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Phase boundaries in an alternating-field quantum XY model with Dzyaloshinskii-Moriya
interaction: Sustainable entanglement in dynamics
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(Received 6 June 2018; revised manuscript received 24 January 2019; published 19 February 2019)

We report all phases and corresponding critical lines of the quantum anisotropic transverse XY model with
uniform and alternating transverse magnetic fields (ATXY) in the presence of the Dzyaloshinskii-Moriya (DM)
interaction by using appropriately chosen order parameters. We prove that when DM interaction is weaker than
the anisotropy parameter, it has no effect at all on the zero-temperature states of the XY model with uniform
transverse magnetic field (UXY), which is not the case for the ATXY model. However, when DM interaction
is stronger than the anisotropy parameter, we show the appearance of a new gapless chiral phase—in the XY
model with uniform as well as alternating field. We further observe that first derivatives of nearest neighbor
two-site entanglement with respect to magnetic fields can detect all the critical lines present in the system. We
also find that the factorization surface at zero temperature present in this model without DM interaction becomes
a volume on the introduction of the latter. Moreover, DM interaction turns out to be good to generate bipartite
entanglement sustainable at large times, leading to a proof of ergodic nature of bipartite entanglement in this
system.
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I. INTRODUCTION

Quantum phase transitions [1–3], observed at zero tem-
perature in many-body systems, are one of the striking phe-
nomena in quantum mechanics which occurs solely due to
quantum fluctuations in the system. Detecting such transitions
in spin systems has attracted a lot of attention over decades.
Machinery borrowed from quantum information theory
[4–9] has proven to be useful in developing new techniques
to obtain zero-temperature state in interacting spin Hamilto-
nian. On the experimental front, tremendous scientific and
technological advancement in cold atomic systems [10–17],
superconducting materials [18], and nuclear magnetic res-
onance (NMR) molecules [19] (see also Refs. [20–24])
open up the possibilities to realize and examine proper-
ties of such many-body systems in the laboratory (see also
Ref. [25]).

On the other hand, it has been established over the last three
decades that quantum entanglement [26] is an essential ingre-
dient in quantum information processing tasks [27–32] which
are more efficient than their classical counterparts. Highly
entangled ground states of interacting spin systems, which
are realizable in currently available technology [33–35],
turn out to be natural candidates for realizing such quantum
protocols. Moreover, besides the conventional order param-
eters, quantum entanglement has emerged as an indepen-
dent tool to identify the signature of quantum criticality in
quantum spin models [33–35]. Apart from the fundamental
importance of studying zero-temperature and thermal equi-
librium states, dynamical quantum correlations, generated in
the many-body systems in nonequilibrium scenarios, have

also been proven to be important in different directions,
like topological quantum computation [36–43], observation
of dynamical phase transitions [44–60], answering statistical-
mechanical questions like ergodicity of quantum observables
[45,61–69], etc.

However, most of the studies in this direction are restricted
to models with symmetric spin-spin interactions such as Ising,
XY, Heisenberg, etc. [33,34]. But works of Dzyaloshinskii
[70], Moriya [71,72], and Anderson [73] prompt one to con-
sider asymmetric spin-spin interactions, e.g., Dzyaloshinskii-
Moriya (DM) interaction, to explain the presence of weak
ferromagnetism in certain materials like α-Fe2O3, MnCO3

which are bulk antiferromagnets. In a general context, DM
interaction leads to novel phases which break the mirror in-
version symmetry (chirality) and thus have paved the way for
lots of research [74–106]. Like some other one-dimensional
quantum spin models, spin chain with DM interaction can
in certain instances be mapped to a Hamiltonian of spinless
fermions [107] or hardcore bosons [108] and thus can also be
realized, e.g., in cold atoms [98,109–111] as well as in nu-
clear magnetic resonance (NMR) systems [112,113], thereby
providing possibilities to probe the effects of DM interaction
in laboratories.

In this paper, we investigate the effects of DM interaction
on the quantum XY spin model with uniform and alternating
transverse magnetic fields (ATXY) in one dimension. We
identify quantum critical lines by gap closing in the energy
spectrum as well as by the first derivatives of entanglement
and the corresponding phases by using appropriate order
parameters. Specifically, when DM interaction is weaker
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than the anisotropy parameter of the exchange coupling,
we establish three distinct phases—antiferromagnetic (AFM),
paramagnetic-I (PM-I), and paramagnetic-II (PM-II) in which
only AFM to PM-II transition depends on the strength of
the DM interaction. In the case of quantum XY model only
with uniform transverse field (UXY), we prove that, when
the strength of the DM interaction is strictly less than the
anisotropy parameter, the system at zero temperature is in-
sensitive to the DM interaction, and hence all the physical
properties including entanglement of the zero-temperature
state remain unaltered. However, this is not the case when
the alternating field is introduced or when the DM interaction
is stronger than the anisotropy parameter in the x − y direc-
tion. Although DM interactions were typically found to be
weak compared to other nearest-neighbor interactions, recent
theoretical as well as experimental investigations show that
the ratio between DM and other interactions can be finite
[114–117]. Motivated by these results, we consider finite DM
interaction in the ATXY model, and report a phase, the gapless
chiral (CH) phase, that emerges in place of the AFM one. We
also find two quantum critical lines—CH to PM-I and CH
to PM-II, both of which depend on the strength of the DM
interaction.

We also observe that bipartite entanglement and its first
derivatives with respect to system parameters can faithfully
detect all the phase boundaries. Moreover, we find that the
lower value of entanglement in the AFM phase can be en-
hanced by increasing the strength of the DM interaction which
is possibly due to the appearance of the chiral phase. We also
find that with the introduction of weak as well as strong DM
interaction, the factorization surface, i.e., the surface where
entanglement vanishes in the zero-temperature state of the
ATXY model, becomes a volume. In case of the thermal state,
DM interaction induces a transition from monotonic variation
of entanglement with temperature to a nonmonotonic one and
vice versa.

In the dynamical evolution of the system after a sudden
quench, a high value of bipartite entanglement is found to
be generated at a small time which ultimately saturates to a
positive value at large time. Interestingly, we observe that the
presence of the DM interaction enhances the saturation value
in dynamics, thereby establishing its capability in realizations
of quantum information tasks. From a statistical mechanical
point of view, we show here that moderate DM interaction
wipes out the nonergodic nature of bipartite entanglement,
leading to ergodicity of entanglement irrespective of quantum
phases (cf. Ref. [65]).

The paper is organized as follows: Section II discusses the
diagonalization procedure of the Hamiltonian considered. In
Sec. II A, we discuss all the analytical calculations for the
uniform field case. Section III contains the characterization
of different phases for different DM interaction strengths
by using suitable order parameters. The detection of phase
boundaries by entanglement, the effects of DM interaction
in the thermal state, and the calculation for the factorization
volume in this model are reported in Sec. IV. We discuss the
sudden quenched dynamics of entanglement and consequently
its ergodicity property in Sec. V, before the concluding re-
marks in Sec. VI.

II. MODEL AND ITS DIAGONALIZATION

We consider a family of interacting spin models consisting
of spin-1/2 particles on a one-dimensional (1D) lattice with
N sites, described by a Hamiltonian,

Ĥ = 1

2

N∑
j=1

[
J

{
1 + γ

2
σ̂ x

j σ̂
x
j+1 + 1 − γ

2
σ̂

y
j σ̂

y
j+1

}

+ D

2

(
σ̂ x

j σ̂
y
j+1 − σ̂

y
j σ̂

x
j+1

) + (h1(t ) + (−1) jh2(t ))σ̂ z
j

]
.

(1)

Here, σ̂ α, α = x, y, z are Pauli matrices and the parameters J
and D represent the strengths of the nearest neighbor exchange
couplings and DM interaction, respectively, while γ ( �= 0) is
the x − y anisotropy in the exchange interaction. Note that
the external magnetic field has site-dependent strengths, hj =
h1 + (−1) jh2, with j being the site index. We assume periodic
boundary condition (PBC), i.e., σN+1 = σ1. We abbreviate the
quantum spin model represented by the above Hamiltonian as
the DATXY model.

It is noteworthy to mention that, in this section as well as
in Secs. III and IV, we consider time-independent magnetic
fields, h1 and h2, to study the properties of the system in
equilibrium. Later, in Sec. V, we will consider the time-
dependent case [see Eq. (29)] to examine dynamical behaviors
of the DATXY model.

The Hamiltonian in Eq. (1) can be mapped onto a two-
component Fermi gas of spinless fermions on a 1D lattice
consisting of two sublattices a and b, via Jordan-Wigner
transformation, as [118]

Ĥ = J

2

N/2∑
j=1

[(1 + id )(â†
2 j−1b̂2 j + b̂†

2 j â2 j+1)

+ (1 − id )(b̂†
2 j â2 j−1 + â†

2 j+1b̂†
2 j )

+ γ (â†
2 j−1b̂†

2 j + b̂†
2 j â

†
2 j+1 + b̂2 j â2 j−1 + â2 j+1b̂†

2 j )

+ 2(λ1 + λ2)b̂†
2 j b̂2 j + 2(λ1 − λ2)â†

2 j−1â2 j−1 − λ1],

(2)

where we define the dimensionless parameters as d = D/J ,
λ1 = h1/J , and λ2 = h2/J . Note that the existence of the
two types of magnetic field (uniform and alternating) in the
original model leads to the two sublattices in the fermionic
model, thereby resulting in two types of fermionic operators,
a† and b†. The Hamiltonian in Eq. (2) can again be simplified
as Ĥ = ∑N/4

p=1 Ĥp, with

Ĥp = J[(cos φp + d sin φp)(â†
pb̂p + b̂†

pâp)

+ (cos φp − d sin φp)(â†
−pb̂−p + b̂†

−pâ−p)

− iγ sin φp(â†
pb̂†

−p + âpb̂−p − â†
−pb̂†

p − â−pb̂p)

+ λ+(b̂†
pb̂p + b̂†

−pb̂−p) + λ−(â†
pâp + â†

−pâ−p) − 2λ1]

(3)

via Fourier transformations, where φp = 2π p/N , λ± = λ1 ±
λ2, and a†

p (b†
p) is the fermionic operator in the momentum
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space. Since [Ĥp, Ĥp′ ] = 0, the above Fourier transformation
decomposes the space, upon which Ĥ acts on, into nonin-
teracting subspaces, each having a dimension 16. Therefore,
the spectrum of the Hamiltonian Ĥ can be obtained by per-
forming diagonalization of Ĥp, acting on the pth subspace. In
Appendix A, we prescribe the method to diagonalize Ĥp in
details.

Furthermore, we can get the two-site nearest-neighbor
local density matrix of the canonical equilibrium state, cor-
responding to an “even-odd” pair of spins, as

ρ̂eo = 1

4

[
Ie ⊗ Io + mz

eσ̂
z
e ⊗ Io + mz

oIe ⊗ σ̂ z
o

+
∑

α=x,y,z

Cαασ̂ α
e ⊗ σ̂ α

o + Cxyσ̂ x
e ⊗ σ̂ y

o + Cyxσ̂ y
e ⊗ σ̂ x

o

]
,

(4)

using the same procedure mentioned in Ref. [65]. Here, the
suffix e (o) corresponds to the even (odd) lattice sites, mz

e(o) =
Tr[σ̂ z

e(o)ρ̂eo] is the magnetization in the z direction, while
Cαμ = Tr[σ̂ α

e ⊗ σ̂ μ
o ρ̂eo] are the two-site spin correlators. By

using translational invariance, the correlator and magnetiza-
tion operators are defined, respectively, as

Ĉαμ = 2

N

N/2∑
j=1

σ̂ α
2 j σ̂

μ
2 j+1, m̂z

o = 2

N

N/2∑
j=1

σ̂ z
2 j−1,

m̂z
e = 2

N

N/2∑
j=1

σ̂ z
2 j, (5)

where α,μ = x, y. Just like the Hamiltonian, successive ap-
plications of Jordan-Wigner and Fourier transformation block
diagonalize the above operators into different momentum sub-
spaces as Ĉαμ = 2

N

∑N/4
p=1 Ĉαμ

p and m̂z
e(o) = 2

N

∑N/4
p=1 m̂z

e(o),p.

We get the values of correlators as Cαμ = 2
N

∑N/4
p=1 Cαμ

p , where

Cαμ
p = 1

Zp
Tr

[
Ĉαμ

p exp(−βĤp)
]
, Zp = Tr[exp(−βĤp)]. (6)

In the above equation, exp(−βĤp) is the canonical equilib-
rium (unnormalized) state with β = 1/kBT , T and kB being

the temperature of the system and the Boltzmann constant,
respectively, and Zp is the corresponding partition function.
The procedure is similar for magnetizations. The matrix forms
of Ĉαμ

p and m̂z
e(o),p are given in Appendix B. Note that the zz

correlator, Czz, can be obtained using Wick’s theorem as

Czz = mz
emz

o − CxxCyy + CxyCyx. (7)

To study the properties of the zero-temperature state of Ĥ , we
simply choose β → ∞.

To obtain analytical expressions of the correlators, the
magnetization and other physical quantities which are func-
tions of them, we have to diagonalize matrices of dimension
16, for which closed analytical forms are hard to obtain in
terms of all the parameters involved in the system. Hence,
identifications of different phases in this system requires
numerical diagonalization of the 16 × 16 matrix of Ĥp. The
situation becomes much simpler if we turn off the alternating
part of the field, i.e., h2 = 0. In that case, Ĥp is a matrix of
dimension 4 which in turn can be further reduced to three
sub-blocks of dimensions 2, 1, and 1, leading to compact an-
alytical forms of magnetization and two-site spin correlators,
discussed in the next subsection.

Uniform field case

We now consider the UXY model in the presence of the
DM interaction (DUXY), i.e., h2 = 0 in Eq. (1). Instead of
considering two different sublattices, we can map the Hamil-
tonian into a single component Fermi gas by the Jordon-
Wigner transformation involving only one type of fermionic
operator [61,62,119], ĉ, as [118]

Ĥ = J

2

N∑
j=1

[(1 + id )ĉ†
j ĉ j+1 + (1 − id )ĉ†

j+1ĉ j

+ γ (ĉ†
j ĉ

†
j+1 + ĉ j+1ĉ j ) + λ1(2ĉ†

j ĉ j − 1)]. (8)

Similar to the previous scenario, the Fourier transformation
enables us to write Ĥ = ∑N/2

p=1 Ĥp, where the matrix form of

Ĥp in the basis {|0〉, ĉ†
pĉ†

−p|0〉, ĉ†
p|0〉, ĉ†

−p|0〉 } is given by

Ĥp = J

⎡
⎢⎣

−λ1 iγ sin φp 0 0
−iγ sin φp λ1 + 2 cos φp 0 0

0 0 cos φp + d sin φp 0
0 0 0 cos φp − d sin φp

⎤
⎥⎦, (9)

with φp = 2π p/N . Note that due to the DM interaction, the matrix form of Ĥp changes only in the smaller sub-blocks. We
can also compute the reduced two-site nearest-neighbor density matrix between nth and (n + 1)th lattice sites of the canonical
equilibrium state as

ρ̂n,n+1 = 1

4

[
In ⊗ In+1 + mz

(
σ̂ z

n ⊗ In+1 + In ⊗ σ̂ z
n+1

) +
∑

α=x,y,z

Cαασ̂ α
n ⊗ σ̂ α

n+1 + Cxyσ̂ x
n ⊗ σ̂

y
n+1 + Cyxσ̂ y

n ⊗ σ̂ x
n+1

]
, (10)

where Cαμ and mz can be defined in a similar fashion as in
Eqs. (5) and (6) (see Appendix C for details). In the thermo-

dynamic limit (N → ∞), the correlators and magnetizations
of the zero-temperature state, i.e., with β → ∞, are given in
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TABLE I. Analytical expressions of classical correlators and magnetization of the zero-temperature state for the UXY model with DM
interaction (DUXY). The expression of 
p is given by

√
(cos φp + λ1)2 + γ 2 sin2 φp, while the expressions of φ1 and φ2 are given [120].

The expressions in the case of d > γ are only true for real solutions of (φ1, φ2). Otherwise, even in the case of d > γ , the d < γ solution
holds. Note that for d = γ , both the cases yield the same expressions. The correlators and the magnetization of the thermal state are given in
Appendix C.

Classical correlators
and magnetization Analytical expressions

1
π

∫ π

0 dφp
1


p
(−γ sin2 φp + (
p − cos φp − λ1) cos φp), for d < γ

Cxx
1
π

[ ∫ φ1
0 + ∫ π

φ2

]
dφp

1

p

(−γ sin2 φp + (
p − cos φp − λ1) cos φp

) + 1
π

(sin φ2 − sin φ1), for d > γ

1
π

∫ π

0 dφp
1


p
(γ sin2 φp + (
p − cos φp − λ1) cos φp), for d < γ

Cyy
1
π

[ ∫ φ1
0 + ∫ π

φ2

]
dφp

1

p

(
γ sin2 φp + (
p − cos φp − λ1) cos φp

) + 1
π

(sin φ2 − sin φ1), for d > γ

0, for d < γ
Cxy

1
π

(cos φ2 − cos φ1), for d > γ

0, for d < γ
Cyx

1
π

(cos φ1 − cos φ2), for d > γ

− 1
π

∫ π

0 dφp
1


p
(λ1 + cos φp), for d < γ

mz

− 1
π

[ ∫ φ1
0 + ∫ π

φ2

]
dφp

1

p

(λ1 + cos φp), for d > γ

Table I (the same for the thermal equilibrium state are given
in Appendix C). Note that similar calculations for the DUXY
model have been carried out in Ref. [79], where analytic forms
of different structure factors of the model are derived, and
their behaviors are explored.

The Hamiltonian, Ĥp, given in Eq. (9), can be written as
Ĥp = Ĉ†

pH̃pĈp, where Ĉp is the column vector, (ĉp, ĉ†
−p), and

H̃p =J

[
cos φp + d sin φp + λ1 −iγ sin φp

iγ sin φp − cos φp + d sin φp − λ1

]
,

(11)

where φp ∈ [0, π ]. Now, the above matrix, H̃p,
has two eigenvalues, J (d sin φp ± 
p), with 
p =√

(cos φp + λ1)2 + γ 2 sin2 φp, which give us the single-
particle excitation spectrum of the model as

ωφp = J (d sin φp + 
p), (12)

for φp ∈ [−π, π ]. For 0 � d < γ , ωφp is always positive for
any values of system parameters, and thus the ground state (or
the zero-temperature state) of the model, in this scenario, is
basically the vacuum of corresponding Bogoliubov operators.
For the DUXY model, the Bogoliubov transformation does
not depend on the DM interaction strength [79], and, as a
consequence, the Bogoliubov vacuum remains independent
of the value of d . In this scenario, the ground state energy
also remains independent of d , as it comes from the upper
2 × 2 block of the Hamiltonian given in Eq. (9). Therefore,
we find that all the two-site correlators and the magnetization
of the zero-temperature state of the model given in Table I
do not depend on the value of d for d < γ . However, for
d > γ and λ2

1 < 1 + d2 − γ 2, ωφp becomes negative in the

range −φ2 < φp < −φ1 (φ1 and φ2 are mentioned in Table I),
and the ground state is no longer the Bogoliubov vacuum, as
in this case the modes in between −φ2 and −φ1 have to be
filled to construct the ground state, which now depends on the
value of d .

These results allow us to arrive at the following theorem.
Theorem 1. For weak DM interaction strength (0 � d <

γ ), the zero-temperature state of the DUXY model is insensi-
tive towards the DM interaction.

We highlight this insensitivity by plotting the absolute
difference of nearest-neighbor entanglements, quantified by
logarithmic negativity (LN) [121–125] (see Sec. IV for def-
inition), for d = 0 and d > 0 as a function of d in Fig. 1.
It is also interesting to note that the correlators and the
magnetization are insensitive even for d > γ , when φ1 and
φ2 [120], mentioned in Table I, do not have real solutions,
i.e., for λ2

1 > 1 + d2 − γ 2. However, the difference emerges
for a canonical equilibrium state with finite temperature as
shown in the succeeding sections. This is so because only the
zero-temperature state of the DUXY model does not depend
on the DM interaction strength for d < γ , but the excited
states do, and therefore thermal excitations in the finite tem-
perature scenario incorporate the effects of the DM term. We
observe these characteristics from our analytical analysis of
the DUXY model. However, the exact physical reason behind
these features is still elusive to us and is yet to be explored.
With this formalism in hand, we are now ready to investigate
the phase boundaries of the quantum DATXY chain.

III. PHASE BOUNDARIES AT ZERO TEMPERATURE

In this section, we find out and detect different phases of
the zero-temperature state of this model by using suitable
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order parameters and identify the corresponding critical lines,
along which quantum phase transitions occur, by investigating
the signatures of energy gap closing. For investigation, we
divide the parameter range into two subcategories, motivated
by Table I—(1) 0 � d < γ and (2) d > γ .

A. Phase boundaries for weak DM interactions: 0 � d < γ

To discuss the phases of Ĥ with 0 � d < γ , we first
notice that the Hamiltonian, Ĥp, given in Eq. (3) can be
written as Ĥp = Â†

pH̃pÂp, where Âp is the column vector,

(âp, b̂p, â†
−p, b̂†

−p), and the 4 × 4 matrix, H̃p, is given as

H̃p = J

⎡
⎢⎢⎣

(λ1 − λ2) (cos φp + d sin φp) 0 −iγ sin φp

(cos φp + d sin φp) (λ1 + λ2) −iγ sin φp 0
0 iγ sin φp −(λ1 − λ2) −(cos φp − d sin φp)

iγ sin φp 0 −(cos φp − d sin φp) −(λ1 + λ2)

⎤
⎥⎥⎦, (13)

with φp ∈ [−π/2, π/2]. The above matrix has four
eigenvalues, ωk

φp
with k = 1, 2, 3, 4, that satisfy ω

1(2)
φp

=
−ω

3(4)
−φp

for φp ∈ [0, π/2] [126]. Therefore, we get the two

bands of the single-particle excitation spectrum as {ω1
φp

, ω2
φp

}
for φp ∈ [−π/2, π/2]. We detect the quantum critical lines
by tracking the gap closing in the (λ1, λ2) plane in the
thermodynamic limit as identified by the vanishing excitation
energies (minp,k=1,2{|ωk

φp
|} → 0). For d < γ , substantial

numerical search reveals that minp,k=1,2{|ωk
φp

|} may possess
vanishingly small value only when φp = 0 or ±π/2. For
φp = 0, we obtain

ω1
0 = J

(
λ1 +

√
1 + λ2

2

)
, ω2

0 = J
(
λ1 −

√
1 + λ2

2

)
. (14)

Clearly, we get ω2
0 = 0 when λ1 =

√
1 + λ2

2, while

ω1
0 = 0 for λ1 = −

√
1 + λ2

2, thereby implying a gapless

0.0 0.4 0.8 1.2 1.6 2.0 2.4

d

0.0

0.1

0.2

0.3

0.4

|L
d
−
L d

=
0|

d
=

γ
=

0.
8

λ1 = 0.5 and λ2 = 0

FIG. 1. The absolute difference of nearest-neighbor entangle-
ments, |Ld − Ld=0|, of the zero-temperature state of the DUXY
model as a function of d . Plot shows the insensitivity of the two-site
entanglement of the zero-temperature state with the introduction of
DM interaction, when d < γ . We have shown that such behavior
can be seen for all other physical quantities of this model. Here,
the zero-temperature state is computed using calculation explained
in Sec. II. Both the axes are dimensionless. We set γ = 0.8. Unless
otherwise stated, we choose γ = 0.8 for depictions throughout this
paper. Note that the results reported here are independent of the
values of γ .

line,

λ2
1 = 1 + λ2

2, (15)

which indicates a quantum phase transition. Notice that the
above critical line does not depend on the value of d . Next,
for φp = ±π/2, we get {ωk

±π/2} as

ω1
±π/2 = J

(√
λ2

1 + γ 2 +
√

λ2
2 + d2

)
,

ω2
±π/2 = J

(√
λ2

1 + γ 2 −
√

λ2
2 + d2

)
. (16)

It is easy to check that ω2
±π/2 = 0 for λ2

2 = λ2
1 + γ 2 − d2,

giving another phase boundary as

λ2
2 = λ2

1 + γ 2 − d2, (17)

which depends both on anisotropy and DM interaction
parameters. Equations (15) and (17) indicate that the XY
model in the presence of DM interaction along with uniform
and alternating transverse magnetic fields possesses a rich
phase diagram and hence it will be interesting to characterize
the quantum phases present in this model, using appropriate
order parameters which we will do in the next subsections.

1. Characterization of phases for d = 0

Before discussing the scenario with nonzero d , let us dis-
cuss the model with d = 0, which corresponds to the ATXY
model [65], having three different quantum phases, namely,
(1) antiferromagnetic (AFM), (2) paramagnetic I (PM-I), and
(3) paramagnetic II (PM-II) phases [65]. These three phases
correspond to three distinct types of orders: (i) AFM phase has
staggered magnetic order in the (x, y) plane, (ii) in the PM-I
phase, 〈σ z

j 〉 = mz
j is uniformly ordered in the z direction, and

(iii) mz
j has a staggered order in the PM-II phase [127].

To distinguish AFM from the PM phases, we add a small
alternating field, hx, in the x direction of magnitude 10−8,
in units of J , to the original Hamiltonian, so that the new
Hamiltonian reads as

Ĥ ′ = Ĥ + hx

N∑
j=1

(−1) j σ̂ x
j . (18)

Note that the above Hamiltonian cannot be diagonalized
analytically, and hence we use density-matrix renormaliza-
tion group (DMRG) technique [4–9] to obtain the zero-
temperature state for N = 100 with open boundary condition.
To identify the antiferromagnetic order, we examine the order
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FIG. 2. Characterization of phases of the ATXY model (d = 0)
in the thermodynamic limit. (a) We plot the antiferromagnetic order
parameter, Mx , in the (λ1, λ2) plane, which is nonzero in the AFM
phase and zero in the other two phases. (b) The magnetization in
the z direction has staggered order in the PM-II phase, whereas
in the PM-I phase, it is ordered. Therefore, S ≡ mz

em
z
o has high

negative value in the PM-II phase, while it possesses high positive
value in the PM-I phase. To calculate Mx of the zero temperature
state, we use DMRG with N = 100, while to obtain S , we use
analytical methods explained in Secs. II and III. Both the axes are
dimensionless.

parameter, staggered magnetization in the x direction, Mx,
defined as

Mx =
∣∣∣∣ 1

N

N∑
j=1

(−1) j
〈
σ̂ x

j

〉∣∣∣∣ =
∣∣∣∣ 1

N

N∑
j=1

(−1) jmx
j

∣∣∣∣. (19)

Figure 2(a) depicts the value of Mx in the (λ1, λ2) plane.
Clearly, for λ2

1 < 1 + λ2
2 and λ2

2 < λ2
1 + γ 2, the order param-

eter Mx is nonvanishing, indicating the AFM phase.
As mentioned earlier, in the PM-I phase, the quantity S ≡

mz
jm

z
j+1 ≡ mz

emz
o possesses high positive value, since mz

j’s
are uniformly ordered in the z direction, while S have high
negative value in PM-II, as shown in Fig. 2(b). We observe
that for λ2

1 > 1 + λ2
2, S has high positive value, faithfully

characterizing the PM-I phase, while for λ2
2 > λ2

1 + γ 2, it has
high negative value, thereby signaling the PM-II phase.

2. Characterization of phases for 0 < d < γ

Let us now move to nonzero values of d < γ . As men-
tioned earlier, the AFM ↔ PM-I transition line, given in
Eq. (15), remains the same, while the AFM ↔ PM-II critical
line [Eq. (17)] gets modified with the presence of d . Specifi-
cally, a new type of order, the chiral order, gets developed in

some regions of the (λ1, λ2) plane which can be demonstrated
by considering the physical quantity, known as chiral order
parameter [128], given by

C =
∣∣∣∣ 1

N

N∑
i=1

〈
σ x

j σ
y
j+1 − σ

y
j σ

x
j+1

〉∣∣∣∣ = |Cxy − Cyx|. (20)

As depicted in Fig. 3, we find that in the zero-temperature
state, C possess nonvanishing values in the PM-II phase and
in some regions of the AFM phase, close to the PM-II phase
while it vanishes in PM-I. It is important to stress here that
due to the DM interaction, chiral order is created, leading
to C �= 0, although no nonanalyticity or discontinuity found
around d = 0, thereby signaling the absence of quantum
phase transition with d → 0.

We observe that in this case also the antiferromagnetic
order parameter, Mx, rightfully characterizes the AFM phase
in the presence of nonzero DM interaction (see Fig. 4). We
will show in the following subsection that situations will
change as soon as d > γ , and such changes will lead to a
quantum phase transition at d = γ .

Note: As mentioned earlier, the chiral order parameter C is
also nonvanishing in the regions of the AFM phase, which are
close to the PM-II phase (see Fig. 3). In these regions, where
both Mx and C possess finite values, the antiferromagnetic
state has an incommensurate order, as opposed to the regions
with vanishing C, where we have commensurate antiferro-
magnet. However, there is no quantum criticality between
antiferromagnetic regions with nonzero C and vanishing C.
This makes it quite difficult to differentiate between these
two regions in (λ1, λ2, γ ) space analytically. However, it is
clearly understandable from Fig. 3 (and from the expressions
given in Table I) that the alternating magnetic field, h2 (or
λ2 = h2/J), must be nonzero for stabilizing incommensurate
antiferromagnetic order.

Summarizing, in the case of 0 < d < γ , we show that there
exists two critical lines, namely

λ2
1 = 1 + λ2

2 (AFM ↔ PM-I),

λ2
2 = λ2

1 + γ 2 − d2 (AFM ↔ PM-II). (21)

On top of that, a new chiral order emerges which will
be prominent when DM interaction dominates over the
anisotropy parameter, as we will discuss in the next
subsection.

FIG. 3. The chiral order parameter C of the zero-temperature state (obtained in Secs. II and III) for different values of d < γ = 0.8 in the
(λ1, λ2) plane. For d > 0, chiral order is developed in the PM-II phase and in some regions of the AFM phase, while in the PM-I phase, the
order parameter remains zero. Both the axes are dimensionless and all the other system parameters are the same as in Fig. 2.
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FIG. 4. The antiferromagnetic order parameter, Mx , of the zero-temperature state of the DATXY model for different values of d < γ = 0.8
in the (λ1, λ2) plane. The zero-temperature state is calculated using DMRG with N = 100. Both the axes are dimensionless.

B. Phase boundaries for strong DM interactions: d > γ

Let us now study quantum phases of the zero-temperature
state when d > γ , i.e., when the second term in Eq. (1)
dominates over the first one. We will show that certain phase
emerges in this situation due to tradeoff between d and γ

which has already been seen in d < γ . For fixed values of λ1

and λ2, we demonstrate a phase transition at d = γ in Fig. 5,
using the order parameters C and Mx. For demonstration, we
choose three kinds of parameter values—Case (i), the DUXY
model in the AFM phase; Case (ii), the AFM phase of the
DATXY model; Case (iii), the PM-II phase of the DATXY
model. Let us discuss the observations from Fig. 5(a).

(1) In Case (i), chiral order parameter remains zero for
nonzero d < γ and sharply becomes nonzero at d = γ .

(2) In Case (ii), C becomes nonvanishing immediately
after the introduction of d although there is a sharp increase
of C at d = γ .
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γ
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(a)

(i) λ1 = 0.5 and λ2 = 0

(ii) λ1 = 0.6 and λ2 = 0.4

(iii) λ1 = 0 and λ2 = 1
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d
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0.6

0.8

1.0

Mx

d
=

γ
=

0 .
8

(b)

FIG. 5. Quantum phase transition at d = γ , as detected by the
order parameters C and Mx . Both the axes in (a) and (b) are dimen-
sionless. (a) Development of chiral order with the DM interaction
strength d . We plot the chiral order parameter C as a function of
d for three different values of the (λ1, λ2) pair. The AFM phase
transforms into the CH phase for d > γ , which is indicated by the
sharp changes in C at d = γ (red solid and green dashed lines). PM-II
phase develops chiral order for d > 0 (blue dotted line), which is just
an artifact of nonzero d . (b) The antiferromagnetic order parameter,
Mx , against the strength of DM interaction, d , for two different
values of the (λ1, λ2) pair. Mx vanishes for d > γ , as the AFM phase
transforms into the CH phase. All the other considerations are the
same as in Fig. 2. All the axes are dimensionless.

(3) In contrast, C is a smooth increasing function in the
entire range of d in the PM-II phase [Case (iii)].

The first two observations suggest that there is a quantum
phase transition on the onset of d = γ from AFM to a chiral
ordered (CH) phase. Existence of this quantum criticality
was also hinted at earlier in Fig. 1, where bipartite nearest-
neighbor entanglement of the zero-temperature state shows a
sharp change at d = γ . We will later show analytically that
there indeed exists a critical point at d = γ .

Such indication of change of phase can also be made if one
studies the behavior of Mx. In Fig. 5(b), the variation of the
antiferromagnetic order parameter, Mx, with d is depicted,
when the systems are in the AFM phase [Cases (i) and (ii)].
In both the scenarios, we find that Mx possesses positive
high values for d < γ , while it vanishes for d > γ . It clearly
indicates that at the cost of destruction of the AFM order, a
new phase, the CH phase, appears after d = γ , which will be
shown below by the following theorem.

Theorem 2. A new gapless CH phase emerges in place of
the AFM phase for d > γ , in the DATXY model.

Proof. Let us we first concentrate on the DUXY model
(i.e., λ2 = 0) for d > γ . For d > γ and λ1 � 1 + d2 − γ 2,
the single-particle excitation spectrum, ωφp , given in Eq. (12),
becomes zero at φp = −φ1,−φ2, where φ1 and φ2 are men-
tioned in Table I, so that we have quasiparticle excitations
with infinitesimal energy at φp = −φ1,−φ2, which renders
the spectrum gapless.

If we now investigate the chiral order parameter C, we get
from Table I that it is identically zero everywhere for d < γ ,
whereas for d > γ , we find that

C(λ1) = 2

π
| cos φ1 − cos φ2|, for λ2

1 � 1 + d2 − γ 2

= 0, for λ2
1 > 1 + d2 − γ 2. (22)

This clearly shows that the chiral order gets developed in the
new gapless phase, i.e., in the CH phase, while for λ2

1 � 1 +
d2 − γ 2, the chiral order gets completely destroyed, and we
are only left with a paramagnetic (PM-I) state. Therefore, for
d > γ , we obtain a quantum critical line as

λ2
1 = 1 + d2 − γ 2 (CH ↔ PM-I), (23)

for the DUXY model.
Let us now focus on the DATXY model. In the presence

of nonzero alternating field, i.e., λ2 �= 0, following Eq. (13),
we compute the minimum energy (i.e., minp,k=1,2{|ωk

φp
|})

064422-7



ROY, CHANDA, DAS, SADHUKHAN, SEN(DE), AND SEN PHYSICAL REVIEW B 99, 064422 (2019)

−3.0−1.5 0.0 1.5 3.0

λ1

−3.0

−1.5

0.0

1.5

3.0

λ2

(a)

d = 0.7

−3.0−1.5 0.0 1.5 3.0

λ1

−3.0

−1.5

0.0

1.5

3.0

λ2

(b)

d = 0.82

−3.0−1.5 0.0 1.5 3.0

λ1

−3.0

−1.5

0.0

1.5

3.0

λ2

(c)

d = 1.5

FIG. 6. Regions in the (λ1, λ2) plane where minimum excitation energy, minp,k=1,2{|ωk
φp

|}, that is required to drive the ground state to the
first excited state, is vanishingly small. Clearly, for d < γ = 0.8, we obtain only quantum critical lines (AFM ↔ PM-I and AFM ↔ PM-II)
as gapless, while for d > γ , the entire CH phase is gapless as explained in Secs. II and III. Both the axes are dimensionless.

required to excite the ground state to the first excited state
for different values of d in the thermodynamic limit to find
out the gapless regions. Figure 6 points out the regions in
the (λ1, λ2) plane where this minimum excitation energy is
vanishingly small. It is clear from the figure that, when d < γ ,
only quantum critical lines [i.e., Eq. (21)] can have gapless
excitations, whereas for d > γ , there exists indeed a gapless
phase in the (λ1, λ2) plane, whose phase boundaries are found
to be as follows:

λ2
1 = 1 + λ2

2 + d2 − γ 2 (CH ↔ PM-I),

λ1 = ±λ2 (CH ↔ PM-II). (24)

This gapless phase is found to be chiral in the DATXY model
by studying the chiral order parameter C (see Fig. 7). �

It is interesting to note that the critical line, given in
Eq. (17), becomes λ1 = ±λ2 for d = γ and remains same
for higher values of d , which cannot be explained by using
Eq. (17). Note that here we have taken γ = 0.8 for a demon-
strative purpose and it turns out that in this case, some of
the expression yields nice numerical values. However, our
analysis is valid for all γ ∈ (0, 1] and d � 0. Therefore, if
the value of the anisotropy parameter is low, say 0.1, we can
get the CH phase even for a very low strength of the DM
interaction, i.e., d > 0.1 (see Fig. 8), which may be much
easier to achieve experimentally [114–117].

IV. DETECTION OF PHASE BOUNDARIES
BY ENTANGLEMENT

In this section, we will demonstrate that the first deriva-
tives of quantum entanglement of nearest-neighbor two-site
reduced density matrix of the zero-temperature state of the
DATXY model can detect all the critical lines discussed
above. We also explore the behavior of the nearest-neighbor
entanglement, as measured by logarithmic negativity (LN)
[121–125], in the thermodynamic limit.

Before that, let us give the definition of LN, which requires
the concept of negativity [121–125], another measure of bi-
partite entanglement. The negativity [121–125], N (ρAB), for
a bipartite state ρAB, is the absolute value of the sum of all
the negative eigenvalues of the partial transposed state, ρ

TA
AB of

ρAB, with partial transposition being taken with respect to the
subsystem A [129,130]. Mathematically, it is defined as

N (ρAB) =
∥∥ρ

TA
AB

∥∥
1 − 1

2
, (25)

where ‖ρ‖1 ≡ tr
√

ρ†ρ is the trace norm of matrix ρ. Finally,
LN, defined in terms of negativity, is given by

L(ρAB) = log2[2N (ρAB) + 1]. (26)

Its positive value ensures that the state has nonvanishing
bipartite entanglement.

The exact computation of LN can be performed us-
ing the form of the nearest-neighbor density matrix of
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FIG. 7. The chiral order parameter C for different values of d > γ = 0.8 in the (λ1, λ2) plane. Clearly, for d > γ , chiral order is developed
in the former AFM phase. All the other considerations are the same as in Fig. 2. Both the axes are dimensionless.
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FIG. 8. The chiral order parameter C for different values of d
in the (λ1, λ2) plane for γ = 0.1. Clearly, for lower values of the
anisotropy parameter, the onset of CH phase occurs for lower values
of the DM interaction strength d . All the other considerations are the
same as in Fig. 2. The zero-temperature state is obtained as explained
in Secs. II and III. Both the axes are dimensionless.

the zero-temperature state, given in Eqs. (4) and (10). In
Figs. 9(a)–9(c), we map the value of LN as a function of λ1

and λ2 for three different values of the DM interaction strength
d , namely d = 0.5, 0.78, and 1.0. For depiction, we choose
d values in such a way that d = 0.5 and 0.78 is less than γ

and d = 1 > γ . The observations from the investigations of
entanglement are as follows:

(1) When d < γ , entanglements in PM-I and PM-II re-
gions are higher than that in the AFM phase and the region
near boundaries between PM-II and AFM possess a high
amount of entanglement. Interestingly, the two site entangle-
ment pattern itself can identify the transitions by strikingly
changing its values.

(2) For d > γ , when the AFM phase transforms to the CH
phase, the trends of entanglement change drastically in the
neighborhood of λ1 = λ2 = 0, which is in CH. In particular,
the low entanglement regions shift towards the PM-I → CH
critical lines, and quite high amounts of entangled states are
created near the (0,0) point. Moreover, we notice that the
entanglement content in this neighborhood, belonging to PM-
II, is much higher compared to the other regions in the (λ1, λ2)
plane with d < γ .

Note here that in the AFM phase, like the model without
DM interaction, we find that there exist surfaces having
vanishing entanglement which can be called “factorization
surfaces.” The effects of DM interaction on these surfaces will
be discussed in the succeeding subsection.

Let us now see whether bipartite entanglement can accu-
rately signal the critical lines found in the preceding section
[33,34] (cf. Ref. [35]). For such identification, we perform
first derivatives of entanglements of the zero-temperature
state, for example with respect to λ1 (see second row of Fig. 9)
and map |∂L/∂λ1| in the (λ1, λ2) plane for the same choices
of d . From the figure, it is clear that the first derivative of LN
diverges at AFM ↔ PM-I and AFM ↔ PM-II boundaries for
d < γ . Interestingly, in the case of d > γ , the derivative also
diverges on the onset of CH ↔ PM-I and CH ↔ PM-II transi-
tions. Note that this is a demonstration where bipartite entan-
glement can successfully identify a gapped-to-gapless phase
transition. The similar feature can also be seen by considering
|∂L/∂λ2|. Note that we have already demonstrated in Fig. 1
that entanglement can also detect AFM ↔ CH transition.
The results clearly establish that entanglement can accurately

FIG. 9. Nearest-neighbor two-site entanglement (first row, (a)–(c)) and its first derivative with respect to λ1 (second row, (d)–(f)) of the
zero-temperature state in the (λ1, λ2) plane by using the method obtained in Secs. II and III. Each column corresponds to different choices of
d . Values of d for the left two columns are chosen in a way that it is strictly less than γ , while the right one corresponds to a value of d , strictly
greater than γ . Both the axes are dimensionless. Black backgrounds in (d)–(f) represent the finite value in the derivative of entanglement with
respect to λ1 while the red lines depict the divergence of | ∂L

∂λ1
| through the lines. Similar features can also be observed when derivatives are

taken with respect to λ2. All the axes are dimensionless.
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FIG. 10. Logarithmic negativity vs βJ for different values of d of
the canonical equilibrium state of the DUXY model (i.e., λ2 = 0) as
in Secs. II and III. In (a), λ1 is chosen in a way that it is nonmonotonic
for d = 0. With the increase of d , it slowly becomes monotonic with
temperature. (b) shows the opposite feature. Note that for high values
of βJ , all of them converge to the same value which confirms the
analytical result that the zero-temperature state is insensitive to DM
interaction, when d < γ . Both the axes are dimensionless.

detect different types of quantum phases, gapped as well
as gapless (cf. Refs. [131,132]) and corresponding quantum
critical lines, thereby establishing itself as a universal detector
for identifying phase boundaries in the DATXY model.

A. Nonmonotonic-to-monotonic transition
in entanglement with temperature

The absolute zero temperature is not easy to reach in
experiments, so it is interesting to investigate the patterns
of entanglement of the canonical equilibrium state, ρ̂eq =
exp(−βĤ )/Z with varying temperature as well as with d .
It is expected that entanglement, bipartite, as well as multi-
partite, goes to zero, when β → 0 since the state becomes
maximally mixed while it saturates to entanglement of the
zero-temperature state with high values of β. Apart from
these extreme cases, it was shown that [65,133–138] entan-
glement shows a counterintuitive behavior with respect to
temperature—it increases with the increase of temperature for
specific choices of system parameters—phenomena known
as nonmonotonicity of entanglement with temperature. The
question is whether such nonmonotonic (monotonic) nature
of entanglement persists in the presence of DM interaction.
From the continuity argument, we can infer that the behavior
remains the same for small values of d which is also depicted
in Fig. 10. Interestingly, it modifies its behavior qualitatively
with the increase in the strength of d .

With the substantially high values of d < γ and suitable
choices of λ1, and λ2, we observe that entanglement becomes
monotonic from its nonmonotonic nature with β and vice
versa with the variation of d (see Fig. 10). For example, in
the DUXY model, we find that there is a nonmonotonic to
monotonic transition in entanglement of the thermal equilib-
rium state with the increase of d as depicted Fig. 10(a), while
the opposite is seen in (b). Figure 10 also shows that the
entanglement of the thermal state of the DUXY model is no
longer insensitive towards d at reasonably high temperature,
which is not the case for moderately low temperature as well
as for zero temperature, confirming the result obtained in
Fig. 1. Such a transition is also noticed in the AFM phase

of the DATXY model as depicted in Fig. 11. However, in the
case of the PM-II phase of the DATXY model, such transitions
are absent with β for any positive values of d (see Fig. 11).
Specifically, the monotonic or nonmonotonic characteristics
of entanglement with temperature does not change even in
the presence of d in the PM-II phase. Moreover, for lower
values of the anisotropy parameter γ , such transitions can
be seen in the PM-I also. Therefore, the transition observed
here crucially depends on the phases on which the system
belongs as well as on the value of the anisotropy parameter.
It is also interesting to note that, with high enough d > γ ,
except very small regions in the CH, almost all the regions
in the (λ1, λ2) plane show monotonic entanglement variation
with β [Fig. 11(d)].

B. Factorization volumes

In the AFM phase of the ATXY model, the zero-
temperature state contains surfaces, given by

λ2
1 = λ2

2 + 1 − γ 2, (27)

which possess vanishing bipartite as well as multipartite en-
tanglement [65,138–155]. The state in this surface is doubly
degenerate, and they are products across every bipartition,
thereby the name “factorization surfaces.” In the UXY model,
i.e., when λ2 = 0, the surface reduces to a circle in the
(λ1 − γ ) plane, which represents a point for fixed γ with
λ1 = ±

√
1 − γ 2.

At this point, it is natural to ask whether there are any
effects of DM interaction on these surfaces. We find here
that in the presence of DM interaction in the ATXY model,
factorization surfaces become volumes at zero temperature
except at the point corresponding to the DUXY model—we
call them factorization volumes. Specifically, we observe that
until d < γ , these surfaces shift slowly towards the boundary
of PM-I and AFM phases except in the DUXY model, and
the volume, containing states with vanishing entanglement,
increases with the strength of d . In contrast, when d > γ , the
factorization volumes of the DUXY as well as the DATXY
models deviate faster towards PM-I ↔ AFM critical lines in
comparison with the case of d < γ , as depicted in Figs. 12
and 9. Hence the results obtained here show that at zero
temperature, entanglement can be generated with the help of
moderate DM interaction in the entire factorization volumes
of the DATXY model at the cost of relocating the volumes
towards the quantum critical lines (cf. Ref. [138]).

V. SUSTAINABLE ENTANGLEMENT AFTER SWITCHING
ON DM INTERACTION

Up to now, we have studied the system either at zero or at
finite temperatures. We now move to investigate the behavior
of entanglement with time. When the evolution is governed by
the time dependent version of the Hamiltonian, given by

Ĥ (t ) = 1

2

N∑
j=1

[
J

{
1 + γ

2
σ̂ x

j σ̂
x
j+1 + 1 − γ

2
σ̂

y
j σ̂

y
j+1

}

+ D

2

(
σ̂ x

j σ̂
y
j+1 − σ̂

y
j σ̂

x
j+1

) + (h1(t ) + (−1) jh2(t ))σ̂ z
j

]
.

(28)
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FIG. 11. Map of the nonmonotonic region of LN against βJ for different values of d in the (λ1, λ2) plane. (a), (b), and (c) represent d
which are strictly less than γ while (d) is for d > γ . The canonical equilibrium state is computed using calculation explained in Sec. II. Both
the axes are dimensionless.

Such study of dynamics of entanglement plays a crucial role
in realization of quantum technology [30–32]. Investigations
are carried out by analyzing the response of the model with
DM interaction to a sudden quench of both the uniform and
the alternating parts of the magnetic field. The quenching is
performed as

h1(t ) =
{

h1, t � 0
0, t > 0 , h2(t ) =

{
h2, t � 0
0, t > 0 . (29)

Recently, a similar sudden quench of magnetic field has been
considered in Ref. [106], where effects of DM interaction in
the context of work distribution and the irreversible entropy
production in the DUXY model have been studied. In this
paper, we analyze the consequences of the presence of the DM
interaction in the dynamics of entanglement in the DATXY
model.

First of all, we note that mx(t ) = my(t ) = 0 and Cxz(t ) =
Czx (t ) = Cyz(t ) = Czy(t ) = 0 of the evolved state of the
DATXY model for all values of t and d like in the canonical
equilibrium state. We now choose the initial state for the evo-
lution as the zero-temperature state. Like in the previous static

−3.0 −1.5 0.0 1.5 3.0
λ1

−3.0

−1.5

0.0

1.5

3.0

λ2

(a)

1.5 1.6 1.7 1.8 1.9 2.0
λ1
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1.3

1.4

1.5

1.6

1.7

λ2

(b)

d = 0 d = 0.5 d = 0.78 d = 1 d = 1.2

FIG. 12. The set of states having vanishing entanglement at zero
temperature in the (λ1, λ2) plane, obtained in II, for different values
of d—factorization volumes. The left figure shows that factorization
volumes shift towards the PM-I ↔ AFM/CH critical lines while the
right one clearly shows that factorization surfaces become volume
in the presence of a small amount of d and the volume increases
with increasing d < γ . The (black) dashed lines depict the phase
boundaries for d = 1.2. Both the axes are dimensionless.

cases, finding a closed form of any physical quantities with
time for the DATXY model is analytically hard. However, if
we consider the zero-temperature state of the DUXY model,
given in Eq. (1) with h2 = 0, as an initial state, and evolve the
system according to Ĥ (t ), we can analytically obtain all the
two-site classical correlators and transverse magnetizations
for t � 0. In this case, to obtain mz(t ) and other two-site
correlators of the DUXY model with d �= 0, let us first define
the quantities KR(t̃, φp), S(t̃, φp), and M(t̃, φp) as follows.

KR(t̃, φp)

= γ

π

sin(φpR) sin φp


(λ1)
2(0)
[γ 2 sin2 φp + (cos φp + λ1) cos φp

−λ1 cos φp cos
(
2
(0)t̃

)
]

− 1

π

cos φp


(λ1)
2(0)
[(γ 2 sin2 φ + (cos φp + λ1) cos φp)

× cos φp + λ1γ
2 sin2 φp cos(2
(0)t̃ )], (30)

S(t̃, φp) = γ λ1

π
sin2 φp

sin[2t̃
(0)]


(λ1)
(0)
, (31)

and

M(t̃, φp) = − 1

π

1


(λ1)
2(0)
[cos(2
(0)t̃ )λ1γ

2 sin2 φp

+ cos φ(γ 2 sin2 φp + (cos φp + λ1) cos φp)].

(32)

Here 
(x) =
√

γ 2 sin2 φp + (x + cos φp)2 and t̃ = Jt/h̄. In
terms of KR(t̃, φp), S(t̃, φp), and M(t̃, φp), we can express
all the classical correlators and magnetizations of the time-
evolved state (see Table II). Following Eq. (10), the nearest-
neighbor two-site density matrix and hence bipartite entan-
glement (LN) of the evolved state can be computed. The
time-evolved state is again insensitive to d when the evolution
starts with the zero-temperature state and d < γ . The picture
remains qualitatively similar for any other initial thermal state
with moderate values of β, which can be obtained through
numerical simulations. In case of the DATXY model, we can
numerically compute magnetizations and two-site correlators,
and thus bipartite entanglement for all values of t and d .

064422-11



ROY, CHANDA, DAS, SADHUKHAN, SEN(DE), AND SEN PHYSICAL REVIEW B 99, 064422 (2019)

TABLE II. Analytical expressions of time evolved classical correlators and magnetization for t > 0 of the zero-temperature state after
switching off the uniform field. The expressions in the case for d > γ are only true for real solutions of (φ1, φ2) [120]. Otherwise even in the
case of d > γ , the d < γ solution holds. Note that for d = γ , both the cases yield the same expressions.

Classical correlators and magnetization Analytical expressions∫ π

0 dφpK−1(t̃, φp), for d < γ
Cxx (t )

[
∫ φ1

0 + ∫ π

φ2
]dφpK−1(t̃, φp), for d > γ

∫ π

0 dφpK1(t̃, φp), for d < γ
Cyy(t )

[
∫ φ1

0 + ∫ π

φ2
]dφpK1(t̃, φp), for d > γ

∫ π

0 dφpS(t̃, φp), for d < γ
Cxy(t )

[
∫ φ1

0 + ∫ π

φ2
]dφpS(t̃, φp) + 1

π
(cos φ2 − cos φ1), for d > γ

∫ π

0 dφpS(t̃, φp), for d < γ
Cyx (t )

[
∫ φ1

0 + ∫ π

φ2
]dφpS(t̃, φp) + 1

π
(cos φ1 − cos φ2), for d > γ

∫ π

0 dφpM(t̃, φp), for d < γ
mz(t )

[
∫ φ1

0 + ∫ π

φ2
]dφpM(t̃, φp), for d > γ

We now discuss the pattern of entanglement with time
according to the phases of the initial state with different values
of d .

(1) When the initial state is in a PM (PM-I or PM-II) phase
with d = 0, entanglement fluctuates for small values of t and
then vanishes for large time irrespective of γ and (λ1, λ2)
pair [65]. If we now switch on the DM interaction, i.e., for
small values of d , the situation remains qualitatively similar.
However, for moderate values of d , especially when d and
γ possess comparable values, not only entanglement content
increases for the entire duration, it saturates to a positive value
for a large time after some initial fluctuations. The converging
value of entanglement for t → ∞ increases with the increase
of the strength of d . It clearly shows the usefulness of the
model with DM interaction from the perspective of quantum
information processing tasks.

(2) If the system is initially in the AFM phase except the
regions close to the PM-I or PM-II boundaries, entanglement
persists for a large time even without DM interaction [65].
However, if the DM interaction is stronger than the values
of (λ1, λ2)-duo or comparable, we find that Ld�(λ1,λ2 )(t ) >

Ld=0(t ) for large t , where Ld�(λ1,λ2 )(t ) and Ld=0(t ) denote
LN with d being stronger than or comparable to the (λ1, λ2)
pair and that without DM, respectively (see Fig. 13).

To summarize, with d = 0, entanglement sustains for large
time only in a small region of the AFM phase. With increasing
values of d , the regions of nonvanishing entanglement at large
time increase in the (λ1, λ2) plane (see Fig. 14). Moreover,
the value of entanglement at large time also increases with
increasing value of d . Therefore, the advantage of introducing
DM interaction can clearly be observed from the production
of sustainable entanglement at large time.

Let us now discuss the statistical properties of physical
quantities in this scenario. In a quantum mechanical system,
ergodic theorem states that time average of any properties
should match with that of the ensemble average [61–64].
Otherwise the physical quantity is said to be nonergodic. A
given physical property P is said to be ergodic if we can find a

temperature T ′, such that its thermal equilibrium value at large
time [i.e., Peq(T ′, λ∞

1 , λ∞
2 )] is equal to its time averaged value

at large time P∞(T, λ1, λ2), where T is the initial temperature
of the system. In other words, P will be ergodic if we have

max
T ′

[
Peq

(
T ′, λ∞

1 , λ∞
2

)]
� P∞(T, λ1, λ2). (33)

Otherwise, P will be nonergodic.
Theorem 3. Bipartite entanglement in the DATXY model is

always ergodic.
Proof. Bipartite entanglement was shown to be ergodic as

well as nonergodic in the case of the ATXY model without
DM interaction [65]. As depicted in Fig. 14, we observe that
the maximum value of time averaged LN occurs for λ1 =
λ2 = 0 for all values of d . Moreover, at λ1 = λ2 = 0 point, the
system is not perturbed with time for the quench mentioned in
Eq. (29). Therefore, we have L∞(T, λ1, λ2) � L∞(T, 0, 0) =
Leq(T, λ∞

1 , λ∞
2 ) � max

T ′
[Leq(T ′, λ∞

1 , λ∞
2 )], which proves the

ergodic nature of bipartite entanglement in this model, thereby
wiping out the nonergodicity with the help of DM interaction.

�
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FIG. 13. LN against time for different values of d , when the
initial state is the zero-temperature state. The time-evolved state is
computed using the method discussed in Secs. II and V. Both the
axes are dimensionless.
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FIG. 14. Time-averaged entanglement of the time-evolved state (described in Secs. II and V) at large time as a function of λ1 and λ2 for
different values of d . Averaging is performed from Jt/h̄ = 80π to 100π . Both the axes are dimensionless.

If we choose another physical quantity, e.g., quantum dis-
cord [156,157], which is nonergodic in the case of vanishing
DM interaction [65], we find that it also becomes ergodic if
one sufficiently increases d .

VI. DISCUSSION

Almost 80 years ago, the importance of an antisymmet-
ric interaction, known as the Dzyaloshinskii-Moriya (DM)
interaction, along with symmetric ones was realized towards
explaining certain features observed in some solid state sys-
tems. In this paper, we explored the static as well as dy-
namical properties of both the classical as well as quantum
correlation of the quantum XY model with transverse uniform
and alternating magnetic fields in the presence of the DM
interaction. While the transverse field XY model is a well
studied prototypical model in literature, the study of the same
in the presence of uniform and alternating transverse fields
(ATXY) has remained mostly unexplored, although it offers a
richer phase diagram.

In this work, we systematically explored the effects of DM
interaction on different phases of the ATXY model by suitably
choosing the relevant order parameters. More precisely, when
the DM interaction is weaker than the anisotropy present in the
exchange interaction, the model possesses one antiferromag-
netic (AFM) and two paramagnetic phases (PM-I and PM-II),
similar to the ATXY model without the DM interaction. How-
ever, in the presence of DM interaction and the alternating
magnetic field, the AFM has commensurate and incommensu-
rate order depending on the system parameters. Moreover, in
the absence of the alternating magnetic field, the ground state
of the system is completely insensitive towards the DM inter-
action. The situation changes radically, when the DM inter-
action becomes stronger than the anisotropy of the exchange
interaction: A new gapless chiral (CH) phase emerges in place
of the AFM phase. In this work, we reported all the critical
lines present between these four different quantum phases.

We think that the results presented in this paper can be
interesting from a fundamental point of view which deals with
quantum phase transitions. With the recent progress in current
technologies, we are hopeful that in future, such a model can
be prepared in laboratories, in particular, with cold-atomic
substrates. For example, with ion-trap, inhomogeneous trans-
verse magnetic field can be prepared if individual ions can be
addressed separately with appropriate laser field. Note here
that only nearest-neighbor exchange interaction is difficult to

prepare in ion-trap setup as it always ended up with long range
power law ( 1

rα )-type interaction [158,159]. However, with
adequately large power exponent (α), the essential physics of
the nearest-neighbor model can be captured. Another potential
candidate for realizing our Hamiltonian is ultracold atoms
in optical lattice [160] and cold gas [161,162]. Recently it
was shown that models with site dependent magnetic fields
like disordered systems can be realized in ultracold atoms
[163,164], thereby opening up possibilities to realize models
like the one considered here. The choice of the dimension have
been made one since the model and its physical quantities can
be computed analytically without any approximations which
is not the case for higher dimensions. In this respect, we would
like to mention that there are some findings in a different
context that the effect of DM interaction does not change the
properties substantially by increasing the dimension from one
to two [165].

In Ref. [91], the effects of DM interaction in the behaviors
of classical and quantum correlations, including entangle-
ment, in the quantum XY model with uniform transverse
magnetic field (UXY) have been explored. On the other hand,
we have shown that all the critical lines, including gapped-to-
gapless phase transitions, found via different order parameters
can also be detected by examining the first derivatives of the
bipartite entanglement of the zero-temperature state. More-
over, we found that vanishing entanglement surfaces in the
parameter spaces of the ATXY model now become a volume
in the presence of DM interaction at zero temperature.

We found that introduction of DM interaction can be
beneficial to obtain durable bipartite entanglement in the
time-evolved states and hence the model can be a suitable
candidate for realizing quantum information processing tasks.
Moreover, comparing the behavior of bipartite entanglements
of the canonical equilibrium and the time-evolved states, we
concluded that the DM interaction invariably induces the
bipartite entanglement of this model to be ergodic in nature.
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APPENDIX A: DIAGONALIZATION OF THE HAMILTONIAN FOR NONZERO ALTERNATING FIELD

The Hamiltonian Ĥp, given in Eq. (3), that acts on the pth subspace of dimension 16 can be block diagonalized by a choice
of basis {|ψi〉 : 1, · · · , 16}, given by

|ψ1〉 = â†
pb̂†

p|0〉, |ψ2〉 = â†
−pb̂†

−p|0〉, (A1)

|ψ3〉 = â†
p|0〉, |ψ4〉 = b̂†

p|0〉, |ψ5〉 = â†
pâ†

−pb̂†
p|0〉, |ψ6〉 = â†

pb̂†
pb̂†

−p|0〉, (A2)

|ψ7〉 = â†
−p|0〉, |ψ8〉 = b̂†

−p|0〉 |ψ9〉 = â†
pâ†

−pb̂†
−p|0〉, |ψ10〉 = â†

−pb̂†
pb̂†

−p|0〉, (A3)

|ψ11〉 = |0〉, |ψ12〉 = â†
pb̂†

−p|0〉 |ψ13〉 = â†
−pb̂†

p|0〉 |ψ14〉 = â†
pâ†

−p|0〉, |ψ15〉 = b̂†
pb̂†

−p|0〉, |ψ16〉 = â†
pâ†

−pb̂†
pb̂†

−p|0〉, (A4)

where |0〉 denotes the vacuum state of the Fermi operators, â†
p and b̂†

p. Note that the above sets of basis block diagonalize Ĥp into

four blocks of dimensions 2, 4, 4, and 6, such that Ĥp = ⊕4
k=1 Ĥk

p . Using the form of Ĥp, given in Eq. (3), and Eqs. (A1)–(A4),
Ĥ1

p is found to be a null matrix of dimension 2, while

Ĥ2
p = J

⎡
⎢⎣

−λ1 − λ2 cos φp + d sin φp −iγ sin φp 0
cos φp + d sin φp −λ1 + λ2 0 −iγ sin φp

iγ sin φp 0 λ1 − λ2 − cos φp + d sin φp

0 iγ sin φp − cos φp + d sin φp λ1 + λ2

⎤
⎥⎦, (A5)

Ĥ3
p = J

⎡
⎢⎣

−λ1 − λ2 cos φp − d sin φp −iγ sin φp 0
cos φp − d sin φp −λ1 + λ2 0 −iγ sin φp

iγ sin φp 0 λ1 − λ2 − cos φp − d sin φp

0 iγ sin φp − cos φp − d sin φp λ1 + λ2

⎤
⎥⎦, (A6)

Ĥ4
p = J

⎡
⎢⎢⎢⎢⎢⎣

−2λ1 iγ sin φp −iγ sin φp 0 0 0
−iγ sin φp 0 0 cos φp − d sin φp cos φp + d sin φp −iγ sin φp

iγ sin φp 0 0 − cos φp − d sin φp − cos φp + d sin φp iγ sin φp

0 cos φp − d sin φp − cos φp − d sin φp −2λ2 0 0
0 cos φp + d sin φp − cos φp + d sin φp 0 2λ2 0
0 iγ sin φp −iγ sin φp 0 0 2λ1

⎤
⎥⎥⎥⎥⎥⎦.

(A7)

Hence, diagonalization of the pth subspace of dimension 16 reduces to the diagonalization of the matrices H̃k
p , k = 1, 2, 3, 4.

APPENDIX B: TWO-SITE SPIN CORRELATORS AND MAGNETIZATIONS FOR NONZERO ALTERNATING FIELD

Similar to the Hamiltonian Ĥp, the two-site spin correlators, Ĉαμ
p , with α,μ = x, y, mentioned in Eqs. (5) and (6), can be

block diagonalized in the same basis given in Eqs. (A1)–(A4). For example, one can write Ĉxx
p = ⊕4

k=1 Ĉxx,k
p , where Ĉxx,1

p is a
null matrix of dimension 2, and Ĉxx,2

p , Ĉxx,3
p , and Ĉxx,4

p are, respectively, given by

Ĉxx,2
p =

⎡
⎢⎢⎣

0 eiφp −eiφp 0
e−iφp 0 0 e−iφp

−e−iφp 0 0 −e−iφp

0 eiφp −eiφp 0

⎤
⎥⎥⎦, Ĉxx,3

p =

⎡
⎢⎢⎣

0 e−iφp e−iφp 0
eiφp 0 0 −eiφp

eiφp 0 0 −eiφp

0 −e−iφp −e−iφp 0

⎤
⎥⎥⎦,

Ĉxx,4
p =

⎡
⎢⎢⎢⎢⎢⎣

0 −e−iφp −eiφp 0 0 0
−eiφp 0 0 eiφp eiφp −eiφp

−e−iφp 0 0 −e−iφp −e−iφp −e−iφp

0 e−iφp −eiφp 0 0 0
0 e−iφp −eiφp 0 0 0
0 −e−iφp −eiφp 0 0 0

⎤
⎥⎥⎥⎥⎥⎦. (B1)
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Similar calculation for Ĉyy leads to Ĉyy,1
p = Ĉxx,1

p , and

Ĉyy,2 =

⎡
⎢⎢⎣

0 eiφp eiφp 0
e−iφp 0 0 −e−iφp

e−iφp 0 0 −e−iφp

0 −eiφp −eiφp 0

⎤
⎥⎥⎦, Ĉyy,3

p =

⎡
⎢⎢⎣

0 e−iφp −e−iφp 0
eiφp 0 0 eiφp

−eiφp 0 0 −eiφp

0 e−iφp −e−iφp 0

⎤
⎥⎥⎦,

Ĉyy,4
p =

⎡
⎢⎢⎢⎢⎢⎣

0 e−iφp eiφp 0 0 0
eiφp 0 0 eiφp eiφp eiφp

e−iφp 0 0 −e−iφp −e−iφp e−iφp

0 e−iφp −eiφp 0 0 0
0 e−iφp −eiφp 0 0 0
0 e−iφp eiφp 0 0 0

⎤
⎥⎥⎥⎥⎥⎦. (B2)

The operators Ĉxy
p and Ĉyx

p are given by

Ĉxy,2
p = −i

⎡
⎢⎢⎣

0 e−iφp −e−iφp 0
−eiφp 0 0 eiφp

eiφp 0 0 −eiφp

0 −e−iφp e−iφp 0

⎤
⎥⎥⎦, Ĉxy,3

p = −i

⎡
⎢⎢⎣

0 eiφp eiφp 0
−e−iφp 0 0 −e−iφp

−e−iφp 0 0 −e−iφp

0 eiφp eiφp 0

⎤
⎥⎥⎦,

Ĉxy,4
p = −i

⎡
⎢⎢⎢⎢⎢⎣

0 −eiφp −e−iφp 0 0 0
e−iφp 0 0 e−iφp −e−iφp −e−iφp

eiφp 0 0 −eiφp eiφp −eiφp

0 −eiφp e−iφp 0 0 0
0 eiφp −e−iφp 0 0 0
0 eiφp e−iφp 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ (B3)

and

Ĉyx,2
p = −i

⎡
⎢⎢⎣

0 −e−iφp −e−iφp 0
eiφp 0 0 eiφp

eiφp 0 0 eiφp

0 −e−iφp −e−iφp 0

⎤
⎥⎥⎦, Ĉyx,3

p = −i

⎡
⎢⎢⎣

0 −eiφp eiφp 0
e−iφp 0 0 −e−iφp

−e−iφp 0 0 e−iφp

0 eiφp −eiφp 0

⎤
⎥⎥⎦,

Ĉyx,4
p = −i

⎡
⎢⎢⎢⎢⎢⎣

0 −eiφp −e−iφp 0 0 0
e−iφp 0 0 −e−iφp e−iφp −e−iφp

eiφp 0 0 eiφp −eiφp −eiφp

0 eiφp −e−iφp 0 0 0
0 −eiφp e−iφp 0 0 0
0 eiφp e−iφp 0 0 0

⎤
⎥⎥⎥⎥⎥⎦, (B4)

with Ĉxy,1
p and Ĉyx,1

p being 2 × 2 null matrices. Furthermore, for m̂z
e,p and m̂z

o,p, we get

m̂z,2
e,p = m̂z,3

e,p = Diag(−2, 0, 0, 2), m̂z,4
e,p = Diag(−2, 0, 0,−2, 2, 2), (B5)

m̂z,2
o,p = m̂z,3

o,p = Diag(0,−2, 2, 0), m̂z,4
o,p = Diag(−2, 0, 0, 2,−2, 2), (B6)

with m̂z,1
e,p and m̂z,1

o,p being null matrices of dimension 2.
Note that we can obtain the two-site correlators and magnetizations, in the thermodynamic limit (N → ∞), by replacing

2
N

∑N/4
p=1 → 1

π

∫ π/2
0 . For computing the classical correlators and magnetizations in the thermodynamic limit, we employ doubly

adaptive quadrature method [171] to perform all the numerical integrations throughout the paper, where we have set a tolerance
to be ∼10−10 to guarantee the convergence.

APPENDIX C: TWO-SITE SPIN CORRELATORS AND MAGNETIZATIONS IN THE UNIFORM FIELD CASE

In the uniform field case, we use the same procedure to obtain the two-site spin correlators and the magnetization. To compute
the classical correlators and the magnetization, we define the following operators.

Ĉαμ = 1

N

N∑
i=1

σ̂ α
i σ̂

μ
i+1, m̂z = 1

N

N∑
i=1

σ̂ z
i , (C1)

064422-15



ROY, CHANDA, DAS, SADHUKHAN, SEN(DE), AND SEN PHYSICAL REVIEW B 99, 064422 (2019)

where α,μ = x, y. After successive applications of Jordan-Wigner and Fourier transformations, we get Cαμ = 1
N

∑N/2
p=1 Cαμ

p ,
where

Cαμ
p = 1

Zp
Tr

[
Ĉαμ

p exp(−βĤp)
]
. (C2)

Here, β = 1/kBT , T being the temperature of the system. As before, the correlator Czz can be computed using the Wick’s
theorem as

Czz = (mz )2 − CxxCyy + CxyCyx. (C3)

In the basis {|0〉, ĉ†
pĉ†

−p|0〉, ĉ†
p|0〉, ĉ†

−p|0〉 }, the correlator operators, Ĉαμ
p , with α,μ = x, y, given in Eqs. (C1) and (C2), have the

following forms.

Ĉxx
p = 2

⎡
⎢⎣

0 i sin φp 0 0
−i sin φp 2 cos φp 0 0

0 0 cos φp 0
0 0 0 cos φp

⎤
⎥⎦, Ĉyy

p = 2

⎡
⎢⎣

0 −i sin φp 0 0
i sin φp 2 cos φp 0 0

0 0 cos φp 0
0 0 0 cos φp

⎤
⎥⎦,

Ĉxy
p = 2

⎡
⎢⎣

0 − sin φp 0 0
− sin φp 0 0 0

0 0 sin φp 0
0 0 0 − sin φp

⎤
⎥⎦, Ĉyx

p = 2

⎡
⎢⎣

0 − sin φp 0 0
− sin φp 0 0 0

0 0 − sin φp 0
0 0 0 sin φp

⎤
⎥⎦. (C4)

Similarly, we get the magnetization operator, m̂z
p, in the same basis as

m̂z
p = Diag(−2, 2, 0, 0). (C5)

Note that the two-site correlators and the magnetization, in the thermodynamic limit (N → ∞) can be obtained in this case
by replacing 1

N

∑N/2
p=1 → 1

2π

∫ π

0 . The closed analytical forms of the correlators and the magnetization for the zero-temperature
state (i.e., β → ∞) are given in Table I. For thermal equilibrium state, the forms of the correlators and the magnetization are as
follows:

Cxx = 1

π

∫ π

0
dφp

1

p

(−(γ sin2 φp + (cos φp + λ1) cos φp) sinh(βJ
p) + 
p cos φp cosh(βJ
φp )) + cos φp cosh(βJd sin φp)

cosh(βJ
p) + cosh(βJd sin φp)
,

Cyy = 1

π

∫ π

0
dφp

1

p

((γ sin2 φp − (cos φp + λ1) cos φp) sinh(βJ
p) + 
p cos φp cosh(βJ
p)) + cos φp cosh(βJd sin φp)

cosh(βJ
p) + cosh(βJd sin φp)
,

Cxy = Cyx = 1

π

∫ π

0
dφp

− sin φp sinh(βJd sin φp)

cosh(βJ
p) + cosh(βJd sin φp)
, mz = 1

π

∫ π

0
dφp

−(λ1 + cos φp) sinh(βJ
p)


p(cosh(βJ
p) + cosh(βJd sin φp))
, (C6)

where 
p is given in Table I.
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