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Magnon-polarons in cubic collinear antiferromagnets
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We present a theoretical study of excitations formed by hybridization between magnons and phonons—
magnon-polarons—in antiferromagnets. We first outline a general approach to determining which magnon and
phonon modes can and cannot hybridize in a system thereby addressing the qualitative questions concerning
magnon-polaron formation. As a specific and experimentally relevant case, we study nickel oxide quantitatively
and find perfect agreement with the qualitative analysis, thereby highlighting the strength of the former. We find
that there are two distinct features of antiferromagnetic magnon-polarons which differ from the ferromagnetic
ones. First, hybridization between magnons and the longitudinal phonon modes is expected in many cubic
antiferromagnetic structures. Second, we find that the very existence of certain hybridizations can be controlled
via an external magnetic field, an effect which comes in addition to the ability to move the magnon modes relative
to the phonons modes.
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I. INTRODUCTION

Ultrafast magnetization dynamics is expected to play a piv-
otal role in the development of terahertz (THz) technologies
[1,2]. These processes cover the elusive THz frequency gap
that roughly spans from 100 GHz to 30 THz [3,4], the upper
and lower limits of microwave and optical techniques, respec-
tively. An early attempt on ultrafast magnetization dynamics
was made in ferromagnetic nickel almost 20 years ago using
THz lasers [5]. Several new findings have propelled the field
[6,7], such as ultrafast coherent control of spin waves [8],
ultrafast optically induced magnetization [9–11], magnetic
switching [12–14], and heat-assisted magnetic recording [15].
The complex interplay among charge, spin, elastic and optical
degrees of freedom underlies the rich physics governing the
ultrafast magnetization dynamics.

Antiferromagnetic materials provide a natural niche in this
field [16–20]. Their fast magnetization dynamics, with the
potential to cover the terahertz range [3,18], and the lack of
net magnetic moment [18], have instigated a growing interest
in antiferromagnets (AFMs). AFM insulators are particularly
interesting due to the absence of Joule heating caused by the
scattering of charge currents [21–24]. The focus is rather on
the spin currents carried by magnons, the quantized excita-
tions of the magnetization dynamics. The ultrafast magneti-
zation dynamics in AFM insulators can thus be understood
in terms of these magnons and their interaction with the
phonons—the quantized excitations of the lattice vibrations.

Although the exchange interaction underlies magnetism,
the magnon-phonon interaction is crucial for the dynamics
and equilibration of the spin system [25]. The latter is brought
on by the nonlinear processes in which magnons scatter
while absorbing or emitting phonons [25]. In contrast, the
linear magnetoelastic coupling [25,26] results in magnons
and phonons combining to form hybrid excitations—magnon-
polarons [27,28]—when their coupled dispersions anticross.
Despite the wave-vector range corresponding to significant
hybridization being small, it has been found to act as an energy

short circuit between the magnon and phonon subsystems
[29,30]. While the magnon-polarons have been studied in
great detail [25,26,31], there has been a rekindling of interest
in the phenomenon due to recent advances in fabrication and
measurement techniques as well as fresh breakthroughs in
the field of spintronics [32–34]. Despite decades of study,
key questions like which phonon mode should or should not
hybridize with magnons remain insufficiently understood. A
related question is the issue of spin conservation in magnets
[35], which is often invoked to understand several phenomena
including the formation of magnon-polarons. In particular, it
has been shown that spin conservation may not be invoked in a
simple manner while addressing the effects of magnetoelastic
interaction [28]. This is because the latter is primarily rooted
in spin-nonconserving interactions such as spin-orbit and
dipolar contributions [25,26].

Magnon-polarons formed in the ferrimagnetic insulator
yttrium iron garnet (YIG) have revealed their direct signa-
tures in several recent experiments [29,36,37]. Pronounced
features, attributed to magnon-polarons, in the magnetic field
dependence of the spin Seebeck effect (SSE) [36,38] as
well as nonlocal spin transport [39] have been observed in
YIG. The groundwork for these observations was laid out
in previous works. For instance, coherent elastic waves were
used in spin pumping [33,40] experiments, as well as spin
wave excitations [28,41]. AFMs represent a step forward in
this field. Although the ultrafast response of AFM insulators
is an exciting property, its control with magnetic fields is
challenging. Thus its manipulation via magnetoelastic effects
presents a useful alternative.

Here, we present a theoretical study of coupled magne-
toelastic modes in bulk AFMs. As compared to their ferro-
magnetic counterparts, the multisublattice nature of AFMs
hosts qualitatively new, subtle, and rich magnetoelastic phe-
nomena. Focusing on magnon-polaron formation, we outline
a general method for gaining qualitative, physical insight
into which magnon and phonon modes hybridize, given a
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crystal symmetry and a ground state. As a special case, we
study the widely used Nickel Oxide (NiO) in its collinear
ground state, in which its spins are oriented at an angle
with the crystal axes. This misalignment is found to permit
novel effects such as hybridization with longitudinal phonons
propagating along a crystal axis. Furthermore, NiO is found
to host linearly polarized magnons which attain an increas-
ingly elliptical polarization on application of an external
magnetic field. This control of the qualitative nature of the
magnons permits a magnetic field control of whether or not
the magnons participate in forming magnon-polarons. This
tunability goes well beyond the Zeeman energy shift afforded
by the ferromagnetic magnons [36,38], and opens prospects
for novel functionalities.

This paper is structured as follows. In Sec. II, we present
a general analysis of magnon-polarons in AFMs determining
which phonons do or do not hybridize with which magnons.
Considering NiO as an apt example, we examine its eigen-
modes quantitatively finding them to be consistent with the
general analysis. In Sec. III, we derive the quantum theory
describing magnons, phonons and the magnon-phonon inter-
action. The quantitative results of the magnon-polarons states
in NiO follows in Sec. IV, which in turn are compared with
qualitative results predicted in Sec. II. Finally, we end with
discussions and conclusions in Secs. V and VI, respectively.

II. SEMICLASSICAL QUALITATIVE ANALYSIS

In the continuum (long-wavelength) limit, the magnetoe-
lastic Hamiltonian in cubic AFMs is given as

HAFM
ME =

∑
αβ

∫
d3rBαβnα (r)nβ (r)εαβ (r) +

∑
αβ

∫
d3rB̃αβ

× nα (r)nβ (r)ε̃αβ (r), (1)

where εαβ = 1
2 ( ∂uα

∂rβ + ∂uβ

∂rα ) is the strain tensor, where uα is the
atom displacement field in the α direction. Bαβ = B‖δαβ +
B⊥(1 − δαβ ) and B̃αβ = B̃‖δαβ + B̃⊥(1 − δαβ ) are four mag-
netoelastic coefficients and n is the Néel field. ε̃ is an elastic
tensor with elements being linear combinations of elements
of the strain tensor. The first term is the antiferromagnetic
analogy of the conventional ferromagnetic magnetoelastic
Hamiltonian [26]. The second term, where ε̃ appears, derives
from the internal spin structure. This term is unique to ma-
terials with at least two sublattices, and the exact form of
ε̃ depends upon the spin structure of the AFM. If the spin
structure is trivial, meaning that all nth nearest neighbors of
a lattice site belong to a single sublattice for any n, then this
term disappears. We will refer to spin structures which do not
fulfill this requirement as being nontrivial. A full derivation of
this Hamiltonian is given in Appendix C.

To start with we will consider a simple AFM with a trivial
spin structure, where only the first term in the antiferromag-
netic magnetoelastic Hamiltonian (1) appears. We will only
consider magnons and phonons propagating along one of
the crystal axes, which we define to be the ẑ direction for
concreteness. The three independent phonon modes are then
proportional to ∂uγ /∂rz, where γ ∈ {x, y} describe transverse
phonons, whereas γ = z describes a longitudinal phonon.

In order to give a physical interpretation of the hybridiza-
tion, we need to express the Hamiltonian in terms of both
the free magnon and phonon eigenmodes. The strain tensor
components εαβ are superpositions of phonon eigenmodes,
and the Hamiltonian is thus already given in terms of phonon
eigenmodes. The remaining task is therefore to find the
magnon eigenmodes expressed as function of the Néel field.

1. Circularly polarized magnons in easy axis antiferromagnets

Let us now consider an easy axis AFM where the spins
align along the ẑ axis in the (classical) ground state. In easy-
axis AFMs, the Hamiltonian is invariant to a global spin
rotation about the ẑ axis, and we therefore expect the magnons
modes to be circularly polarized. Moreover, as magnons
correspond to small deviations from the spin ground state,
magnons leave nz approximately constant, whereas nx and ny

are expected to oscillate harmonically. These considerations
combined imply that we may express the magnon modes as
α ≡ nx + iny and β ≡ nx − iny. The magnetoelastic Hamilto-
nian can then be rewritten as

Hcirc
ME = B⊥nz

4

[
α

(
∂ux

∂rz
− i

∂uy

∂rz

)
+ β

(
∂ux

∂rz
+ i

∂uy

∂rz

)]
. (2)

Note that in this situation, angular momentum in the ẑ
direction is conserved. If we create a magnon, this may
hybridize and produce a circularly polarized phonon, which
has got angular momentum along ẑ. If we create a linearly
polarized phonon (with zero angular momentum along ẑ), it
may hybridize and produce spinless combination of magnons
∝ α ± β. Angular momentum is hence conserved. This fol-
lows directly from the rotational symmetry about the ẑ axis.1

2. Linearly polarized magnons in biaxial NiO

We will now consider an AFM with two hard-axis
anisotropies. For concreteness we will use NiO as an exam-
ple. To start with, we will neglect its nontrivial spin struc-
ture, which introduces the second term in the magnetoelastic
Hamiltonian (1). We will therefore solely focus on the first
term in the Hamiltonian (1), where only the conventional
strain tensor appears. Following the derivation of the Hamilto-
nian in Appendix C, we find that this is equivalent to assuming
that next-nearest-neighbor interaction is the dominant term
contributing to the magnetoelastic interaction.

We start once again from the Hamiltonian (1), which we
want to express in terms of the magnon eigenmodes. First, we
need to rotate the coordinate system so that the new ẑ′ axis co-
incides with the spin condensation axis. The spins in NiO con-
dense along one of the 12 equivalent [1̄1̄2] directions, within

1Angular momentum conservation requires a continuous rotational
symmetry about the ẑ axis. We consider cubic symmetry, that is a
finite symmetry group, which in principle is not sufficient for such
an angular momentum conservation argument. However, to second
order in phonons and magnons, this argument holds anyway. This is
because we neglect the effect of (nx )2, (ny )2, and (nz )2, which would
produce third order terms in magnons and phonons. That is, B‖ is not
included in the equations, and we are in principle free to set this to
any value, as it does not affect the physics. Set it to B‖ = B⊥, and we
have in fact assumed isotropic symmetry.
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internally ferromagnetic [111] planes. We therefore define
the primed coordinate system as ẑ′ = 1√

6
[−1, −1, 2], x̂′ =

1√
3
[1, 1, 1], and ŷ′ = 1√

2
[−1, 1, 0]. Define the rotation ma-

trix O so that the primed and unprimed coordinate systems are
related by r = Or′. By writing n = On′, we find

HNiO
ME = n′xn′z

3
√

2

[
2B‖ ∂uz

∂rz
+ B⊥

2

(
∂ux

∂rz
+ ∂uy

∂rz

)]

+ n′yn′z

2
√

3
B⊥

(
∂uy

∂rz
− ∂ux

∂rz

)
, (3)

where we once again have assumed that the magnon and
phonons propagate along the ẑ direction.

In NiO, the magnon eigenmodes are linearly polarized and
spinless. In other words, the magnon eigenmodes correspond
semiclassically to oscillations of n′x and n′y separately. Hence,
the Hamiltonian (3) is in fact already given in terms of
both the magnon and phonon eigenmodes, and can thus be
directly interpreted. We consider first the transverse phonons.
Both magnon modes hybridize with both transverse phonon
modes, however with different interaction parameters. As a
consequence of this, angular momentum in the ẑ direction
is no longer conserved. This is a direct consequence of the
lack of rotational symmetry about the ẑ axis due to the spin
condensation axis ẑ′ not being aligned with the momentum
direction ẑ. Further, we note that only the n′x magnon mode
hybridizes with the longitudinal phonon mode ∂uz/∂rz. The
n′x mode is the mode oscillating along the axis with the largest
anisotropy, and is followingly the most energetic mode. We
therefore conclude that the lower magnon mode passes the
longitudinal phonon modes undisturbed, while the upper one
is expected to hybridize.

Note that the exact decoupling of the lower magnon mode
from the longitudinal phonon modes in the Hamiltonian (3)
is a consequence of the magnon eigenmodes being linearly
polarized. If the magnon eigenmodes were not linearly polar-
ized, the longitudinal phonon mode would in general couple
to both magnon modes. This can be realized by applying an
external magnetic field along the ẑ′ axis. The effect is that
the magnon eigenmodes can be described semiclassically as
elliptical precessions of the Néel field around the ground state.
For concreteness, let us assume that the eigenmodes are ellip-
tically polarized, α = (An′x + iBn′y) and β = (Bn′x − iAn′y)
2, where A and B depend on the magnetic field strength. The
Hamiltonian (3) expressed in terms of the eigenmodes then
follows as

HNiO
ME =

{
(Aα + Bβ )

(
1

3
√

2

)[
2B‖ ∂uz

∂rz
+ B⊥

2

(
∂ux

∂rz
+ ∂uy

∂rz

)]

+ (Aβ − Bα)

[
i

2
√

3
B⊥

(
∂uy

∂rz
− ∂ux

∂rz

)]}

× n′z

(A2 + B2)
. (4)

As expected, both magnons α and β now hybridize with the
longitudinal phonon ∂uz/∂rz.

2The qualitative results do not depend on the exact form of the
eigenmodes as long as they mix n′x and n′y.

3. Antiferromagnets with internally ferromagnetic planes

In the last section, we considered magnon-phonon hy-
bridization in NiO under the assumption that the second term
in the Hamiltonian (1) is negligible. We will now look at
the effect of the second, spin structure dependent term. If we
include only those terms contributing to the magnon-phonon
hybridization with momentum along the ẑ direction,3 the spin
structure dependent tensor in NiO is

ε̃ =
⎛
⎝ εxz εxz + εyz εzz

εxz + εyz εyz εzz

εzz εzz 0

⎞
⎠. (5)

The further process of interpreting the hybridization is just
the same as shown above; rewrite the Hamiltonian in terms
of the magnon eigenmodes, and then read off which modes
hybridize. The result is

HNiO
ME =

√
2n′xn′z

3

[
2B̃⊥ ∂uz

∂rz
− (B̃‖ + B̃⊥)

2

(
∂ux

∂rz
+ ∂uy

∂rz

)]

+ n′yn′z
√

3
B̃‖

(
∂ux

∂rz
− ∂uy

∂rz

)
. (6)

Evidently, the spin structure dependent term in the Hamil-
tonian does not introduce any new types of hybridization, as
the magnon and phonon modes which couple are identical
to those appearing in Eq. (3). Therefore the discussion of a
simplified NiO-like material in Sec. II 2 appears to be valid
for the real NiO as well. We predict that the decoupling
between a magnon mode and the longitudinal modes can be
lifted by applying an external magnetic field along the ẑ′ axis.
The magnetic field can also be used to smoothly tune the
hybridization between the modes, as the coefficients A and
B appearing in Eq. (4) depend on the field strength.

III. QUANTIZED HAMILTONIAN

In this section, we will derive the quantized Hamiltonian,
which is later used to find the exact magnon-polarons in
bulk NiO. We start by deriving the magnon Hamiltonian,
followed by the phonon Hamiltonian. Last, we will derive the
terms which couple magnons and phonons into an effective
hybridized state. We stress that although the exact derivations
which follow are specific to NiO, the method is fully general
and hence valid for all collinear AFMs.

Above the Néel temperature, NiO forms the FCC structure,
whereas it is slightly distorted into a rhombohedral one below
[42]. This distortion from cubic symmetry is very small,
corresponding to an angle of about 0.07◦ [43], and we will
therefore neglect it in the following derivations.

A. Magnons

The antiferromagnetic ordering in NiO is well established.
Below the Néel temperature, the spins order in internally

3Additional strain tensor elements appear in the spin struc-
ture dependent tensor if we do not require momentum conser-
vation. Additional elements also appear if we consider uniform
magnetostriction.
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FIG. 1. Spin configuration in one of the (classical) ground states
of NiO. The ferromagnetic planes are in the [111] direction with
spins along the [1̄1̄2] direction. Only the magnetic Ni2+ ions are de-
picted. The green and blue planes mark the two different sublattices.

ferromagnetic (111) planes [44,45]. The spins on two such
neighboring planes are antiparallel, causing the overall struc-
ture to be antiferromagnetic. Due to the cubic symmetry of
the FCC structure, there are four equivalent (111) planes. In
each plane there is moreover a threefold degeneracy in the
spin direction. There are thus 12 possible antiferromagnetic
ground states, one of which are depicted in Fig. 1. As magnons
are small spin fluctuations relative to a ground state, we may
choose to work from any one of these twelve possible ground
states without loss of generalization. We here choose the
(111) plane as the plane of internally ferromagnetic order,
and ẑ′ = 1√

6
[−1, −1, 2] as the spin quantization axis along

which the spins in the (classical) antiferromagnetic ground
state are aligned. We moreover let x̂′ = 1√

3
[1, 1, 1] and ŷ′ =

1√
2
[−1, 1, 0] define the rest of the primed coordinate system.

Note that x̂′ is perpendicular to the (111) plane, and ŷ′ is
parallel to it. The spins form a bipartite lattice, where the
sublattice with spin up (down) is named sublattice A (B).

In the magnetic Hamiltonian, we will include exchange
interaction and two hard-axis anisotropies. In order to obtain a
sufficiently accurate dispersion relation for magnons in NiO,
we need to include exchange coupling between both nearest-
neighbor (nn) and next-nearest-neighbor (nnn) spins. Every
spin site has 6 nn’s on the same sublattice and 6 nn’s on
the opposite sublattice, as well as 6 nnn’s on the opposite
sublattice. The magnetic Hamiltonian follows as [45,46]

Hm = 1

2

∑
i,δ1

J1Si · Si+δ1 + 1

2

∑
i,δ2

J2Si · Si+δ2

+
∑

i

Dx′
(
Sx′

i

)2 +
∑

i

Dy′
(
Sy′

i

)2
, (7)

where Sα′
i refer to the spin component in the α′ direction at lat-

tice site i, and Dx′ > 0 and Dy′ > 0 are anisotropy constants.
The summation index i runs over the whole lattice, and δ1

and δ2 run over nn’s and nnn’s to lattice site i, respectively. J1

and J2 are the corresponding exchange coupling constants. We
split the i summations into sums over sublattices A and B with
spins SA and SB, and do a Holstein-Primakoff transformation
of the spin operators in terms of boson operators a and b:

SAz′
i = S − a†

i ai, SA+
i =

√
2Sai, SA−

i =
√

2Sa†
i ,

SBz′
j = −S + b†

jb j, SB+
j =

√
2Sb†

j, SB−
j =

√
2Sb j, (8)

where we have assumed that 〈a†
i ai〉/2S � 1 and

〈b†
jb j〉/2S � 1, and S = 1 in NiO. We then perform a

Fourier transformation of the operators

ai = 1√
NA

∑
k

e−ik·xi ak, b j = 1√
NB

∑
k

e−ik·x j bk,

a†
i = 1√

NA

∑
k

eik·xi a†
k, b†

j = 1√
NB

∑
k

eik·x j b†
k,

(9)

where xi and x j are position vectors on sublattice A and B.
Now let

∑
δn∈ab denote the sum over the nth nearest neighbors

on sublattice b of a spin belonging to sublattice a, where a, b ∈
{A, B}. Let zab

n be the number of such neighbors. Use this
definition to define the quantity

γ ab
nk =

∑
δn∈ab

eik·δn . (10)

One can then show that the Hamiltonian takes the form

Hm =
∑

k

[Ak(a†
kak + b†

kbk) + Bk(akb−k + a†
kb†

−k)

+C(aka−k + bkb−k) + C(a†
ka†

−k + b†
kb†

−k)], (11)

where we have introduced the following coefficients

Ak = J1Sγ AA
1k + J2SzAB

2 + S(Dx′ + Dy′ ), (12)

Bk = J1Sγ AB
1k + J2Sγ AB

2k , (13)

C = S

2
(Dx′ − Dy′ ). (14)

This boson Hamiltonian can be diagonalized following the
procedure of Ref. [47]. We define

ξk =

⎛
⎜⎜⎝

ak
b†

−k
a†

−k
bk

⎞
⎟⎟⎠, Hm

k =

⎛
⎜⎝

Ak Bk 2C 0
Bk Ak 0 2C
2C 0 Ak Bk

0 2C Bk Ak

⎞
⎟⎠, (15)

so that the Hamiltonian takes the form

Hm = 1

2

∑
k

ξ
†
k Hm

k ξk. (16)

Now define φk = T−1
k ξk as the vector of operators that

by definition diagonalizes the Hamiltonian. Note that Tk in
general is a nonunitary transformation, that is T†

k 
= T−1
k . Now

define a matrix g as a commutator between the vector of
(bosonic) operators and its Hermitian adjoint, g ≡ [ξk,ξ

†
k ].

By inserting ξk = Tφk into the commutator, one can show
that the tranformation matrix T satisfies T† = g−1T−1g. The
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Hamiltonian can then be written into the eigenvalue equation

gHm
k Tki = h̄ωkgiiTki, (17)

where Tki is the ith row of Tk, and h̄ωk is the energy of the
magnon mode k. Solving this eigenvalue equation results in

h̄ω±
k = 1

2

√
A2

k − (Bk ± 2C)2, (18)

which describes the dispersion relations for the two free
magnon modes in NiO. Experimentally fitted values for the
parameters can be looked up in for instance Ref. [45].

B. Phonons

NiO forms the FCC structure with two atoms in the basis,
one nickel atom and one oxygen atom. These are separated
by a distance a/2, where a ≈ 4.17 Å [48] is the cubic lattice
constant. Let s be an index referring to the atom type, with Ni
as type 1 and O as type 2. Moreover, let i refer to a site on the
FCC lattice at which one such pair of atoms belong. The in-
dices (i, s) therefore uniquely refer to one specific atom in the
structure. Now let uα

is be the displacement from equilibrium of
atom (i, s) in the α direction, where α ∈ {x, y, z}. Finally, let
Kαβ

is, jt be the proportionality constant between the force acting
on atom (i, s) in the α direction and the displacement of atom
( j, t ) in the β direction. The phonon energies are then given
as the solution of the classical equation of motion

−ω2msu
α
is =

∑
j

∑
t

∑
β

Kαβ
is, jt u

β
jt . (19)

This equation has 3n momentum dependent solutions:
three acoustic and 3(n − 1) optical modes, where n is the
number of atoms in the basis. With n = 2 in NiO, this results
in a total of six phonon modes. We name these different modes
ωqλ, where q is the phonon momentum and λ labels the mode.
The quantized phonon Hamiltonian follows as

Hp =
∑
qλ

h̄ωqλc†
qλcqλ, (20)

where cqλ and c†
qλ are phonon annihilation and creation

operators.
Equation (19) is a very general equation, where the phonon

energies can be found straightforwardly given a set of force
coefficients Kαβ

is, jt . We will here use the rigid-ion model to
compute the phonon eigenmodes in NiO. The rigid-ion model
[49,50] is perhaps the simplest model which is able to repro-
duce a relatively accurate picture of phonons in NiO. It is not
the most accurate available model, but it has the advantage
of having only a few adjustable parameters, and will suffice
for our usage. It is based on modeling each atom as a rigid
sphere which moves around an equilibrium position, and is
well explained in Refs. [49,50]. Each atom is connected to
its nearby atoms by springs which represent the short-ranged
forces between nearby atoms. We include energy terms linear
and quadratic in the Ni-O displacements (with force constants
B12 and A12, respectively) and O-O displacements (with force
constants B22 and A22, respectively), while we may neglect the
explicit Ni-Ni displacement terms [51].

Additionally, we need to include Coulomb interactions
in order to get a realistic model of the optical phonons.4

Each atom is given an effective charge ±Z|e|. The Coulomb
interaction is long-ranged, meaning that interactions between
atoms infinitely far apart contribute. An infinite sum obviously
causes numerical difficulties, and to solve this we use a so-
called Ewald summation; we split the real-space Coulomb
summation into a real space sum and a Fourier space integral.
We sum over the closest atoms in real space, and approximate
the sum over more distant atoms by an integral in Fourier
space. This enables us to approximate the formally infinite
sum by summing over about ten lattice sites in real space. We
eventually fit the five constants A12, A22, B12, B22, and Z to
an experimentally measured phonon dispersion in Ref. [51].
The formal details of this calculation apart from those given
above will not be covered here, as it is rather tedious, and we
refer the reader to Ref. [49] for further reading.

Each phonon mode is characterized by the atoms moving
in a unique pattern. The polarization vector εqλ is formally a
six-component vector describing the axes along which the two
atom types move for the different phonon modes λ, as well as
the relative phase between the atoms types. As there are three
acoustic modes and three optical ones, the only difference
between the first and latter three modes is a relative phase
π between the Ni and O atoms in the optical mode. In the
next section, we will use the polarization vector to couple
atom displacement and spins. Since only the Ni atoms make
a significant contribution to the magnetic Hamiltonian, we
will only couple Ni sites. In the following, we may therefore
define a three-component polarization vector εqλ describing
the movement of the Ni atoms only. As the polarizations of Ni
atoms are identical in the acoustic and optical modes, we need
only define three different polarizations.

The polarization vector must satisfy the orthogonality re-
lation ε∗

qλ · εqλ′ = δλλ′ , as well as the completeness relation∑
q εqλε

†
qλ′ = I. Last but not the least, the phonon polariza-

tion vectors must be eigenvectors of the equation of motion,
Eq. (19). We may conveniently choose the polarization vectors
such that ε∗

qλ = ε−qλ [29]. We choose the polarization vectors
to be [36]

εq1 = [cos θq cos φq, cos θq sin φq, − sin θq],

εq2 = i[− sin φq, cos φq, 0],

εq3 = i[sin θq cos φq, sin θq sin φq, cos θq], (21)

where φq and θq are standard spherical coordinates defining
the direction of the momentum q. λ = 1 and λ = 2 describe
transversal modes, while λ = 3 describes longitudinal modes.
Recall that these are polarization vectors both for the acoustic
and optical modes.

4The energy difference between the transverse and longitudinal
optical modes depends solely on the effective charge Z|e|. As this
energy difference is about 5 THz (in units of 2π h̄) in NiO, we
obviously need to include Coulomb forces in order to attain a realistic
phonon dispersion.
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C. Magnon-phonon coupling

We will consider magnetoelastic coupling which hy-
bridizes the magnon and phonon modes. Finding the new
hybridized eigenstates requires us to diagonalize the Hamilto-
nian containing magnetic and elastic degrees of freedom. The
Hamiltonian under consideration must therefore be quadratic
in magnon and phonon operators, meaning that we are only to
include interaction terms containing one operator of each sort.
The displacement of an ion from equilibrium ui is a measure
for the elastic degree of freedom, while the spin Si at site i is
a measure for the magnetic degree of freedom. ui is linear
in phonon operators [see Eq. (25)], and we may therefore
immediately conclude that the interaction term must be linear
in ui.

In Appendix B, we do a phenomenological expansion in
spins Si and displacements u j to arrive at two magnetoelastic
Hamiltonians. Both terms are linear in displacements u j ,
while they are of first and second order in spin. We show that
these terms have their origin, among other things, in spin-orbit
coupling between a spin and its neighboring ions’ orbital
momenta, and in distance dependent exchange interaction,
respectively. We will henceforth assume that the term arising
from the exchange interaction dominates, and we therefore
neglect all terms, which are not second order in spin.

The magnetoelastic Hamiltonian under consideration is
therefore [52]

HME =
∑
αβγλ

∑
i,δ

Bαβγλ

i,i+δ
Sα

i Sβ

i+δ
Rγ δ

i,i+δ
, (22)

where i is summed over all magnetic lattice sites, δ is a vector
pointing from lattice site i to one of its neighboring magnetic
atoms, and α, β, γ , λ ∈ {x, y, z} refer to spatial directions.
Bαβγλ

i j is a tensor of coupling coefficients. Rγ λ
i j describes

local strains, and we name it the discrete strain tensor. It is
defined as

Rγ λ
i j = 1

2

1

|ri − r j |2
[(

rγ
i − rγ

j

)(
uλ

i − uλ
j

)
+ (

rλ
i − rλ

j

)(
uγ

i − uγ
j

)]
. (23)

The discrete strain tensor simplifies to a constant times
the continuous strain tensor εγλ = 1

2 ( ∂uγ

∂rλ + ∂uλ

∂rγ ) in the long-

wavelength limit. Note that Rαβ
i j is symmetric under exchange

of spatial coordinates. We could in principle have coupled
the spins to an antisymmetric elastic tensor as well. An
antisymmetric elastic tensor analogous to Rαβ

i j describes local
rotations. We will however disregard rotations in our analysis,
and couple therefore the spins exclusively to Rγ λ

i j .

The number of coefficients Bαβγλ
i j appearing in the Hamil-

tonian (22) can be reduced considerably by applying Neu-
mann’s principle, stating that the Hamiltonian must be
invariant under symmetry operations of the material itself
[53,54]. NiO forms the FCC structure above its Néel tempera-
ture, and its structure therefore belongs to the cubic symmetry
group Oh. Neumann’s principle states that the Hamiltonian
must be invariant under symmetry operations R ∈ Oh, i.e.
R−1HMER = HME. Furthermore, the Hamiltonian must be
translationally invariant. By requiring these symmetries to be

fulfilled, we find that the Hamiltonian reduces to

HME =
∑
αβ

∑
i,δ

Bαβ

|δ| Sα
i Sβ

i+δ
Rαβ

i,i+δ
, (24)

where Bαβ

|δ| = δαβB‖
|δ| + (1 − δαβ )B⊥

|δ| [36], and δαβ is the Kro-

necker delta. The |δ| index of Bαβ

|δ| means that the coefficients
coupling any atoms separated by an equilibrium distance |δ|
are equal, which is due to translational and rotational invari-
ance. In other words, there are two coefficients appearing in
the Hamiltonian for every nth nearest-neighbor spins included
in the summation over δ.

The displacement vector of a nickel atom at lattice site i
can be expressed in terms of the phonon operators as

ui =
∑
q,λ

εqλ

√
h̄

2mωqλN
(c†

q,λ + c−q,λ)eiq·ri , (25)

where ωqλ is the angular frequency of the phonon mode λ, m
is the mass of the nickel atom, and N is the number of nickel
lattice sites. The strain tensor between two nickel atoms at
position i and i + δ therefore follows as

Rαβ

i,i+δ
=

∑
q,λ

√
h̄

2mωqλN
(c†

q,λ + c−q,λ)eiq·ri

× (
δαε

β

qλ + δ
β
εα

qλ

)
(1 − eiq·δ). (26)

If we define the coupling tensor

Gαβ

qλδ
= Bαβ

|δ|
2δ2

√
h̄

2mωqλN

(
δα êβ

qλ + δβ êα
qλ

)
(1 − eiq·δ), (27)

the Hamiltonian may be written as

HME =
∑
i,δ

∑
αβ

∑
qλ

Gαβ

qλδ
Sα

i Sβ

i+δ
(c†

qλ + c−qλ)eiq·ri . (28)

We now want to expand the Hamiltonian (28) to first order
in magnon operators, as this will produce terms quadratic in
the boson operators. For this expansion to be justified, we need
to expand from the classical ground state of the spins. That is,
we first have to express the Hamiltonian in terms of the spins
in the primed coordinate system, defined in Sec. III A. We did
a similar procedure in Sec. II 2, where we defined O so that
a vector in the primed coordinate system r′ was related to the
unprimed coordinates as r = Or′. The spins S may then be
written as S = OS′. If we then define G̃αβ

qλδ
= (OTGqλδO)αβ ,

the Hamiltonian follows as

HME =
∑
i,δ

∑
αβ

∑
qλ

G̃αβ

qλδ
S′α

i S′β
i+δ

(c†
qλ + c−qλ)eiq·ri . (29)

We are now ready to do a Holstein-Primakoff transforma-
tion of Eq. (29). We first split the sum over i and δ into four
sums: one for each permutation of i, i + δ ∈ {A, B}, where
A and B are the two sublattices. We will use the following
notation:

∑
δ∈ab means that δ is summed over vectors pointing

from a site on a sublattice a to all sites on a sublattice b. We
note that

∑
δ∈AA = ∑

δ∈BB and
∑

δ∈AB = ∑
δ∈BA due to the

equivalency of the sublattices. If we neglect terms, which are
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of third order or higher in the boson operators, and drop the
linear terms, the resulting Hamiltonian is

HME =
√

NAS3

2

∑
qλ

(c†
qλ + c−qλ)

×
{( ∑

δ∈AA

G̃xz
qλδ −

∑
δ∈AB

G̃xz
qλδ

)
(aq + a†

−q − bq − b†
−q)

− i

( ∑
δ∈AA

G̃yz
qλδ

−
∑
δ∈AB

G̃yz
qλδ

)
(aq − a†

−q + bq − b†
−q)

}
.

(30)

If we now define

M̃qλ =
√

NAS3

2

[ ∑
δ∈AA

(
G̃xz

qλδ − iG̃yz
qλδ

)

−
∑
δ∈AB

(
G̃xz

qλδ − iG̃yz
qλδ

)]
, (31)

we may write the Hamiltonian as

HME =
∑
qλ

(c†
qλ + c−qλ){M̃qλ(aq − b†

−q) + M̃∗
−qλ(a†

−q − bq)},

(32)

where we have used that (G̃αβ

qλδ
)
∗ = G̃αβ

−qλδ
.

We have now expressed the Hamiltonian on a form where
magnon and phonon operators are coupled through a single
coupling coefficient M̃qλ. All physical details of the material
under consideration is contained in M̃qλ. In its definition in
Eq. (31), we summed over all neighbors on both sublattices.
When performing a calculation, one naturally has to cut off
this sum at some point. In NiO, the nn’s of a spin site belong-
ing to sublattice A consist of six sites belonging to sublattice
A, and six sites belonging to sublattice B. All nnn’s belong to
sublattice B. If we generalize this to more distant neighbors,
we find that for any given nth layer of nearest neighbors, if n
is odd, then half of the neighbors belong to either sublattice.
If n is even, then all neighbors belong to a single sublattice.
A natural choice in NiO is therefore to include nearest and
next nearest neighbors in the sum over δ, as we then include
one of each sort of neighbor layers. Two independent sets of
magnetoelastic coefficients are therefore included, giving four
coefficients in total. We define B̃αβ = B̃‖δαβ + B̃⊥(1 − δαβ )
as the magnetoelastic coefficient in the nearest-neighbor in-
teraction, and Bαβ = B‖δαβ + B⊥(1 − δαβ ) as the magnetoe-
lastic coefficient in the next-nearest-neighbor interaction.

IV. MAGNON-PHONON HYBRIDIZATION IN NIO

We now combine the magnon Hamiltonian (16), the
phonon Hamiltonian (20) and the magnon-phonon Hamilto-
nian (32). The full Hamiltonian can then be expressed as

H =
∑

k

�T
k Hk�k, (33)

0 0.2 0.4 0.6 0.8 1
0

10

20

30

FIG. 2. The dispersion relation for free magnons and phonons in
NiO. The black lines depict the six phonon modes and the red lines
depict the two magnon modes.

where �k = [ψk, ψ
†
−k]T is a vector of all operators, where

ψk = [ak, b†
−k, c1,k, c2,k, c3,k, c4,k, c5,k, c6,k], and Hk is a

(16 × 16) nondiagonal matrix. We diagonalize Hk with the
same procedure as we did with the magnon Hamiltonian in
Sec. III A. This diagonalization reveals the new hybridized
eigenstates with the corresponding energy eigenvalues.

In order to get an initial overview of the full momentum
dependence of the energy dispersions, we have plotted the
energies of the free magnons and free phonons in the first
phonon Brillouin zone in Fig. 2. The black lines depict
the phonons, while the red lines depict the magnons. Note
that the magnons are nondegenerate, which is due to the
hard-axis anisotropies. As can be observed in the figure,
the magnon modes cross the optical phonon modes in two
distinct areas, at frequencies about 11.3 and 17.3 THz. We
will refer to these areas as the first and second crossing point,
respectively. These are the areas where the magnon-phonon
hybridization becomes apparent, and where the modes are
neither magnonlike nor phononlike. Where the hybridization
is strong, the properties mix, and the modes should rather be
labeled magnon-polarons. Note that the modes do not cross
near the zone center, as they do in, for instance, YIG [36,38].

We will now include magnetoelastic coupling in the anal-
ysis. We want to display the results for realistic values of
the magnetoelastic coefficients. However, to the best of our
knowledge, the magnetoelastic coefficients in NiO are not
precisely determined. There exist magnetostriction measure-
ments [43], which in principle may be used to determine
magnetoelastic coefficients, but neither of these measure-
ments are sufficiently detailed to determine all four coeffi-
cients we use in this analysis. We will therefore rather assess
the expected order of magnitude of the coefficients. We do
this by assuming that all but one coefficient are negligible, and
use the magnetostriction measurements presented in Ref. [43]
to estimate the remaining coefficient. As a result, we find
that the coefficients take values between approximately 0 and
100 THz. Given this approximative method, we do not expect
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FIG. 3. The first crossing point, with k ‖ ẑ, displayed for three
values of each coupling coefficient, as indicated by the legend. The
nonzero coupling coefficient is given in the upper left corner of each
plot, and the remaining three coefficients are set to zero.

the following results to be quantitatively accurate apart from
the order of magnitude. However, we expect the qualitative
effect of each coefficient to be accurate. Combined with the
descriptive Eqs. (3) and (6), we are able to supply a thorough
analysis of the qualitative magnon-phonon hybridizations in
NiO. This may in turn easily be generalized to other cubic
collinear AFMs.

We have plotted the magnon-phonon dispersion in the
(anti)crossing areas in Figs. 3 and 4 for different values of the
magnetoelastic coefficients. As the modes now mix, the pre-
vious black/red labeling for phonons/magnons can no longer
be applied. In this and all following figures, all modes are thus
colored differently in order for them to be easily recognized.
We have continued the assumption from the approximate
assessment of the coefficients, namely that we assume that all
but one coefficient are negligible, and therefore display the
(anti)crossings with only one nonzero coefficient at a time.
We display the modes for three different nonzero values of
the magnetoelastic coefficients in the range that was found to
be realistic: 0, 50, and 100 THz.
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16.8
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17.4
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16.8

17

17.2
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FIG. 4. The second crossing point, with k ‖ ẑ, displayed for three
values of each coupling coefficient, as indicated by the legend. The
nonzero coupling coefficient is given in the upper left corner of each
plot, and the remaining three coefficients are set to zero.

FIG. 5. A zoomed-in plot of the second crossing point for three
different magnetic field strengths, and with different values of B̃⊥

and B‖. In all instances, k ∝ ẑ, h = hẑ′ and B̃‖ = B⊥ = 0. In the
absence of an external magnetic field, the lower magnon mode is
decoupled from the longitudinal optical phonon. When an external
magnetic field is applied, this magnon mode hybridizes with the
magnon-polaron mode if B̃⊥ and/or B‖ are finite.

Figure 3 displays the (anti)crossings between the magnons
and the TO phonon modes. There are a number of features
in this plot which should be addressed. First, B‖ causes no
hybridization between the modes. This is simply due to that B‖

only couples to longitudinal phonon modes, and thus does not
affect the TO phonons. Second, B̃‖ and B⊥ apparently cause
all modes to hybridize. The same conclusion can be drawn
by directly reading off the hybridizations from Eqs. (3) and
(6). Third, the lower magnon mode does not couple to any TO
phonons for any values of B̃⊥. Looking at Eq. (6), we find that
the magnon mode associated with fluctuations in n′y does not
couple to the TO phonon modes if only B̃⊥ is nonzero. As ŷ′ is
the axis with the weakest hard axis anisotropy, n′y corresponds
to the lowest energy magnon, and this therefore confirms the
result of Fig. 3.

The (anti)crossings between the magnons and the LO
phonon mode are displayed in Fig. 4. All qualitative features
of this plot may be explained by analyzing Eqs. (3) and (6).
First, B̃‖ and B⊥ cause no hybridization of the modes. This
follows directly from the semiclassical equations, as these
coefficients do not couple to ∂uz/∂rz. Second, B̃⊥ and B‖

makes the upper magnon mode hybridize with the LO phonon,
also in line with the predictions of Eqs. (3) and (6). Third,
the lower magnon mode do not couple to the longitudinal
phonon mode at all. Having recognized the lower magnon
mode as oscillations in n′y, this result was also implied by the
semiclassical analysis.

Another prediction of the semiclassical analysis in
Secs. II 2 and II 3 was that turning on a magnetic field
would lift the decoupling of the LO phonon mode and the
lower magnon mode. We therefore supply additional plots
of the (anti)crossings between the magnon modes and the
LO phonon mode, this time with an external magnetic field
present along the ẑ′ axis, in Fig. 5. We do this for three
different magnetic field strengths, 0, 1, and 2 T, well below
the spin-flop field where the quantum theory is expected to be
imprecise to this order in the magnon operators [55]. The four
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plots display the results for the four permutations of B̃‖, B⊥ ∈
{0, 25} THz. The plots confirm that applying a magnetic
field couples all modes. Increasing the magnetic field strength
shows hybridization between the previously uncoupled
modes, which confirms that the hybridization is tunable. We
have limited the magnetoelastic coefficients to 25 THz simply
because this gives more readable plots. Larger B‖ causes the
hybridization to be very strong, as displayed in the lower left
plot of Fig. 4. This causes the upper magnon mode to cross the
lower magnon mode at lower k, and the effect of applying a
magnetic field would hence be most evident at lower k, mak-
ing the plots somewhat less coherent. This effect can be seen
in the two lower plots, where B‖ is nonzero. The qualitative
effect of applying a magnetic field is nonetheless also present
for larger values of the magnetoelastic coefficients.

V. DISCUSSION

The quantitative analysis in the previous section has pro-
vided results for the magnon-phonon hybridizations in NiO
given a selection of values for the magnetoelastic coefficients.
We have furthermore found that the semiclassical analysis
given in Secs. II 2 and II 3 is able to describe all of these
hybridizations qualitatively. Both approaches are fairly gen-
eral, and the methods can straightforwardly be applied to
other cubic collinear AFMs. The specific results for NiO can
also to some extent be generalized to other cubic collinear
antiferromagnetic systems, at least qualitatively.

Antiferromagnetic cubic materials introduce at least two
new features to magnon-polarons as compared to their fer-
romagnetic counterparts. The first feature is that longitudinal
phonon modes hybridize with magnons in many antiferromag-
netic structures. There are two origins of this hybridization:
first, the longitudinal modes hybridize if the anisotropies
cause the spins to condense nonparallel to any of the crystal
axes; second, this occurs due to the second term in the magne-
toelastic Hamiltonian (1), which is there due to nontrivial spin
ordering in the ground state. The first origin is not unique to
AFMs. Indeed, the spins condense in the [111] directions in
ferromagnets such as pure nickel and magnetite [56,57]. One
should expect the longitudinal phonons propagating along the
crystal axes to hybridize with magnons in these ferromagnetic
materials as well. This follows directly from a ferromagnetic
analogy of Eq. (4), where the Néel field is substituted with
magnetization and where one of the magnon polarizations is
discarded (the evanescent mode). The second origin however,
is only attainable if there are at least two spin sublattices
involved, as this is the least requirement for creating a non-
trivial spin structure. This latter effect introduce hybridization
between longitudinal phonons and magnons even if the spins
are aligned along one of the crystal axes in the ground state.

The second feature we have observed is that the hybridiza-
tion between antiferromagnetic magnons and the phonons
is tunable by an external magnetic field. Moreover, the hy-
bridization may be switched off entirely in certain structures,
and thus shows potential for binary control. This is a unique
feature of bipartite magnetic structures. Although magnon-
phonon hybridizations in ferromagnets can be tuned in the
sense that the magnon energy can be increased relative to the
phonon modes, the interaction in itself cannot be completely

turned on and off. This may however be done in certain
AFMs, where NiO is a prominent example of a material in
which this phenomenon should occur. This is due to there
being two magnon modes in AFMs, which enables “moving”
the magnetoelastic interaction between the magnon modes by
changing the properties of the eigenstates. More precisely,
since applying a magnetic field changes the spin oscillations
of the magnon eigenmodes qualitatively, and because the
hybridizations is sensitive to this oscillation pattern, we may
use the magnetic field to tune the hybridization in AFMs.

We expect magnon-polarons in AFMs to be found at
optical phonon energies, which are usually well up in the
THz range. In contrast, magnon-polarons in ferromagnets
are typically found at the crossings between magnons and
acoustic phonons. This is due to the linear dispersion of
antiferromagnetic magnons at low k. The effect of this is
that the magnon dispersions never cross the acoustic phonon
dispersions if their velocity is greater than that of the phonons.
Consequently, there is no strong hybridization between the
magnons and acoustic phonons. The high frequencies at which
magnons-polarons are found in AFMs make the accessibility
of antiferromagnetic magnon-polarons lower than the ferro-
magnetic ones. This in turn might reduce their applicability.
For instance, magnon-polarons have shown to play an impor-
tant role in the SSE effect in YIG [36,38], as the properties
of phonons affect the induced spin current. This would not
occur in most AFMs, as the magnon-polarons are not neces-
sarily thermally accessible below the Néel temperature of the
material.

An important point to address is, precisely, how to access
antiferromagnetic magnon-polarons. Both crossings between
magnonlike and phononlike modes in NiO occur far away
from the zone center. This stands in contrast to ferromagnetic
magnon-polarons, which are typically found at low k. For that
reason, magnon-polarons are not accessible by for instance
conventional first order Raman scattering, which aims to
excite modes at very long wavelengths due to the negligible
momentum of the photon. We have already discarded thermal
excitation as an alternative, due to the high energies. The
magnon-polarons may be accessed with neutron scattering,
which previously has been used to map the dispersion rela-
tions of both magnons and phonons separately in NiO. The
most promising way of accessing the magnon-polarons in
AFMs might however be with femtosecond optics [8–11].

Injection of coherent phonons at high frequencies in the
THz range has been achieved using ultrafast lasers [58]. In a
direct analogy with spin pumping driven via coherent elas-
tic waves [40], and subsequently formed magnon-polarons
[28,59], in ferromagnets, these coherent THz phonons may
directly excite the corresponding magnon-polarons, and re-
sult in a spin pumping current [28,59]. The latter may be
detected electrically via inverse spin Hall effect (ISHE). Since
a magnetic field may be used to tune the hybridizations, one
might even be able to tune the measured ISHE voltage with
the magnetic field.

VI. CONCLUSION

We explore magnon-polarons in cubic collinear antifer-
romagnets, and focus on their qualitative difference to their
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ferromagnetic counterparts. We find that there are two distinct
features of antiferromagnetic magnon-polarons. First, anti-
ferromagnetic materials with either a complex spin structure
or spin alignment axis nonparallel to any of the cubic axes
generally result in hybridization between magnons and lon-
gitudinal phonons. Second, the hybridizations may be tuned
by an external magnetic field by changing the qualitative
properties of the magnons eigenmodes. NiO is an example of
such a material, where a hybridization may even be turned on
and off.

Magnons-polarons in antiferromagnets seem to have a
reduced applicability compared to ferromagnetic ones due to
their high energies and locations at intermediate momenta.
However, the rapid evolving fields of ultrafast dynamics and
femtosecond optics provide tools for an easier access to the
antiferromagnetic magnon-polarons. We suggest spin pump-
ing driven via coherently injected phonons as a promising
approach for investigating these magnon-polarons.
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APPENDIX A: DERIVATION OF THE MAGNETOELASTIC
HAMILTONIAN

Magnetoelastic coupling relates magnetic and elastic de-
grees of freedom. In a discrete lattice, at a site i, the magnetic
moment is proportional to the spin Si. A measure of the
elastic degree of freedom is the displacement of atom i, ui.
The magnetoelastic coupling depends on the spin Si and
displacement u j at all sites i and j. We will now discuss phe-
nomenological models of the magnetoelastic coupling starting
with the simplest possible forms. We consider materials in
which the magnetic atoms form a Bravais lattice, all of which
are invariant under inversion symmetry.

Let us begin by discussing a simple ansatz, that the discrete
magnetoelastic model is bilinear in spin and displacement,

HI
ME =

∑
i j

∑
αβ

Bαβ
i j Sα

i uβ
j . (A1)

Here, Bαβ
i j is a phenomenological coupling tensor relating

the spin at site i with the atom displacement at site j. Neu-
mann’s principle states that the physical properties of a crystal
must share the symmetries of the crystal [53,54]. Under a
transformation R, the spin transforms as S → |R|RS and the
displacement transforms as u → Ru. Since we have assumed
that the magnetic atoms form a Bravais lattice, the Hamilto-
nian is invariant under the inversion operation R = −1 and
|R| = −1. Consequently, Bαβ

i j = −Bαβ
i j . The only solution is

Bαβ
i j = 0. Hence, the Hamiltonian (A1) does not contribute.

Let us proceed by first restoring invariance under the
inversion operation without expanding to higher orders in the
magnetic or elastic degrees of freedom. One may observe that
introducing another quantity that transforms as a vector fulfills

the requirement of invariance. In our system, the only natural
vector we have left is the position vector ri. Our next attempt
is therefore

HII
ME =

∑
i jk

∑
αβγ

Bαβγ

i jk Sα
i uβ

j rγ

k , (A2)

which will have finite elements Bαβγ

i jk even when requiring
inversion invariance.

There are also other constraints. The Hamiltonian (A2)
must be invariant under uniform translations of the lattice.
Mathematically, this can be expressed by a uniform displace-
ment uβ

j → uβ
j + δuβ , or by a uniform shift of the position

vectors rγ

k → rγ

k + δrγ . The Hamiltonian (A2) must be in-
variant under both of these transformations separately.

We begin by considering a uniform displacement, where
the invariance requirement reads∑

i jk

∑
αβγ

Bαβγ

i jk Sα
i δuβrγ

k = 0. (A3)

This relation must hold for all different spin configurations
{Sα

i } and atom configurations {rγ

k }. Furthermore, as δuβ is
arbitrary, the relation must hold for every component β.
The resulting constraint for the magnetoelastic coefficients is,
therefore, ∑

j

Bαβγ

i jk = 0. (A4)

We now make use of the second invariance requirement.
A uniform shift of the position vectors rγ

k → rγ

k + δrγ should
leave the Hamiltonian unchanged:∑

i jk

∑
αβγ

Bαβγ

i jk Sα
i uβ

j δrγ = 0. (A5)

This relation must hold for any spin configuration {Sα
i } and

atom displacements {uβ
j }. As the shift δrγ is arbitrary, the

relation must hold for every component γ . Thus we are left
with the constraint ∑

k

Bαβγ

i jk = 0. (A6)

Requiring the Hamiltonian to be translationally invariant in-
duces two constraints on the tensor Bαβγ

i jk , Eqs. (A4) and (A6).
Let us now inspect the Hamiltonian (A2) more closely.

Sα
i and uβ

j are dynamical variables. In contrast, rγ

k is fixed
when the lattice properties are defined. In other words, {rγ

k }
defines the equilibrium lattice, and the dynamics related to
displacements from equilibrium is contained in {uβ

j }. Keeping
this in mind, we could define an effective coupling tensor as
B̃αβ

i j = ∑
k

∑
γ Bαβγ

i jk rγ

k , so that the Hamiltonian (A2) reads

HII
ME =

∑
i j

∑
αβ

B̃αβ
i j Sα

i uβ
j . (A7)

At first sight Eq. (A7) might seem to have become analo-
gous to the starting ansatz (A1), the latter of which does not
contribute. However, there is an important distinction since
B̃αβ

i j is not a tensor of constant coefficients. Instead, B̃αβ
i j is

a sum of products between a tensor of constant coefficients
and position vector components. Therefore the transformation
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properties of B̃αβ
i j differ from the ones of Bαβ

i j . As a result,
the Hamiltonian (A7) essentially differs from the starting
Hamiltonian (A1).

By expressing the Hamiltonian (A2) as in (A7), we real-
ize that several k and γ components of Bαβγ

i jk contribute to

the effective tensor B̃αβ
i j , but the relative contribution to the

sum is not important. The only physical significance of the
introduction of the position rγ

k is its transformation properties.
This implies that, without a loss of generality, we can choose
a selection of the tensor elements Bαβγ

i jk to be equal to zero as
long as we do not break any symmetries of the lattice under
consideration. There is an infinite number of such choices in
an infinite lattice. We will follow a path that is physically
transparent because, in the continuum limit, it couples the
spins to strain tensor components. As will be evident, we
obtain this by leaving Bαβγ

i jk finite for the following indices
i, j, and k: if i 
= j then k ∈ {i, j}, and if i = j then k can
point to any lattice site. Bαβγ

i jk is set to zero for all other k’s.
We may now insert the definition of the nonzero tensor ele-

ments Bαβγ

i jk into the constraints (A4) and (A6). The constraint
(A4) then reads

Bαβγ

ii j + Bαβγ

i j j = 0, (A8)

Bαβγ

iii = −
∑
k 
=i

Bαβγ

iki . (A9)

The second constraint (A6) reads

Bαβγ

i ji + Bαβγ

i j j = 0, (A10)

Bαβγ

iii = −
∑
k 
=i

Bαβγ

iik . (A11)

In all of these equations, i 
= j. Eqs. (A8) and (A10) imply
Bαβγ

ii j = Bαβγ

i ji = −Bαβγ

i j j . We therefore define a new tensor

Bαβγ
i j ≡ Bαβγ

i j j , and insert all the constraints above into the
Hamiltonian (A2). The resulting Hamiltonian is

HII
ME =

∑
i j

∑
αβγ

Bαβγ

i j Sα
i

(
uβ

i − uβ
j

)(
rγ

i − rγ

j

)
, (A12)

where both i and j run over all lattice sites. This Hamilto-
nian (A12) is thus the lowestorder nonzero magnetoelastic
Hamiltonian.

The Hamiltonian (A12) describes both rotations, which are
antisymmetric in βγ , and strains, which are symmetric in βγ .
We can separate these two effects by defining the matrices

Rβγ

S,i j = 1

2

1

|ri − r j |2
[(

rγ

i − rγ

j

)(
uδ

i − uδ
j

)
+ (

rδ
i − rδ

j

)(
uγ

i − uγ

j

)]
, (A13)

Rβγ

R,i j = 1

2

1

|ri − r j |2
[(

rγ
i − rγ

j

)(
uδ

i − uδ
j

)
− (

rδ
i − rδ

j

)(
uγ

i − uγ
j

)]
, (A14)

where Rβγ

S,i j captures strains and Rβγ

R,i j captures rotations. In the
following, we will restrict the analysis to strains only, and we

therefore drop the rotation term. We name Rβγ

S,i j the discrete

strain tensor, and denote it simply as Rβγ

i j from now on. By
summing over the vector δ ≡ r j − ri instead of j, we may
rewrite the Hamiltonian as

HII
ME =

∑
i,δ

∑
αβγ

Bαβγ

|δ| Sα
i Rβγ

i,i+δ
, (A15)

The i j index of Bαβγ

i j was changed to |δ|. This is possible
due to translational and rotational invariance of the Bravais
lattice. Due to the normalization factor |ri − r j |−2 in the
definition of the strain tensor (A13), the coupling tensor
elements appearing in (A15) are related to the tensor elements
in (A12) by the inverse of this normalization factor. As a
result, Bαβγ

0 = 0, and the first nonzero coefficients appear in
the nearest-neighbor interaction.

We may now use Neumann’s principle to derive the se-
lection rules of Bαβγ

|δ| . We find that there are 18 independent
coefficients in triclinic crystals, eight in monoclinic crystals,
and fewer as we increase the symmetry. In cubic crystals,
we find that Bαβγ

|δ| = 0 is the only solution. We conclude that
the Eq. (A15) cannot describe any magnetoelastic coupling in
cubic crystals.

As we want the magnetoelastic Hamiltonian to be able to
describe cubic antiferromagnets, we must include an addi-
tional term. Our next attempt is quadratic in the spin degrees
of freedom,

HIII
ME =

∑
i jkl

∑
αβγλ

Bαβγλ

i jkl Sα
i Sβ

j uγ

k rλ
l . (A16)

Just as we did for HII
ME, we require the Hamiltonian to be in-

variant under uniform translations of the lattice, that is uγ

k →
uγ

k + δuγ and rλ
l → rλ

l + δrλ, and obtain the constraints∑
k

Bαβγλ

i jkl = 0, (A17)

∑
l

Bαβγλ

i jkl = 0. (A18)

In the following, we will use a local approximation. We
assume that the interaction between Si, S j and uk is
dominated by the terms where k ∈ {i, j}. Intuitively, this
follows if we view the Hamiltonian (A16) as a distance
dependent exchange interaction. Hence, the relevant
displacements are the displacements of the involved spins. In
other words, we can view it as a local expansion in the lattice
distortions around the spins.

As above, where we discovered an arbitrariness in the
indices of the coupling tensor related to the position vector
rλ

l , we may choose to set Bαβγλ

i jkl = 0 for a selection of l’s
without a loss of generality. We would like the Hamiltonian
(A16) to be consistent with the continuum limit result of
spins coupling to the strain tensor. We therefore choose Bαβγλ

i jkl
to be nonzero only if l ∈ {i, j}, in addition to the already
mentioned k ∈ {i, j}. We now insert the choice of nonzero
tensor elements into the constraints of Eqs. (A17) and (A18)
derived above. The first constraint (A17) then reads

Bαβγλ
i jii + Bαβγλ

i j ji = 0, (A19)
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Bαβγλ
i ji j + Bαβγλ

i j j j = 0, (A20)

Bαβγλ
iiii = 0. (A21)

Additionally, the second constraint (A18) reads

Bαβγλ

i jii + Bαβγλ

i ji j = 0, (A22)

Bαβγλ

i j ji + Bαβγλ

i j j j = 0. (A23)

In all constraints, i 
= j. The constraints (A19) and (A22) to-
gether imply Bαβγλ

i jii = −Bαβγλ
i ji j = −Bαβγλ

i j ji , and the constraints

(A20) and (A23) additionally imply Bαβγλ
i jii = Bαβγλ

i j j j . Let us

therefore define Bαβγλ

i j ≡ Bαβγλ

i jii . The resulting Hamiltonian
follows as

HIII
ME =

∑
i 
= j

∑
αβγλ

Bαβγλ
i j Sα

i Sβ
j

(
uγ

i − uγ
j

)(
rλ

i − rλ
j

)
. (A24)

If we consider strains only, and disregard rotations, the Hamil-
tonian reads

HIII
ME =

∑
i,δ

∑
αβγλ

Bαβγλ

|δ| Sα
i Sβ

i+δ
Rγ λ

i,i+δ
, (A25)

where we changed the summation variable j to δ = r j − ri

just as we did in the derivation of (A15). δ runs over all lattice
sites except δ = 0, fulfilling constraint (A21).

One may verify that the Hamiltonian (A25) has nonzero
contributions both for cubic crystals and for crystals subject
to a uniform strain. We conclude that the Hamiltonians in
Eqs. (A15) and (A25) combined give the lowest order phe-
nomenological picture of magnetoelastic coupling in mag-
netic crystals forming a Bravais lattice.

APPENDIX B: PHYSICAL ORIGIN OF THE
MAGNETOELASTIC HAMILTONIANS

The purpose of this section is to discuss the physical origins
of the magnetoelastic Hamiltonians (A15) and (A25) that we
derived in Appendix A. To elucidate the properties, we use as
a starting point well-known interactions, and show how these
generate Eqs. (A15) and (A25). First, we consider spin-orbit
interaction between a spin and the orbit of its neighboring ions
and demonstrate that this leads to a Hamiltonian equivalent to
(A15). Second, we consider a distance dependent exchange
interaction and observe that this reproduces the Hamiltonian
(A25).

Consider first the spin-orbit coupling between a spin at
site i and the orbital magnetic momentum of an ion at site
j. The magnetic moment of the spin is μ

spin
i = γsSi, where

γs is the gyromagnetic ratio of the spin. The orbital magnetic
moment of ion j in the rest frame of spin Si is μion

j = γionL j ,
where γion is the gyromagnetic ratio of the ion, and L j is its
orbital angular momentum. The orbital angular momentum is
L j = m(ri − r j ) × ∂t (ui − u j ), where m is the mass of the ion
and ∂t = ∂/(∂t ) is the time differential operator. A general
form of the corresponding spin-orbit Hamiltonian follows as

HSOC =
∑

i j

Cαβγ

i j Sα
i

(
rβ

i − rβ
j

)
∂t

(
uγ

i − uγ

j

)
, (B1)

where all constants are contained in the coupling tensor
Cαβγ

i j . Assuming plane wave solutions of the displacements,
uγ

i = U γ

k exp(ik · ri − iωt ), where k is the wave vector of the
plane wave, gives ∂t (u

γ

i − uγ

j ) = −iω(uγ

i − uγ

j ). The result-
ing spin-orbit Hamiltonian becomes

HSOC =
∑

i j

C̃αβγ
i j (ω)Sα

i

(
rβ

i − rβ
j

)(
uγ

i − uγ
j

)
, (B2)

where C̃αβγ
i j (ω) = −iωCαβγ

i j . We recognize that the expres-
sion (B2) is equivalent to the Hamiltonian (A15) after sym-
metrization in βγ .

We next consider a general exchange interaction (not ex-
cluding Dzyaloshinskii-Moriya interaction),

Hs =
∑

i j

∑
αβ

Aαβ
i j Sα

i Sβ
j , (B3)

where Aαβ
i j is a tensor of coefficients coupling spin com-

ponents α and β at lattice sites i and j. Aαβ
i j depends on

the distance separating the spins Si and S j . Let ri − r j be
the equilibrium position vector separating the spins, and let
ui − u j be the displacement relative to equilibrium. We may
then expand Aαβ

i j to first order in the relative displacement as

Aαβ
i j (ui − u j ) ≈ Aαβ

i j (0) +
∑

γ

∂Aαβ
i j

∂
(
uγ

i − uγ

j

)
∣∣∣∣∣
ui−u j=0

× (
uγ

i − uγ
j

)
. (B4)

If we insert the expansion (B4) into the Hamiltonian (B3),
we see that a new term coupling the spins at site i and
j to the relative displacement appears. This interaction is
proportional to the coupling tensor ∂Aαβ

i j /∂ (uγ
i − uγ

j )|ui−u j=0.
Now note that this coupling tensor is not a tensor of constant
coefficients, like Aαβ

i j . It transforms differently due to the
operator ∂/∂ (uγ

i − uγ

j ) working on it. For instance, under in-
version, ∂/∂ (uγ

i − uγ
j ) → −∂/∂ (uγ

i − uγ
j ). For convenience,

we therefore introduce the coupling tensor Bαβγλ

i jkl , implicitly
defined by

∂Aαβ
i j

∂
(
uγ

i − uγ

j

)
∣∣∣∣∣
ui−u j=0

≡
∑

kl

∑
λ

Bαβγλ

i jkl

(
rλ

k − rλ
l

)
, (B5)

where k and l run over all lattice sites. The components
of Bαβγλ

i jkl transform just as scalars under inversion, and we

therefore choose to proceed with Bαβγλ

i jkl as the coupling tensor.
As before, we note that (rγ

k − rγ

l ) is not a dynamical variable,
but merely a constant with the desired transformation prop-
erties once the lattice has been defined. Its introduction does
therefore not alter the physical content of the Hamiltonian.

We find the nonzero tensor elements Bαβγλ

i jkl by requiring
the Hamiltonian (B3) to respect the symmetries of the lat-
tice. Following the argument presented in Appendix A, we
may pick only the Bαβγλ

i jkl ’s where k, l ∈ {i, j} to be nonzero.

We define Bαβγλ
i j ≡ Bαβγλ

i jii , and may then write the exchange
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Hamiltonian to first order in the relative displacement as

Hs =
∑

i j

∑
αβ

Aαβ
i j (0)Sα

i Sβ
j

+
∑

i j

∑
αβγλ

Bαβγλ
i j Sα

i Sβ
j

(
uγ

i − uγ
j

)(
rλ

i − rλ
j

)
. (B6)

We recognize that the second term is equivalent to the Hamil-
tonian (A25) after symmetrization in the γ λ indices in order
to disregard rotations.

APPENDIX C: LONG-WAVELENGTH MAGNETOELASTIC
HAMILTONIAN

We will now derive the long-wavelength magnetoelastic
Hamiltonian for a cubic collinear antiferromagnets, starting
from the general form given in Eq. (24). In a collinear antifer-
romagnet, there are two sublattices, A and B. In the (classical)
ground state, the spins on each sublattice are antiparallel.
Motivated by the bipartite lattice, we first separate the sums
over i and δ in Eq. (24) into two separate contributions, one in
which i is a site on sublattice A, and one in which i is a site
on sublattice B. We can further separate each of these sums
into two sums, where the vector δ points between sites on the
same sublattice, or between the sublattices. In total, we thus
have four separate sums. However, because sublattice A and
B are equivalent, there are only two independent sums. We
therefore have

HME = 2
∑
αβ

∑
i∈A

Sα
i

( ∑
δ∈AA

Bαβ

|δ| Sβ

i+δ
Rαβ

i,i+δ

+
∑
δ∈AB

Bαβ

|δ| Sβ

i+δ
Rαβ

i,i+δ

)
, (C1)

where δ ∈ AA (AB) denotes that δ points from a site on
sublattice A to a site on sublattice A (B). We will now transit
to the long-wavelength limit. First define two spin fields,
SA(r) and SB(r), living on sublattice A and B, respectively. We
then introduce the Néel vector n(r) = 1

2 (SA(r) − SB(r)) and
the local magnetization m(r) = 1

2 (SA(r) + SB(r)). We will
in the following neglect the local magnetization, and may
therefore express the Hamiltonian as

HME =
∑
αβ

∑
i∈A

nα (ri )

( ∑
δ∈AA

Bαβ

|δ| nβ (ri + δ)Rαβ

i,i+δ

−
∑
δ∈AB

Bαβ

|δ| nβ (ri + δ)Rαβ

i,i+δ

)
. (C2)

Notice the relative minus sign between the sum over AA
and AB, which has been introduced because the spins on the
two sublattices are approximately antiparallel, n = SA(r) ≈
−SB(r). This sign change is characteristic to antiferromagnets
and strongly affects the final result in certain materials.

In order to fully transit to the long-wavelength limit, we
first need to do the sum over δ. In order to do so, we expand

the Néel vector to first order,

nα (ri + δ) ≈ nα (ri ) +
∑

γ

∂nα (r)

∂rγ

∣∣∣∣
r=ri

δγ . (C3)

For notational simplicity, we define ∂nα (r)
∂rγ |r=ri

≡ Dαγ (ri). The
Hamiltonian then reads

HME =
∑
αβ

∑
i∈A

nα (ri)n
β (ri)

×
( ∑

δ∈AA

Bαβ

|δ| Rαβ

i,i+δ
−

∑
δ∈AB

Bαβ

|δ| Rαβ

i,i+δ

)

+
∑
αβ

∑
i∈A

nα (ri )n
β (ri)D

αγ (ri )

×
( ∑

δ∈AA

Bαβ

|δ| Rαβ

i,i+δ
δγ −

∑
δ∈AB

Bαβ

|δ| Rαβ

i,i+δ
δγ

)
. (C4)

Now rearrange the sums over δ into separate sums arising
from the different layers of nth nearest neighbors at distances
|δn|. That is, write∑

δ

Bαβ

|δ| Rαβ

i,i+δ
= Bαβ

|δ1|
∑
δ1

Rαβ

i,i+δ1
+ Bαβ

|δ2|
∑
δ2

Rαβ

i,i+δ2
+ . . . ,

(C5)∑
δ

Bαβ

|δ| Rαβ

i,i+δ
δγ = Bαβ

|δ1|
∑
δ1

Rαβ

i,i+δ1
δ

γ

1

+ Bαβ

|δ2|
∑
δ2

Rαβ

i,i+δ2
δ

γ

2 + . . . (C6)

Note that we have put Bαβ

|δ| outside the sums, as these coeffi-
cients are equal for all neighbors included in an nth nearest-
neighbor summation. We now need to evaluate only two kinds
of sums, namely

∑
δn

Rαβ

i,i+δn
and

∑
δn

Rαβ

i,i+δn
δ

γ
n .

In cubic collinear antiferromagnets, there are three types of
nth nearest-neighbor layers to any given spin i on sublattice
A. (1) All neighbors belong to sublattice A and are therefore
parallel to Si. (2) All neighbors belong to sublattice B and
are, therefore, antiparallel to Si. (3) Half of the spins belong
to sublattice A and the other half belong to sublattice B. In
situations 1 and 2, all nth nearest neighbors belong to one sub-
lattice. We will now assume that only the Bαβ

|δn|’s where |δn| is
much shorter than the wavelength of lattice strains contributes
to the sum. In other words, we assume that the range of the
magnetoelastic interaction is relatively short. In cubic crystals,
we then have to good approximation

∑
δn

Rαβ

i,i+δn
= Cnε

αβ (ri ),

where Cn is some constant, and
∑

δn
Rαβ

i,i+δn
δγ

n = 0. Situation 1
and 2 thus couple elements of the Néel field straightforwardly
to elements of the conventional strain tensor.

In situation 3, however, half of the terms in the summa-
tion over δn comes with a minus sign, as is evident from
Eq. (C4). By evaluating the sums over δ arising from situation
3 explicitly, we find

∑′
δn

Rαβ

i,i+δn
= C̃nε̃

αβ (ri ) where the primed
summation indicates that terms arising from a δn pointing
between the sublattices are accompanied with a minus sign, C̃n

is some constant, and ε̃αβ (ri ) is some tensor with elements that
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are linear combinations of strain tensor elements. In general,
the structure of this tensor depends on the microscopic spin
structure of the material. The last sum gives no contribution
for situation 3 either,

∑′
δn

Rαβ

i,i+δn
δγ

n = 0, meaning that the
gradient of the Néel field does not contribute to the final
Hamiltonian to this order. Situation 3 hence couples the Néel
field to another tensor ε̃, not equal to the strain tensor. This
tensor only arises when there exist nearest-neighbor layers in
which a portion of the spins are part of sublattice A and a
portion are part of sublattice B. NiO is an example of such a
material, and likewise are CoO, FeO, and MnO.

We may now finalize the transition into the long-
wavelength limit, by taking

∑
i → ∫

dr. The magnetoelas-
tic Hamiltonian for cubic collinear antiferromagnets then

follows as

HAFM
ME =

∑
αβ

∫
dr nα (r)nβ (r)[Bαβεαβ (r) + B̃αβ ε̃αβ (r)],

(C7)

where Bαβ = ∑
s(n)∈{1,2} CnBαβ

|δn| and B̃αβ = ∑
s(n)∈3 C̃nBαβ

|δn|,
where the notation s(n) ∈ {1, 2} means summing over the
nth nearest-neighbor layers belonging to either situation 1
or 2 as introduced in the above paragraph, and s(n) ∈ 3
means summing over the nth nearest-neighbor layers belong-
ing to situation 3. Each tensor contains two independent co-
efficients, Bαβ = B‖δαβ + B⊥(1 − δαβ ) and B̃αβ = B̃‖δαβ +
B̃⊥(1 − δαβ ).
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