technique. It typically requires
large samples in order to have detectable absorption signal.
The analysis is relatively simple because it uses the field
dependence of the FMR peak and the peak width to probe
the magnetization and damping. In the electrical detection of
FMR, sample sizes can be very small due to the high sensitiv-
ity of electrical signal detection. Its analysis is, however, more
involving although electrical detection can be at very high
precision and samples have less effect on microwave fields.
The electrical signals can come from the anisotropic magne-
toresistance (AMR), anomalous Hall effect (AHE) [14–16],
as well as the recently discovered inverse spin-Hall effect
(ISHE) [38–43]. This technique has been widely used in
recent years to extract the spin-Hall angle of heavy metals that
measures the spin-charge interconversion efficiency in both
the spin-Hall effect (SHE) and ISHE [17–29]. The spin Hall
angle of a heavy metal (HM) is typically measured from the
HM/ferromagnet (HM/FM) bilayers. The FM can be a metal
or an insulator. The FMR is triggered by a microwave in cavity
or coplanar waveguide [16–18,20,26–30]. The typical setup in
an FMR is to eliminate effect of the microwave electric field
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on magnetization dynamics so that microwave magnetic field
is assumed to be the only driving force of the FMR. So far,
the experimentally extracted values show a large discrepancy
for the same materials even with similar experimental setups.
For example, the measured spin-Hall angle of Pt varies from
0.013 to 0.08 [20–26,36]. This large discrepancy comes from
many different sources although it is often attributed to the
inaccuracy in mixing conductance of HM/FM interface and
spin diffusion length of the HM. For example, the dynamic
susceptibility at the FMR is in general a non-Polder tensor
[35] that depends on the magnetic anisotropy and damping
constant, but it is commonly treated as scalar numbers or at
most a Polder tensor in experimental analysis. Also, the elec-
trical signal is very sensitive to the phase difference between
rf magnetic and electric fields inside a sample [16,26,28,35].
This phase difference is not easy to determine accurately in
experiments. In general, the analysis for both HM/FM-metal
and HM/FM-insulator are complicated. For metallic FM, one
needs to separate the contribution of ISHE from those of AMR
and AHE through a very careful analysis in an experimental
setup [17–24,26,28,29,35]. Although there is no electrical
signal in an insulator so that no AMR and AHE contributions
to dc voltage from the FM insulator, the amount of spin
current pumped from FM through the HM/FM interface is
an issue, in particular when new effects like the spin-Hall
magnetoresistance is considered [44–46].

In recent years, the spin-torque ferromagnetic resonance
(st-FMR) is becoming another popular method for measuring
spin-Hall angle where an rf current is directly applied in
the sample [21–24]. In this technique, there are two driving
forces. One is rf Oersted field generated from rf current
applied in the bilayer. The other is so-called the rf spin-orbit
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FIG. 1. Model system that mimics the experimental setups of
st-FMR. The xyz coordinate is fixed with respect to the sample. The
HM/FM bilayer sample lies in the xy plane. The XY Z is a moving
coordinate with the Z axis along M0 and the Y axis in the xy plane. θ

and φ are the polar and azimuthal angles of M0 in the xyz coordinate,
i.e., θ is the angle between the Z and z axes and φ is the angle
between the in-plane component of M0 and the x axis. θH and φH are
the polar and azimuthal angles of the external static magnetic field
H in the xyz coordinate. jFM and jHM are, respectively, the rf electric
current in the FM and HM layers.

torque (SOT) from the spin current flowing perpendicularly
from the HM to the FM due to SHE. The magnetization can
resonate with both rf Oersted field and the rf SOT. Compare
with microwave FMR, st-FMR does not have phase difference
problem between rf electric and magnetic fields since the Oer-
sted field is in-phase with rf current. However, the spin-Hall
angle was often overestimated [20–24,26], which indicates
some missing ingredients in our current understanding of
st-FMR. Thus a careful analysis of electrical signals of the
st-FMR is timely important.

In this work, we perform an anatomy of electrical signals
and dc-voltage line shape in st-FMR. The paper is organized
as follows. In Sec. II, we first describe the model and ap-
proach adopted in this study. By using the universal form
of the dynamic susceptibility matrix of magnetic materials at
FMR, we analyze the electrical signals originated from AMR,
AHE, and ISHE, and obtain the dc-voltage line shape near
the st-FMR. A recipe for extracting the spin-Hall angle of
the HM from the experiments is proposed. In Sec. III, the
theoretical angular dependence of dc voltage is obtained for
two experimental configurations. In the discussion, based on
general physics principles, we argue possible new SHEs and
ISHEs in magnetic materials when the charges, spins, and
orbits mutually interact among themselves. The conclusion is
given in Sec. IV, followed by Acknowledgments.

II. THEORETICAL ANALYSIS

A. Model and analysis

1. Setup and magnetization dynamics

The st-FMR model consists of a HM/FM bilayer lying in
the xy plane, as shown in Fig. 1. M is the magnetization of
FM. A static magnetic field H together with an rf current

density Ja = Re(jae−iωt ) (a = FM, HM) is applied in the
bilayer where ω is the microwave frequency. Without the rf
current, the magnetization is along M0. To simplify the anal-
ysis, we use two Cartesian coordinates. The xyz coordinate is
fixed with respect to the sample while the XY Z is a moving
coordinate with the Z axis along M0 and the Y axis in the xy
plane. θ and φ are the polar and azimuthal angles of M0 in
the xyz coordinate, i.e., θ is the angle between the Z and z
axes, and φ is the angle between the in-plane component of
M0 and the x axis. θH and φH are the polar and azimuthal
angles of the external static magnetic field H in the xyz coor-
dinate. Therefore, once M0 is determined, unit vectors Ẑ, X̂ ,
and Ŷ are, respectively, Ẑ = sin θ cos φx̂ + sin θ sin φŷ +
cos θ ẑ, X̂ = cos θ cos φx̂ + cos θ sin φŷ − sin θ ẑ, and Ŷ =
− sin φx̂ + cos φŷ.

Under a microwave radiation, the rf electric current in
HM generates an rf transverse spin current Js = Re(jse−iωt )
perpendicularly flowing into the FM layer via the SHE [40]
where the polarization js = ( h̄

2e )θSHjHM × ẑ. Spin-Hall angle
θSH measures the conversion efficiency between charge and
spin. The SOT on the magnetization induced by the spin
current is [43,47,48],

�τ = −γ
a

M
M × (M × Js) + γ βaM × Js, (1)

where the first term on the right-hand side is the Slonczewski-
like torque, while the second term is the fieldlike torque. a =

1
dFMμ0M η, where dFM and μ0 are, respectively, the thickness of
the FM layer and the permeability constant. η measures the
efficiency of spin angular momentum transfer from the spin
current to the magnetization. β measures the fieldlike torque
and can be an arbitrary real number since this torque may also
be directly generated from the Rashba effect [43].

The magnetization dynamics under a microwave radia-
tion is governed by the generalized Landau-Liftshitz-Gilbert
(LLG) equation [49],

∂M
∂t

= −γ M × Heff + α

M
M × ∂M

∂t
+ �τ , (2)

where γ is the gyromagnetic ratio, α is the Gilbert damping
coefficient, and Heff is the effective field which includes the
applied static magnetic field H, rf Oersted field Re(he−iωt )
generated by the rf current in the system and anisotropy field.
We assume that the microwave skin depth is much larger
than the FM thickness dFM, so that the rf current jFM in the
FM layer is spatially uniform and the Oersted field from jFM

produces no net torque on magnetization. Therefore, the rf
Oersted field is only from jHM. Under the condition that the
sample width is much larger than the HM thickness dHM, the
rf magnetic field can be determined by the Ampere’s law, i.e.,
h = dHM

2 jHM × ẑ.
In the linear response regime, M = M0 + Re(me−iωt ) will

deviate from its static value M0 by a small amount under the
rf Oersted field h and rf SOT �τ of frequency of ω. They
are from the same physical origin as rf SOT is originated
from the rf spin current that converted from jHM via SHE.
Although the sources of the rf Oersted field h and rf SOT are
the same, it is convenient to consider them as two separated
forces of magnetization. Off the resonance, the magnitude of
m is negligibly small so that no detectable electrical signal
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exists. Near the resonance, the responses of m to rf field h and
rf e (or rf SOT) are large and are characterized by the dynamic
susceptibilities χ

↔ and κ
↔ defined as m = χ

↔h + κ
↔e. e generates

jHM that is the ultimate source of h and rf SOT. Thus κ
↔ and χ

↔

are related to each other (see the next section).

2. Origins of dc voltage

In a magnetic field, m and jFM, as well as jHM, are not in
phase because κ

↔ and χ
↔ are complex tensors. Thus jFM feels an

oscillating resistance due to AMR and AHE that has a phase
lag with jFM, resulting in spin rectification effect. The phase
lag also results in a dc spin current so that a dc voltage can
also appear in HM from ISHE. In summary, dc voltage comes
from AMR, AHE, and ISHE,

U = UAMR + UAHE + UISHE. (3)

According to the generalized Ohm’s law [35] in which the
AMR and AHE couple the magnetization motion m with the
rf electric current jFM, UAMR and UAHE are [35]

UAMR = 
ρ

2M
Re{[(j∗FM · m)lZ + j∗FM,Z (m · l)]}, (4)

UAHE = −R1

2
Re[(j∗FM × m) · l], (5)

where 
ρ = ρ|| − ρ⊥ with ρ|| (ρ⊥) being the longitudinal
(transverse) resistivity of the HM/FM bilayer when M is
parallel (perpendicular) to JFM, R1 describes the AHE of the
FM, and l is the displacement vector between two electrode
contact points used to measure the dc voltage.

UISHE comes from the ISHE that converts a pure spin
current Js pumped by precessing magnetization near the
st-FMR to a charge current. The pumped spin current Js is
[27,41,42]

Js = h̄

4π
g↑↓

eff

1

M2
M × ∂M

∂t
, (6)

where g↑↓
eff is the effective spin mixing conductance. Js is then

converted to an electric current in the HM layer,

JISHE = −2e

h̄
θSHẑ × Js, (7)

which results in a dc voltage,

UISHE = 1

σHM
〈JISHE〉 · l

= −2e

h̄

θSH

σHM
(ẑ × 〈Js〉) · l,

(8)

where 〈. . . 〉 denotes the time average. From Eq. (6), the
dc spin current is 〈Js〉 = g↑↓

eff
h̄ω

4πM2 Im(m∗
X mY )Ẑ . Thus UISHE

becomes

UISHE = − g↑↓
effθSHeω

2πσHMM2
Im(m∗

X mY )[(z × Ẑ ) · l]. (9)

According to Eqs. (4), (5), and (9), the dc voltage from the
generalized Ohm’s law and ISHE depend on how m responds
to h and e, or the dynamic magnetic susceptibility matrices χ

↔

and κ
↔ near st-FMR.

B. Dynamic magnetic susceptibility matrix χ
↔ and κ

↔

As mentioned in the last section, it is convenient to charac-
terize the dynamical component m by the dynamic suscepti-
bilities χ

↔ and κ
↔ as m = χ

↔h + κ
↔e, although jHM generated by

e is the ultimate source of h and rf SOT. The universal form
of χ

↔(ω) has been obtained in our previous work [35]

χ
↔(ω) = π�

2
[L(ω,ω0, �) + iD(ω,ω0, �)]C

↔
, (10)

where L(ω,ω0, �) is the Lorentzian function,

L(ω,ω0, �) = 1

π

�
2

(ω − ω0)2 + (
�
2

)2 , (11)

and the function D(ω,ω0, �) is

D(ω,ω0, �) = 1

π

ω − ω0

(ω − ω0)2 + (
�
2

)2 , (12)

where ω0 denotes the resonance frequency and � is the
linewidth, which is a positive number. The matrix C

↔
is

C
↔ =

⎛
⎜⎝

iC1 C3 + iC2 0

−C3 + iC2 iC4 0

0 0 0

⎞
⎟⎠. (13)

In the case that the microwave frequency ω is fixed and the
applied static magnetic field H is swept, the field dependence
of χ

↔ has the following form for an arbitrary FM [35]:

χ
↔(H ) = π�1

2
[L(H, H0, �1) + i

−ζ

|ζ | D(H, H0, �1)]C
↔

(H0),

(14)

where H0 is the resonance field, ζ = dω0
dH |H=H0

, and �1 =
�(H0)/|ζ | is the linewidth of the field.

Because e generates jHM that is the ultimate source of h and
rf SOT, κ

↔ and χ
↔ are related. To find the relationship between κ

↔

and χ
↔, we start from the generalized LLG equation (2), which

can be recasted as

∂M
∂t

= −γ M × (Heff + Hst ) + α

M
M × ∂M

∂t
, (15)

where Hst denotes the effective field from the SOT in Eq. (1),

Hst = a

M
M × Js − βaJs. (16)

Because the spin current Js contains only one rf component,
up to the linear term in the precessing magnetization m, Hst

can be written as

Hst = Re(hste
−iωt ), (17)

where

hst = − a

M
θSHσHM

(
h̄

2e

)
M0 × (ẑ × e)

+βaθSHσHM

(
h̄

2e

)
ẑ × e. (18)

Thus one can view st-FMR as the usual FMR under a total
effective rf field of h + hst, and the response of m is

m = χ
↔(h + hst ) = χ

↔h + κ
↔e. (19)
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κ
↔ relates to χ

↔ as

κ
↔ = χ

↔
[
− 1

M
�(M0) + β

]
aθSHσHM

(
h̄

2e

)
�(ẑ), (20)

where � denotes the operator of cross product, i.e., �(a)b =
a × b. Substituting the universal form of χ

↔(ω) into Eq. (20),

one can obtain the universal form of frequency dependence
of κ

↔,

κ
↔(ω) = aθSHσHM

(
h̄

2e

)
π�

2
[L(ω,ω0, �) + iD(ω,ω0, �)]C

↔
e,

(21)

where

C
↔

e =

⎛
⎜⎝

[βC3 + i(C1 + βC2)] cos θ [C3 + i(C2 − βC1)] cos θ [βC3 + i(C1 + βC2)] sin θ

[−C3 + i(C2 + βC4)] cos θ [βC3 + i(C4 − βC2)] cos θ [−C3 + i(C2 + βC4)] sin θ

0 0 0

⎞
⎟⎠, (22)

with θ being the polar angle of M0 in the xyz coordinate.
The field dependence of κ

↔ can be obtained by substituting Eq. (14) into Eq. (20),

κ
↔(H ) = aθSHσHM

(
h̄

2e

)
π�1

2
[L(H, H0, �1) − i

ζ

|ζ |D(H, H0, �1)]C
↔

e. (23)

Consequently, the magnetization motion at st-FMR can be expressed as⎛
⎜⎝

mX

mY

mZ

⎞
⎟⎠ =

⎛
⎜⎝

χXX χXY 0

χY X χYY 0

0 0 0

⎞
⎟⎠

⎛
⎜⎝

hX

hY

hZ

⎞
⎟⎠ +

⎛
⎜⎝

κXX κXY κXZ

κY X κYY κY Z

0 0 0

⎞
⎟⎠

⎛
⎜⎝

eX

eY

eZ

⎞
⎟⎠. (24)

After the universal forms of χ
↔ and κ

↔ are obtained, one is able
to find the dc voltage signals attributed from the AMR, AHE,
and ISHE.

C. The line shape of dc voltage

Substituting Eq. (24) into Eqs. (4), (5), and (9),
UAMR, UAHE, and UISHE in terms of χ

↔ and κ
↔ are

UAMR = 
ρ

2M
Re[( j∗FM,ilZ + j∗FM,Z li)(χi jh j + κi je j )], (25)

UAHE = −R1

2
Re[εi jk j∗FM, j li(χklhl + κkl el )], (26)

UISHE = −g↑↓
effθSHeωlY sin θ

2πσHMM2
Im[(χ∗

Xih
∗
i + κ∗

Xie
∗
i )

× (χY jh j + κY je j )], (27)

where subscript indices i, j, k, and l can be X, Y , and Z .
εi jk is the Levi-Civita symbol, and the Einstein summation
convention is used. Whether a matrix element of χ

↔ or κ
↔ is

involved in dc voltage depends on the applied microwave
fields and experimental setup. Substituting Eqs. (10), (13),
(21), and (22) into Eqs. (25)–(27), the frequency dependence
of dc voltage can be expressed in terms of Lorentzian and D
functions,

UAMR(ω) = A1
π�

2
L(ω,ω0, �) + A2

π�

2
D(ω,ω0, �), (28)

UAHE(ω) = A3
π�

2
L(ω,ω0, �) + A4

π�

2
D(ω,ω0, �), (29)

UISHE(ω) = A5
π�

2
L(ω,ω0, �). (30)

A1 ∼ A5 are

A1 = 
ρ

2M
Re

[
( j∗FM,ilZ + j∗FM,Z li )

(
Ci jh j + h̄

2e
aθSHCe,i j jHM, j

)]
,

A2 =−
ρ

2M
Im

[
( j∗FM,ilZ+ j∗FM,Z li )

(
Ci jh j+ h̄

2e
aθSHCe,i j jHM, j

)]
,

A3 =−R1

2
Re

[
εi jk j∗FM, j li

(
Ckl hl + h̄

2e
aθSHCe,kl jHM,l

)]
,

(31)

A4 = R1

2
Im

[
εi jk j∗FM, j li

(
Ckl hl + h̄

2e
aθSHCe,kl jHM,l

)]
,

A5 =−g↑↓
effθSHeωlY sin θ

2πσHMM2
Im

[(
C∗

Xih
∗
i + h̄

2e
aθSHC∗

e,Xi j∗HM,i

)

×
(

CY jh j + h̄

2e
aθSHCe,Y j jHM, j

)]
,

where subscript indices i, j, k, and l are x, y, and z. Ci j

(or Ce,i j) is the element of the ith row and the jth column of

matrix C
↔

defined in Eq. (13) (or matrix C
↔

e defined in Eq. (22)).
Starting from the universal forms of χ

↔(H ) and κ
↔(H ), one can

also find the field dependence of dc-voltage line shapes,

UAMR(H ) = A1
π�

2
L(H, H0, �1) − ζ

|ζ |A2
π�

2
D(H, H0, �1),

(32)

UAHE(H ) = A3
π�

2
L(H, H0, �1) − ζ

|ζ |A4
π�

2
D(H, H0, �1),

(33)

UISHE(H ) = A5
π�

2
L(H, H0, �1). (34)
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FIG. 2. Schematic illustration for two experimental configura-
tions of st-FMR. A HM/FM bilayer lies in the xy plane. The stable
magnetization M0 is in the sample plane by applying an in-plane
static magnetic field H. φ is the angle between M0 and the x axis,
and φH is the angle between H and the x axis. The definitions of the
xyz and XY Z coordinates are the same as Fig. 1 with θ = 90o. The
rf electric currents jFM and jHM are along the x-direction, and the rf
Oersted field h is along the y direction according to the Ampere’s
law. The displacement vector between two electrodes is along (a) the
x or (b) the y directions.

The results tell us that the general dc-voltage line shape near
the st-FMR have a symmetric component of the Lorentzian
function and an antisymmetric component of the D function.
A1 ∼ A5 are linear combinations of C1 ∼ C4 whose coeffi-
cients depend on magnetic anisotropy and experimental setup,
and their values determine the relative weights of the symmet-
ric and antisymmetric components.

III. RESULTS AND DISCUSSION

In this section, we use both easy-plane and biaxial models
in two experimental configurations to illustrate possible angu-
lar dependence of dc voltage and dc-voltage line shape. We
will also propose a proper way to experimentally determine
spin-Hall angle of the HM.

Our model system, which mimics popular experimental
setups, is shown in Fig. 2. A HM/FM bilayer film lies in the
xy plane with the length lx along the x direction and width ly
along the y direction. The rf current ja (a = FM, HM) is along
the x axis. The effective magnetic field is

Heff = H + KxMxx̂ − Mzẑ + Re(he−iωt ), (35)

where the static in-plane magnetic field H is with a φH angle
about the x axis, the second and third terms are, respectively,
the easy axis and hard axis (shape) anisotropy fields, and the
forth term is the rf Oersted field. In the following analyzes of
two experimental configurations, we consider first easy-plane
case of Kx = 0, and then the biaxial case of Kx > 0.

A. Dc-voltage along the rf current

In this configuration as shown in Fig. 2(a), the dc voltage
is measured along the direction of rf electric current, i.e.,
l = lxx̂. The dc voltage near the FMR comes from the AMR
and ISHE because the dc electric field from AHE is transverse
to the rf current. According to the spin pumping and ISHE, the
dc current 〈JISHE〉 near the FMR is in the sample plane and
orthogonal to M0. On the other hand, there is no magnetiza-
tion precession and no spin pumping when M0 is along the ŷ
direction because both Oersted field and SOT exert no torque
on the magnetization. Thus 〈JISHE〉 has a x component and
results in a dc voltage along x̂ only when M0 deviates from
the x and y directions.

1. Easy-plane case

For an easy-plane FM film where the z axis is the hard
axis of the film, the stable magnetization M0 in the absence of
microwave field is collinear with H, i.e., φ = φH . According
to Eq. (2), the linearized LLG equation in the present case
becomes

−iωm = −γ m × H − γ M0 × (h − mzẑ),−iω
α

M
M0 × m

+γ
a

M

(
h̄

2e

)
θSHσHMM0 × [M0 × (ẑ × e)], (36)

where we assume that the fieldlike torque is very small and
can be neglected, i.e., β = 0. The exact solution of this equa-
tion allows us to obtain the expressions of H0, �1, C1, C2, C3

and C4 which determine χ
↔ and κ

↔ for an easy-plane model.
In the absence of any driving force and damping, from

Eq. (36) it is easy to find the FMR frequency ω0 =
γ
√

H (M + H ) which is the well-known Kittel’s formula.
Thus the resonance field H0 for a given microwave frequency
ω can be obtained as

H0 =
√

ω2

γ 2
+ M2

4
− M

2
. (37)

To find the linewidth �1 and the real numbers C1 ∼ C4, we
start from the nonzero matrix elements of χ

↔:

χXX = γ M(−γ H + iαω)

ω2 − ω2
0 + iαγω(M + 2H )

,

χXY = −χY X = iωγ M

ω2 − ω2
0 + iαγω(Ms + 2H )

, (38)

χYY = γ M(−γ H − γ M + iαω)

ω2 − ω2
0 + iαγω(M + 2H )

.

Equation (38) can be written as the sum of a Lorentzian
function and an D function near the resonance field H0. In
terms of parameters defined in Eq. (21)–(23), it is easy to
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obtain

�1 = 2αω

γ
, (39)

and

C1 = γ MH0

αω(2H0 + M )
,

C2 = 0,
(40)

C3 = M

α(2H0 + M )
,

C4 = γ M(H0 + M )

αω(2H0 + M )
,

where Eq. (39) is usually used in experiments to determine
the Gilbert damping coefficient α. From the Kittel’s formula,
it is obvious that ζ > 0 which results in a minus sign in front
of D function in Eqs. (14), (32), and (33). It is only true for
an easy-plane model in which H0, �1, and C1 ∼ C4 does not
depend on φH for an in-plane field H. For a biaxial model
where Kx > 0, all these parameters depend on φH in general.

In the XY Z coordinate, the displacement l = lxx̂ between
the two electrodes becomes

l = −lx sin φŶ + lx cos φẐ. (41)

The dc voltage from each contribution can be obtained by
substituting Eqs. (37)–(40) and Eq. (41) into Eq. (31),

A1 = 
ρ jHM jFMlx
2α(2H0 + M )

aθSH
h̄

2e
sin 2φH cos φH ,

A2 = 
ρ jHM jFMlxω

2αγ H0(2H0 + M )

dHM

2
sin 2φH cos φH ,

A3 = A4 = 0,

A5 = g↑↓
effθSHe j2

HMlxγ H0

4πα2σHM(2H0 + M )2

[(
aθSH

h̄

2e

)2

+
(

ωdHM

2γ H0

)2
]

× sin 2φH cos φH . (42)

A1 and A2 are, respectively, from the AMR contribution due
to the rf SOT driven and rf Oersted field driven magnetization
motion. Thus A1 is proportional to js converted from jHM

via SHE that, in turn, is proportional to θSH, while A2 is
independent of θSH. Both A3 and A4 are zero due to the
absence of the AHE contribution as mentioned before. The
two terms in A5 depend on θSH. One is linear in θSH because
of ISHE. The other is proportional to its cubic form. This
is because the spin current is proportional to the square of
amplitude of magnetization deviation that, in turn, come from
both rf Oersted field that does not depends on θSH and the
effective field generated by rf SOT that is proportional to θSH

due to SHE.
Equation (42) indicates that both symmetric and anti-

symmetric components of dc-voltage line shapes follow the
same angular dependence of sin 2φH cos φH . In the previous
estimation of the spin-Hall angle θSH, UISHE is assumed to be
negligible, i.e., A5 = 0, for the reason that UISHE is high order
in the spin-Hall angle [21]. Thus the symmetric component
of dc voltage signal is completely from the AMR. Under
this assumption, the spin-Hall angle can be estimated by

θSH = S
A

ωdHMe
aγ H0 h̄ , where S and A are, respectively, the ampli-

tudes of symmetric and antisymmetric components of dc-
voltage line shape for any angle φH . However, the estimated
value by this approach is found to be overestimated com-
pared with spin pumping experiments [20,26,28,29], which
indicates that this assumption is questionable.

A more precise estimation of the spin-Hall angle θSH can
be obtained by taking into account the ISHE contribution of
dc voltage. According to Eq. (42), UISHE has the exact same
symmetry and angular dependence as the AMR contribution
to dc voltage due to SOT, however, it will not prevent one from
obtaining θSH. Starting from Eq. (42), the ratio S/A, where
S = A1 + A3 + A5 and A = A2 + A4, is

S

A
= a1θSH + a2θ

3
SH, (43)

where S/A is measured in experiments, and a1 and a2 are

a1 = aγ H0 h̄

ωdHMe
+ g↑↓

eff eωdHM

4πα(2H0 + M )
ρσFM
,

a2 = a2g↑↓
effγ

2H2
0 h̄2

4πα(2H0 + M )
ρσFMωdHMe
. (44)

Consequently, the corrected value of θSH can be determined
from Eq. (43) since θSH is the only unknown. Different from
the previous argument [21], two terms on the right-hand side
of Eq. (43) are in general of the same order for typical
materials so that θSH is not proportional to the ratio S/A as
claimed before.

Figure 3 shows the comparison between the dc-voltage
line shapes of the current theory (solid curves) and the
experimental results of Refs. [21] (a), [22] (b), [23] (c),
and [24] (d) (squares) that used the experimental setup dis-
cussed in this section. For Fig. 3(a), the red and green
squares are extracted from the experimental results for
Pt(6)/Py(4) and Pt(15)/Py(15), respectively, while the red
and green solid curves are the best fittings of the cur-
rent theory with θSH = 0.05 and following material pa-
rameters of 
ρσFM = 2%, g↑↓

eff = 3.02 × 1019 m−2, M =
6.4 × 105 A/m for Pt(6)/Py(4) [or M = 8.34 × 105 A/m for
Pt(15)/Py(15)] and α = 0.028 for Pt(6)/Py(4) [or α = 0.0123
for Pt(15)/Py(15)] [21] [some of the parameters are extracted
from experimental curves of H0 and �1 by using the Kittel’s
formula and Eq. (39)]. Because jHM and jFM are unknown
and change only the absolute values of dc voltage without
affecting the spin-Hall angle, we use 
ρ jHM jFMlx = 1.536 ×
108 V A m−2 for Pt(6)/Py(4) and 
ρ jHM jFMlx = 7.862 ×
107 V A m−2 for Pt(15)/Py(15) in the fitting. The theoretical
curves in Fig. 3(a) agree well with the experimental results
of Ref. [21] with the same spin-Hall angle θSH = 0.05, in
contrast to very different θSH values for Pt with different thick-
ness [21] that is in conflict with the belief of spin-Hall angle
as an intrinsic material parameter. For Fig. 3(b), the squares
are extracted from the experimental results for Pt(6)/Py(5.5),
while the solid curves are the best fittings of the current theory
with θSH = 0.045 and following material parameters of g↑↓

eff =
3.96 × 1019 m−2, M = 7.5 × 105 A/m, and α = 0.016. The
theoretical curves in Fig. 3(b) agree well with the experimen-
tal results of Ref. [22] with the spin-Hall angle θSH = 0.045,
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(a) (b)

(d)(c)

FIG. 3. Comparison between the current theory (solid curves)
and experimental results (squares). (a) The fitting of data
from Ref. [21] for Pt(6)/Py(4) (red) and Pt(15)/Py(15) (green),
respectively. The Pt/Py parameters are M = 6.4 × 105 A/m for
Pt(6)/Py(4) [or M = 8.34 × 105 A/m for Pt(15)/Py(15)], α = 0.028
for Pt(6)/Py(4) [or α = 0.0123 for Pt(15)/Py(15)], 
ρσFM = 2%,

g↑↓
eff = 3.02 × 1019m−2, and θSH = 0.05. 
ρ jHM jFMlx = 1.536 ×

108 V A m−2 for Pt(6)/Py(4) and 
ρ jHM jFMlx = 7.862 ×
107 V A m−2 for Pt(15)/Py(15) are used for the fittings. (b) The
fitting of data from Ref. [22] for Pt(6)/Py(5.5). The Pt/Py parameters
are g↑↓

eff = 3.96 × 1019 m−2, M = 7.5 × 105 A/m, α = 0.016, and
θSH = 0.045. (c) The fitting of data from Ref. [23] for Pt(4)/Py(2.5).
The Pt/Py parameters are g↑↓

eff = 3.02 × 1019 m−2, M = 5.8 × 105

A/m, α = 0.043, and θSH = 0.05. (d) The fitting of data
from Ref. [24] for Pt(6)/Py(5). The Pt/Py parameters are
g↑↓

eff = 3.02 × 1019 m−2, M = 6.97 × 105 A/m, α = 0.02, and
θSH = 0.061.

which is much smaller than 0.19 obtained in Ref. [22]. For
Fig. 3(c), the squares are extracted from the experimental
results for Py(2.5)/Pt(4), while the solid curves are the best
fittings of the current theory with θSH = 0.05 and following
material parameters of g↑↓

eff = 3.02 × 1019 m−2, M = 5.8 ×
105 A/m and α = 0.043. The theoretical curves in Fig. 3(c)
agree again well with the experimental results of Ref. [23]
with the spin-Hall angle θSH = 0.05 which is smaller than
0.087 obtained in Ref. [23]. For Fig. 3(d), the squares are
extracted from the experimental results for Py(5)/Pt(6), while
the solid curves are the best fittings of the current theory
with θSH = 0.061 and following material parameters of g↑↓

eff =
3.02 × 1019 m−2, M = 6.97 × 105 A/m, and α = 0.02. The
theoretical curves in Fig. 3(d) agree well with the experimen-
tal results of Ref. [24] with the spin-Hall angle θSH = 0.061
which is smaller than 0.068 obtained in Ref. [24]. Our results
indicate that the spin-Hall angle can be overestimated in
st-FMR without considering the effect of spin pumping and
ISHE.

2. Biaxial case

For a general biaxial case with the easy axis anisotropy
coefficient Kx > 0, the static magnetization M0 in
the absence of microwave fields is noncollinear to
static magnetic field H, i.e., φ �= φH but φ = φ(φH ).

FIG. 4. Angular dependence of A1 in units of A0 =

ρ jHM jFM lxaθSH

2α(2H0+M )
h̄
2e for the setup shown in Fig. 2(a). The model

parameters are ω = 2π × 9.0 GHz, M = 8.0 × 105 A/m, and easy
axis anisotropy coefficient Kx = 0.0 (black curve) or Kx = 0.05
(blue curve). The black curve is plotted according to Eq. (42), and
the blue curve is numerically calculated from Eq. (45).

H0(φH ), �1(φH ), C1(φH ), C3(φH ), and C4(φH ) are all
functions of φH , which can be numerically obtained once the
material parameters are given or be determined by standard
microwave absorption measurements [35]. Notice that
C2 = 0 is still satisfied because the energy density function
corresponding to the effective field of Eq. (35) is symmetric
about the Y Z plane (or the xy plane) [35]. Consequently, from
Eq. (31), one can obtain the dc voltage for a biaxial model as
follows:

A1 = aAMR C3(φH ) sin 2φ(φH ) cos φ(φH ),

A2 = bAMR C4(φH ) sin 2φ(φH ) cos φ(φH ),

A3 = A4 = 0, (45)

A5 = [aISHE,1 C1(φH ) + aISHE,2 C4(φH )]

×C3(φH ) sin 2φ(φH ) cos φ(φH ),

where

aAMR = 
ρ jHM jFMlx
2M

aθSH
h̄

2e
,

bAMR = 
ρ jHM jFMlx
2M

dHM

2
,

(46)

aISHE,1 = g↑↓
effθSHeω j2

HMlx
4πσHMM2

(
aθSH

h̄

2e

)2

,

aISHE,2 = g↑↓
effθSHeω j2

HMlx
4πσHMM2

(
dHM

2

)2

.

Obviously, the angular dependence of dc voltage in a biaxial
model no longer follows sin 2φH cos φH . The angular depen-
dences of different components are different in a biaxial model
because A1 and A2 are respectively proportional to C3(φH )
and C4(φH ), and A5 is proportional to linear combinations of
C1(φH )C3(φH ) and C3(φH )C4(φH ). This allows one to sepa-
rate various contributions to dc voltage. Figure 4 shows the
angular dependence of A1 for an easy-plane (Kx = 0) model
(black curve) and a biaxial model of Kx = 0.05 (blue curve)
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for ω = 2π × 9.0 GHz and M = 8.0 × 105 A/m. The black
and blue curves are, respective, plots of Eq. (42) and Eq. (45).
For both cases, A1 is in the units of A0 = 
ρ jHM jFMlxaθSH

2α(2H0+M )
h̄
2e . The

angular dependence of A1 for an easy-plane model follows
sin 2φH cos φH , while, for a biaxial model of Kx = 0.05, it
apparently deviates from sin 2φH cos φH . Thus one can tell
whether or not an FM is a biaxial magnetic film by looking
at the angular dependence of dc voltage.

From Eqs. (45) and (46), following recipe can be used
to determine the spin-Hall angle. Step I. Determine the
angular dependence of Ci (i = 1, 2, 3, 4) by standard mi-
crowave absorption experiments [35]. Step II. After Ci(φH )
(i = 1, 2, 3, 4) is obtained, determine aAMR, bAMR, aISHE,1.
and aISHE,2 by fitting the experimental curves according to
Eq. (45). Step III. The spin-Hall angle θSH can be determined
by

θSH = dHM

a

e

h̄

aAMR

bAMR
. (47)

From the above steps, the spin-Hall angle can be determined
for a biaxial sample in the experimental setup of Fig. 2(a).

B. Direct-current-voltage transverse to the rf current

Figure 2(b) is another useful experimental configuration
in which the dc voltage is measured transverse to rf current
direction. Different from the configuration in Fig. 2(a), AMR,
AHE and ISHE will all contribute to dc voltage in this case.
Since the AHE generates a dc electric field transverse to rf
current, it should be very important in the present configura-
tion. As mentioned before that 〈JISHE〉 is in the sample plane
and orthogonal to M0, 〈JISHE〉 has in general a y component
and can result in a dc voltage along ŷ when M0 is not parallel
to ŷ.

1. Easy-plane case

For an easy-plane model, H0, �1, and C1 ∼ C4 are given
by Eqs. (37)–(40). In the XY Z coordinate, the displacement
l = lyŷ is

l = ly cos φŶ + ly sin φẐ. (48)

Substituting Eqs. (37)–(40) and Eq. (48) into Eq. (31), the
amplitude of each dc voltage component is

A1 = aAMR cos 2φH cos φH ,

A2 = bAMR cos 2φH cos φH ,

A3 = aAHE cos φH , (49)

A4 = bAHE cos φH ,

A5 = aISHE cos3 φH ,

where

aAMR = − 
ρ jHM jFMly
2α(2H0 + M )

aθSH
h̄

2e
,

bAMR = − 
ρ jHM jFMlyω

2αγ H0(2H0 + M )

dHM

2
,

aAHE = R1 jHM jFMlyM

2α(2H0 + M )

dHM

2
,

bAHE = −R1 jHM jFMlyγ MH0

2αω(2H0 + M )
aθSH

h̄

2e
,

aISHE = − g↑↓
effθSHe j2

HMlyγ H0

2πα2σHM(2H0 + M )2

[(
aθSH

h̄

2e

)2

+
(

ωdHM

2γ H0

)2
]
.

(50)

aAMR and bAHE are, respectively, from the AMR and AHE
due to the rf SOT driven magnetization motion. Thus they
are proportional to js converted from jHM via SHE and is
proportional to θSH. On the other hand, bAMR and aAHE are,
respectively, from the AMR and AHE due to the rf Oersted
field driven magnetization motion, so they are related to
neither the SHE nor ISHE and are independent of θSH. aISHE

has two terms which, are, respectively, proportional to θ3
SH and

θSH for the similar reason mentioned below Eq. (42).
Different from the previous case, the angular dependence

of dc voltages from the AMR, AHE and ISHE are not the same
in the present configuration. The issue is then how to deter-
mine aAMR, bAMR, aAHE, bAHE, and aISHE to distinguish each
contribution to dc voltage and find the spin-Hall angle θSH.
The symmetric component contains three different angular
dependencies: cos 2φ cos φ, cos φ, and cos3 φ, however, these
three functions are not linearly independent. Thus a symmetric
curve cannot uniquely determine the coefficients, and we
should start from the antisymmetric part where the angular
dependences cos 2φ cos φ and cos φ are linearly independent
with each other.

From Eqs. (49) and (50), following recipe can be used to
distinguish each dc voltage contribution and determine the
spin-Hall angle. Step I. Fit the angular dependence of antisym-
metric component of dc voltage by cos 2φ cos φ and cos φ.
The fitting numbers of cos 2φ cos φ and cos φ are bAMR and
bAHE, respectively. Step II. aAMR and aAHE can be determined
by aAMR = 
ρ

R1

ω
γ MH0

bAHE and aAHE = − R1

ρ

γ MH0

ω
bAMR. Step

III. Subtracting aAMR and aAHE terms from the symmetric
component of dc voltage, the rest part comes from ISHE and
can determine aISHE using Eq. (49). Step IV. The spin-Hall
angle can be determined by

θSH = ωdHMe

aγ H0 h̄

aAMR

bAMR
= −ωdHMe

aγ H0 h̄

bAHE

aAHE
. (51)

From the above steps, the dc voltage from each source can be
distinguished and the spin-Hall angle can be determined for
an easy-plane sample in the setup of Fig. 2(b).

According to Eq. (50), one has

aAMR

bAMR
= −bAHE

aAHE
. (52)

This measures the ratio of the rf SOT and the torque by rf
Oersted field. If Eq. (52) cannot be satisfied after one extracts
all numbers from an experiment, it may indicate additional
effects beyond the current model, e.g., the extraordinary gal-
vanomagnetic effects in polycrystalline magnetic films [50],
or the longitudinal ISHE, which will be discussed in the next
section.
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2. Biaxial case

We consider a biaxial model in the configuration of
Fig. 2(b). The model is the same as the biaxial model used in
the configuration of Fig. 2(a) but replace l = lxx̂ by l = lyŷ.
By applying the biaxial model into the universal forms of
dynamic magnetic susceptibility and dc-voltage line shape,
one can obtain

A1 = aAMR C3(φH ) cos 2φ(φH ) cos φ(φH ),

A2 = bAMR C4(φH ) cos 2φ(φH ) cos φ(φH ),

A3 = aAHE C3(φH ) cos φ(φH ),
(53)

A4 = bAHE C1(φH ) cos φ(φH ),

A5 = [aISHE,1 C1(φH ) + aISHE,2 C4(φH )]

×C3(φH ) cos3 φ(φH ),

where

aAMR = −
ρ jHM jFMly
2M

aθSH
h̄

2e
,

bAMR = −
ρ jHM jFMly
2M

dHM

2
,

aAHE = R1 jHM jFMly
2

dHM

2
,

(54)

bAHE = −R1 jHM jFMly
2

aθSH
h̄

2e
,

aISHE,1 = −g↑↓
effθSHeω j2

HMly
2πσHMM2

(
aθSH

h̄

2e

)2

,

aISHE,2 = −g↑↓
effθSHeω j2

HMly
2πσHMM2

(
dHM

2

)2

,

from which it is obvious that the angular dependence differs
from that of the easy-plane model. For the similar reasons
mentioned after Eq. (50), aAMR and bAHE are proportional to
θSH while bAMR and aAHE are independent of θSH. Two terms
from the ISHE are characterized by aISHE,1 and aISHE,2.

From Eqs. (53) and (54), following recipe can be used to
separate dc voltage signals from different contributions and to
extract the spin-Hall angle.

Step I. Determine the angular dependence of Ci (i =
1, 2, 3, 4) by standard microwave absorption experiments
[35]. Step II. After Ci(φH ) (i = 1, 2, 3, 4) is obtained, de-
termine aAMR, bAMR, aAHE, bAHE, aISHE,1, and aISHE,2 by
fitting the experimental curves according to Eq. (53). Step III.
The spin-Hall angle θSH can be still determined by Eq. (51).
From the above steps, the dc voltage from each source can be
distinguished and the spin-Hall angle can be determined for a
biaxial sample in the experimental configuration of Fig. 2(b).

Again, one can use Eq. (52) to test the model. If the extract
model parameters do not satisfy Eq. (52), then there may exist
other sources for the dc voltage like the extraordinary gal-
vanomagnetic effects [50], or the longitudinal ISHE discussed
below.

C. Discussion

So far, the electric current density converted from a spin
current of polarization �p and magnitude Js flowing along the

z direction via the ISHE is assumed to be θSHJsẑ × �p. In
magnetic materials, however, the general physics principle
can allow other types of electric current density when spins,
charges, orbits and magnetization interact with each. Let Js

i j

be the component of rank-2 spin current tensor J
↔s with spin

polarization along the j direction (�p) and flowing along the i
direction (ẑ in the current case).

Similar to the derivation of AMR [50] under the assump-
tion of physics law being coordinate independent, the most
general charge current density Jc of a vector converted from a
spin current J

↔s, within the linear response (to J
↔s), should be

Jc
k = 2e

h̄
θSH

i jk Js
i j,

where Jc
k is the charge current density along the k direction

and θSH
i jk is the i jk component of the general spin-Hall angle

tensor θ
↔

SH of rank 3 that depends on M. i, j, k = 1, 2, 3
stands for x, y, and z directions and the Einstein summation
convention is assumed. The most general form of θSH

i jk is

θSH
i jk = θSH

0 εi jk + θSH
1 Mlεilnε jnk

+ θSH
2 MlMnεil pε j pqεkqn + θSH

3 MiMjMk, (55)

where εi jk is the usual Levi-Civita symbol. θSH
0 = θSH is the

usual spin-Hall angle that does not interact with M, θSH
α (α =

1, 2, 3) that are, respectively, linear, quadratic, and cubic in M.
In the following, we limit ourselves to the first two terms, and
discuss the generated charge current in two cases: (1) the spin
current flows along its polarization �p and (2) the spin current
flows transverse to its polarization �p.

Consider the first case where the spin current only has
Js

33 component, we then have θSH
33k = θSH

1 Mlε3lnε3nk , which
results in two possible cases (l = 1, n = 2, k = 1) and (l =
2, n = 1, k = 2). Then we can obtain Jc

1 = −( 2e
h̄ )θSH

1 M1Js
33

and Jc
2 = −( 2e

h̄ )θSH
1 M2Js

33. It says that a charge current can
be generated along the magnetization perpendicular to spin
flowing direction (as well as the spin polarization), as shown
in Fig. 5(a).

For the second case where the spin current only has Js
31

component, we have θSH
31k = θSHε31k + θSH

1 Mlε3lnε1nk . The re-
sulted charge current components are Jc

2 = ( 2e
h̄ )θSHJs

31 and
Jc

3 = ( 2e
h̄ )θSH

1 M1Js
31, where Jc

2 is similar to the usual ISHE
that the charge current is perpendicular to both spin polar-
ization and spin flow direction, while Jc

3 is a new term. It
says that, due to the interaction between the spin current
and magnetization, a charge current flows along the spin
flowing direction when the magnetization is along the spin
polarization direction, as shown in Fig. 5(b).

Similar to the generalized ISHE in a magnetic material, the
SHE can also exist in a magnetic material. The most general
linear response to Jc in terms of possible spin current J

↔s is

Js
i j = h̄

2e
θSH

i jk Jc
k ,

where Jc
k is the charge current density along the k direction

and θSH
i jk is the i jk component of the general spin-Hall angle

tensor θ
↔

SH of rank 3 that depends on M. θ
↔

SH is given by
the same expression as that of Eq. (55). Without losing the
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FIG. 5. Schematics of new ISHE [(a) and (b)] and SHE [(c) and
(d)] in magnetic materials. (a) For a spin current flowing along the
spin polarization direction, a charge current can be generated along
the magnetization perpendicular to spin flowing direction (as well as
the spin polarization). (b) For a spin current flowing perpendicular
to the spin polarization direction, a charge current flows along the
spin flowing direction when the magnetization is along the spin
polarization direction. (c) For a charge current flowing along the
magnetization, the generated spin current flows perpendicular to
the charge current and the spin polarization is along the spin flow
direction. (d) For a charge current flowing perpendicular to the
magnetization, the generated spin current is along the charge current
and the spin polarization is along the magnetization.

generality, we let charge current along the z direction. There
are two possible cases: (1) the charge current flows along M
and (2) the charge current flows perpendicular to M.

In the first case, we have θSH
i j3 = θSHεi j3 + θSH

1 M3εi3nε jn3.
Up to the linear term in M, the first term is the usual spin-
Hall angle, and the new spin currents from the second term
are Js

11 = −( h̄
2e )θSH

1 M3Jc
3 and Js

22 = −( h̄
2e )θSH

1 M3Jc
3 . It says

that, due to the interaction between the charge current and
magnetization, the generated spin current flows perpendicular

to charge current and the spin polarization is along the spin
flowing direction, as shown in Fig. 5(c).

In the second case, without losing the generality we let
M along the x direction. We then have θSH

i j3 = θSHεi j3 +
θSH

1 M1εi1nε jn3. Up to the linear term in M, the first term is
the usual spin-Hall angle, and the new spin current from the
second term is Js

31 = ( h̄
2e )θSH

1 M1Jc
3 . It says that, due to the

interaction between the charge current and magnetization, the
charge current generates a spin current of polarization along
the magnetization and flowing direction along the charge
current, as shown in Fig. 5(d).

In the current work, these principally allowed new SHEs
and ISHEs in magnetic materials have not been considered.
It is expected that the new effects are higher orders in com-
parison with the usual SHE and ISHE because they involve
both spin-orbit interaction and charge-magnon interactions.
Nevertheless, it shall be very interesting to experimentally
confirm these predictions although they must exist.

IV. CONCLUSIONS

In conclusion, a careful analysis of the electrical signals of
the st-FMR in a HM/FM bilayer has been carried out. Both
rf Oersted field and rf SOTs, which cause the ferromagnetic
resonance, are considered in the analysis. Differ from previous
studies on the st-FMR, the tensor nature of the dynamical sus-
ceptibilities is also included. It is shown that one can indeed
use dc-voltage line shape and the angular dependence of dc
voltage to actually extract spin-Hall angle of the HM besides
other typical magnetic material parameters in a traditional
FMR measurement.
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