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Magnetic excitations of the recently discovered frustrated spin-1/2 two-leg ladder system Li2Cu2O(SO4)2 are
investigated using inelastic neutron scattering, magnetic susceptibility, and infrared absorption measurements.
Despite the presence of a magnetic dimerization concomitant with the tetragonal-to-triclinic structural distortion
occurring below 125 K, neutron scattering experiments reveal the presence of dispersive triplet excitations
above a spin gap of � = 10.6 meV at 1.5 K, a value consistent with the estimates extracted from magnetic
susceptibility. The likely detection of these spin excitations in infrared spectroscopy is explained by invoking a
dynamic Dzyaloshinskii-Moriya mechanism in which light is coupled to the dimer singlet-to-triplet transition
through an optical phonon. These results are qualitatively explained by exact diagonalization and higher-order
perturbation calculations carried out on the basis of the dimerized spin Hamiltonian derived from first principles.
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I. INTRODUCTION

Frustrated spin-1/2 two-leg ladders form a class of models
which has been the subject of intense theoretical interest
during the last few decades as it fulfills all the requirements
favoring the emergence of exotic phenomena [1–7]. True
material realizations of these models, however, are very
scarce in the literature as the stringent conditions defining
the geometry of frustrated ladders are rarely met in natural or
synthetic compounds.

A noticeable exception is BiCu2PO6, a system built from
coupled spin-1/2 two-leg ladders in which frustration arises
from competing antiferromagnetic nearest- and next-nearest-
neighbor interactions along the legs [8]. The rich physics
emerging from this particular geometry has triggered many
experimental investigations of the magnetic properties of
this compound over the past decade. These studies reveal a
spin-gap behavior [8,9], frustration-induced incommensurate
dispersion of triplet quasiparticle excitations [10,11], triplet
dispersion renormalization resulting from a repulsion with
the multiquasiparticle continuum [12], or a cascade of field-
induced phase transitions [13], including, presumably, the
formation and collapse of a quantum soliton lattice [14,15].

A new material realization of a frustrated spin-1/2 two-
leg ladder system, Li2Cu2O(SO4)2, was recently discovered
[16–18]. At high temperature, this compound crystallizes in
a tetragonal structure where [Cu2O(SO4)2]2− chains running
along the c axis are well separated by Li+ ions, thus forming
quasi-one-dimensional structural units [see Figs. 1(a) and
1(b)]. A first-principles investigation of the electronic struc-
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ture of this compound [18] clearly identified these structural
units as magnetically equivalent to frustrated two-leg ladders
where, as in BiCu2PO6, frustration arises from competing
interactions along the legs. The geometry of this system,
however, differs substantially from that of BiCu2PO6 be-
cause (i) interladder interactions are very weak, (ii) the rung
coupling [J⊥ in Fig. 1(c)] is presumably ferromagnetic, and
(iii) additional antiferromagnetic diagonal interactions [J× in
Fig. 1(c)] occur.

The phenomenology of this compound is also markedly
different as a structural transition to a distorted triclinic
phase occurs near 125 K [17] [see Fig. 1(d)]. Although
lattice parameters are barely affected by this transition,
large variations of the interplatelet Cu-O-Cu superexchange
angles drastically impact the amplitudes of leg and diagonal
interactions J and J×. These couplings, equivalent by
symmetry in the high-temperature phase, are largely split
by the triclinic distortion, leading to the emergence of a
dominant antiferromagnetic interaction Jd . The resulting
structure, while maintaining the global geometry of a ladder,
displays a strong magnetic dimerization, where dimers are
staggered on the legs of the ladder, as shown in Fig. 1(e). This
scenario, describing the evolution of a complex geometry
with the temperature, is, however, essentially derived from
first-principles calculations, and a definite assessment of the
model requires further experimental investigations.

In this work, we report a detailed investigation of the low-
temperature magnetic excitations of Li2Cu2O(SO4)2 com-
bining inelastic neutron scattering (INS), magnetic suscepti-
bility, and infrared (IR) spectroscopy measurements carried
out on powder samples. Dispersive triplet excitations are
observed in INS above a spin gap � = 10.6 meV at 1.5 K,
a value consistent with the estimates extracted from magnetic
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FIG. 1. (a) Structure of tetragonal Li2Cu2O(SO4)2 viewed along the [001] direction. (b) Structure of the [Cu2O(SO4)2]2− chains running
along the c axis in the high-temperature (T > 125 K) phase. (c) Schematic representation of the corresponding spin system. Intra-[Cu2O6]8−

platelet rung coupling J⊥ is represented in green, leg and diagonal couplings J = J× are represented in blue, and next-nearest-neighbor (NNN)
couplings along the legs J2 are in red. (d) Structure of the [Cu2O(SO4)2]2− chains in the distorted low-temperature (T < 125 K) phase. (e)
Schematic representation of the corresponding staggered-dimer structure: Ja and Jd (in dark blue) represent the alternating couplings along
the legs, Jb

× and Jc
× (in light blue) represent the diagonal interchain couplings, Ja

⊥ and Jb
⊥ (in green) represent the couplings between the chains

along the rungs, and the NNN coupling along the legs J2 is in red.

susceptibility. Moreover, an absorption band visible only in
the dimerized phase below 70 K is observed in IR spec-
troscopy and is attributed to a triplet excitation arising at
14.3 meV. The dynamic Dzyaloshinskii-Moriya mechanism
is invoked in this case to explain the absorption of light by
this low-dimensional spin system. All these observations are
qualitatively explained by higher-order perturbation and exact
diagonalization calculations of triplet quasiparticle excitations
carried out on the basis of the dimerized geometry derived
from previous first-principle calculations [18].

II. EXPERIMENTS

A. Time-of-flight neutron spectroscopy

Inelastic neutron scattering experiments were performed
at the Institut Laue-Langevin in Grenoble on the thermal
time-of-flight spectrometer IN4 using incoming energies of
16.6, 32.0, and 66.6 meV. Most measurements were done with
an incoming energy of 32.0 meV from the (004) reflection
of a pyrolytic graphite monochromator. A Fermi chopper was
used with a 2◦ straight-slit package spinning at 15 000 rpm.
The energy resolution (full width at half maximum) at elastic
energy transfer was 2.1 meV. A total of 6.8 g of powder
sample of Li2Cu2O(SO4)2 was synthesized according to the
procedure described in Ref. [16], put in a flat aluminum plate
holder with dimensions of 40 × 28 × 2 mm3, and mounted in
a standard helium cryostat. Measurements were carried out
at temperatures T = 1.5, 40, 60, 80, and 100 K for a typical
acquisition time of 12 h per temperature. The scattering from
the empty Al holder was measured and subtracted from the
data, which were subsequently corrected for self-shielding
and absorption using standard data reduction routines. Data
treatments were carried out using the LAMP software [19].

Figures 2(a)–2(e) show the maps of the dynamic
susceptibility χ ′′(|Q|, E ), obtained by normalizing the
background-subtracted neutron scattering intensity S(|Q|, E )
by the thermal occupancy factor 1 − e−E/kBT at 1.5, 40, 60,
80, and 100 K. The temperature dependence of the dynamic

susceptibility clearly reveals the presence of two dominant
contributions arising from phonon and magnetic excitations.
Whereas the scattering cross section of the former scales as
|Q|2, that arising from magnetism scales with the square of
the form factor associated with the magnetic ions and falls off
with increasing |Q| [20,21]. The high-temperature dynamic

FIG. 2. Experimental dynamic susceptibility χ ′′(|Q|, E ) plots for
Li2Cu2O(SO4)2 measured at different temperatures: (a) T = 1.5 K,
(b) T = 40 K, (c) T = 60 K, (d) T = 80 K, and (e) T = 100 K.
(f) Magnetic contributions are isolated by displaying the difference
�χ ′′(|Q|, E ) from Eq. (1).
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FIG. 3. Constant-Q cuts of the dynamic susceptibility χ ′′(|Q|, E )

extracted for a |Q| value of 2 ± 0.1Å
−1

from the plots shown in
Figs. 2(a)–2(e).

susceptibility is therefore largely dominated by phonon
scattering [see Figs. 2(d) and 2(e)], whereas the weight of the
magnetic contribution progressively increases with decreasing
temperatures, as can be observed in the low-|Q| region of
Figs. 2(a)–2(c). Assuming, in the first approximation, that the
intensity is entirely associated with phonon scattering for the
highest temperature measurement (T = 100 K in our case),
the magnetic contribution to the dynamic susceptibility at low
temperature can simply be isolated by plotting the difference
[22]

�χ ′′(|Q|, E ) = χ ′′(|Q|, E )|1.5K − χ ′′(|Q|, E )|100K. (1)

The corresponding difference map is shown in Fig. 2(f) and
clearly reveals the presence of dispersive magnetic excitations
of bandwidth ≈5 meV above a large spin gap � = 10.6 meV,
measured as the inflection point of the first magnetic peak (la-
beled (A) in Fig. 3). Constant-Q cuts extracted for a |Q| value

of 2 ± 0.1 Å
−1

for each temperature measured experimentally
are shown in Fig. 3. The broad band of magnetic excitations,
extending over 5 meV above the spin gap, includes the first
low-intensity peak (A) centered at 11.2 meV followed by
the most intense structure (C) at 14.7 meV. A low-energy
shoulder (B) of this dominant structure is also present at about
13.5 meV, particularly visible in the data obtained at 1.5 K.
Inelastic neutron scattering experiments therefore clearly
reveal the presence of dispersive magnetic excitations, mostly

localized at low |Q| < 3.5 Å
−1

and vanishing at temperatures
above ∼80 K, consistent with spin-triplet excitations out of
the reported singlet ground state of this compound [17,18].

B. Static magnetic susceptibility

These results can be further confirmed by analyzing the
low-temperature behavior of the experimental static mag-
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FIG. 4. Temperature dependence of the static magnetic suscep-
tibility of Li2Cu2O(SO4)2 corrected from paramagnetic impurities
and temperature-independent contributions. Gray circles correspond
to the experimental points; the solid blue and red lines correspond,
respectively, to the best fit obtained using the general expression
(2) and a spin-1/2 two-leg ladder Heisenberg model (3). The cor-
responding values of the extracted spin gap are indicated.

netic susceptibility. Figure 4 reproduces the experimental
data corrected from paramagnetic impurities and temperature-
independent contributions, already reported in Ref. [17]. The
susceptibility exhibits the typical behavior of a gapped low-
dimensional antiferromagnet with a high-temperature param-
agnetic regime reaching a broad maximum at about 125 K and
an exponential decay at low temperature. Note, however, that
the temperature dependence of the magnetic susceptibility
is largely affected by the structural transition occurring at
the same temperature as the maximum (125 K) since it is
accompanied by a substantial magnetic dimerization within
the ladders. As reported in Ref. [18], although this transition
extends over a large temperature range, the low-temperature
triclinic phase is already mostly stabilized at about 80 K,
and the 2–80 K range can therefore be used to estimate the
corresponding spin gap. A rough estimate can be obtained by
fitting the experimental data using the general expression for
thermally activated processes,

χ (T ) ∝ e−�/T , (2)

leading to a value of � ≈ 9.1 meV. It should, however, be
noted that (2) would be valid for noninteracting particles,
but magnons are not free particles. A suitable expression
that takes the hard-core repulsion between the magnons into
account is given by [23]

χlad.(T ) ∝ T −1/2 e−�/T (3)

for a quadratic band minimum. Equation (3) has also been
employed to fit the low-temperature part of the magnetic
susceptibility (see Fig. 4). The resulting estimate for the
spin gap, � ≈ 11.6 meV, is slightly larger than the value
obtained with the previous expression. Despite these small
variations, essentially related to the rather low accuracy of this
approach and to the limited applicability of the simple ladder
model to Li2Cu2O(SO4)2, these estimates are, however, fully

064416-3



O. VACCARELLI et al. PHYSICAL REVIEW B 99, 064416 (2019)

FIG. 5. Temperature dependence of the powder transmission in-
frared spectra of Li2Cu2O(SO4)2 in the FIR region. The blue arrow
indicates the spectral feature associated with the magnetic excitation.
Top inset: The lowest and highest temperature spectra are reported in
logarithmic scale up to 1800 cm−1 to show the high-energy modes
associated with the internal [SO4]2− bond stretching.

consistent with the spin gap value obtained from inelastic
neutron scattering.

C. IR spectroscopy

Infrared absorption spectroscopy was finally employed as
a complementary technique to investigate the low-energy ex-
citations of Li2Cu2O(SO4)2. These experiments were carried
out using a Fourier transform Bruker IFS66 v/s spectrometer
at the Institut de Minéralogie, de Physique des Matériaux,
et de Cosmochimie–Sorbonne University spectroscopy plat-
form. The instrument was aligned in transmission geometry.
Isotropic pellets ∼13 mm in diameter were prepared by mix-
ing the original powder samples with transparent matrix ma-
terials. Pure KBr powder was used as a matrix for the pellets
employed in the middle infrared (MIR), whereas polyethylene
(PE) was employed to prepare pellets for the far-infrared (FIR)
measurements. The latter were obtained by mixing 2.5 mg
of sample and 80 mg of pure PE; for the former, 1.4 mg of
sample was mixed with 200 mg of KBr powder, placed in
an oven at T = 150 ◦C in order to remove water contamina-
tion from the KBr powder, and then pressed to obtain high-
quality pellets. Transmission spectra were taken as a function
of temperature from 10 to 300 K using a continuous Janis
liquid-helium cryostat working in vacuum. Each spectrum
was acquired in the frequency region of 60–640 cm−1 for
the FIR measurements and 580–4400 cm−1 for the spectrum
in the MIR, with a spectral resolution of about 2 cm−1. The
FIR spectra were recorded with a DTGS-Pe detector and a
multilayer Mylar beam splitter. The MIR data were obtained
with a HgCdTe detector and a Ge-coated KBr beam splitter.
For both regions we used a Globar (SiC) source.

The temperature dependence of the transmission IR pow-
der spectrum of Li2Cu2O(SO4)2 measured between 10 and
300 K is shown in Fig. 5. Most of the absorption bands
visible between 100 and 1300 cm−1 are associated with the
electric dipole excitation of optical phonons. The group of

high-energy modes located around 1100 cm−1 is exclusively
associated with internal [SO4]2− bond stretching [24]. The
500–700 cm−1 range is dominated by [SO4]2− tetrahedra
bending modes involving progressively the displacement of
Cu and O atoms forming the chain backbone, as the frequency
decreases.

Symmetry can be employed to determine the maxi-
mum number of infrared active optical phonons in both
phases of this compound. In its high-temperature phase,
Li2Cu2O(SO4)2 belongs to the P42/m space group. A factor
group analysis indicates that the vibrational degrees of free-
dom decompose as

�HT = 11Ag + 13Bg + 9Eg + 10Au + 8Bu + 15Eu (4)

on the irreducible representations of the D4h point group.
Subtracting the Au + Eu acoustic modes, we find 37 IR-active
modes, decomposed in 23 potentially distinct 9Au + 14Eu

bands. The triclinic distortion, occurring below 125 K, further
reduces the crystal symmetry to P1̄. A similar analysis leads
to the following decomposition on the only two irreducible
representations of Ci:

�LT = 42Ag + 48Au, (5)

leading, after subtraction of the 3Au acoustic modes, to 45Au

IR-active modes. As can be observed in Fig. 5, the exact num-
ber of bands detected in these experiments is difficult to assess
due to the broad and asymmetric profile of certain peaks.
The above group-theoretical analysis therefore provides only
an upper bound for the number of bands distinguishable in
the experimental spectra. Qualitatively, however, the large in-
crease in active modes due to the symmetry lowering triggered
by the triclinic distortion is clearly visible in the experimental
spectra when decreasing the temperature below the transition
(∼125 K) and is therefore consistent with the structural data
[17].

Besides this increase in the number of phonon lines, the
main effects of decreasing the temperature consist of a slight
hardening and narrowing of most of the bands, usually at-
tributed to anharmonic effects and, in particular, for the for-
mer, to the overall unit cell volume contraction [17]. However,
a few bands display a softening in the temperature range of the
structural transition, characteristic of magnetoelastic effects
associated, in our case, with the rise of the dimerization [25].
At low energy, however, a pronounced transfer of spectral
weight toward low frequencies reveals the rise of a weak
excitation at 115 cm−1 (14.3 meV). This band is indicated by
a blue arrow in Fig. 6(a).

In order to quantify these spectral changes, a least-squares
fit of the low-frequency range of the spectra based on a
superposition of Lorentzians was carried out. The temperature
dependence of the energy of the different modes observed in
the 105–152-cm−1 range resulting from this fit is displayed
in Fig. 6(b). A weak hardening of the modes identified as
polar phonons (gray diamonds) is visible with decreasing
temperature except in the transition temperature range (80–
130 K), where a sizable jump is observed. Concomitantly, the
band shown in blue in Fig. 6(b) has an energy of 14.3 meV,
which falls precisely in the broad band of magnetic excitations
observed by INS, in a region characterized by a large spectral
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FIG. 6. (a) Enlarged view of the powder transmission infrared
spectra in the 80–155 cm−1 range. (b) Temperature dependence of
the mode frequencies extracted from the Lorentzian fit. Experimental
data are represented by filled diamonds; lines are only guides for the
eye. The phonon bands are represented in gray, whereas the magnetic
band is in blue.

weight. Moreover, this excitation is visible only at tempera-
tures well below the structural transition, i.e., in the magnetic
dimerized phase. These observations therefore suggest that
this excitation might involve, to a certain extent, the spin
degrees of freedom of this system.

III. THEORY

In order to explain this set of experimental findings and
explore the landscape of low-energy magnetic excitations in
Li2Cu2O(SO4)2, both exact diagonalization and higher-order
perturbation theory calculations have been carried out. The
Q dependence of the dynamic susceptibility χ ′′ should be
dominated by that of the Jd dimers [26] or, more generally,
should be related to the exchange constants via a first-moment
sum rule [27–30]. However, any such analysis is complicated
in Li2Cu2O(SO4)2 by the large phonon background. We
have therefore decided to focus rather on the clear magnetic
features A, B, and C visible in Fig. 3 by comparing them
to both exact diagonalization and higher-order perturbation
theory calculations.

A realistic spin Hamiltonian (see Appendix A) capable of
describing the magnetism of this compound in the triclinic
phase was derived previously [18] from first-principles cal-
culations and requires seven distinct couplings to account for
the low symmetry of the crystal. The geometry of this model
is depicted in Fig. 1(e), where Jd = 1 and Ja = 20/330 =
2/33 are antiferromagnetic and alternate along the legs of
the ladder to form a staggered dimer structure, Ja

⊥ ≈ Jb
⊥ =

−110/330 = −1/3 are the ferromagnetic couplings along
the rungs of the ladder, Jb

× = 78/330 = 13/55 and Jc
× =

133/330 are antiferromagnetic diagonal couplings between
the legs, and, finally, J2 = 112/330 = 56/165 is the antifer-

romagnetic next-nearest-neighbor interaction along the legs.
This model therefore neglects the supposedly very weak
interladder couplings [18] as well as any other term beyond
the bilinear, Heisenberg-like interactions.

Exact diagonalization (ED) calculations were performed
using finite lattices of N = 12, 16, 20, 24, 28, and 32 sites
with periodic boundary conditions along the legs, as the
one-dimensional magnetic unit cell contains two dimers, i.e.,
four spins. For system sizes exceeding N = 20 we used the
Lanczos algorithm [31,32] in order to compute low-lying
eigenvalues. Furthermore, perturbation expansion of the one-
triplet dispersion relation up to the fifth order was carried
out around the limit of isolated dimers. In this approach,
the unperturbed ground state corresponds to a product of
singlets, |s〉 = (|↑↓〉 − |↓↑〉)/

√
2, on the leg dimers defined

by the dominant antiferromagnetic coupling Jd . Low-energy
magnetic excitations of this system are obtained by promoting
one dimer into a triplet state, |t−1〉 = |↓↓〉, |t0〉 = (|↑↓〉 +
|↓↑〉)/

√
2, or |t1〉 = |↑↑〉. Since the unit cell contains two

dimers, we find two separate single-particle bands, as shown
in Fig. 7 (see Appendix A for details).

Numerical results are summarized in Fig. 7. Figures 7(a)
and 7(b) show the convergence of the perturbation expansion
by comparing, respectively, the one-triplet dispersion relations
obtained at different expansion orders and the highest-order
perturbation theory with exact diagonalization results. As
can clearly be seen, a remarkable convergence towards the
exact results is achieved for the higher-order expansions.
These calculations indicate the presence of two dispersive and
slightly overlapping triplet bands above a large spin gap. The
lowest band displays a behavior characteristic of antiferro-
magnetically coupled dimers with a maximum at the zone
center and a minimum close to the Brillouin zone edge. The
actual minimum arises at an incommensurate wave vector and
results from the presence of frustrating couplings. In addition
to the one-triplet excitation bands, the lower boundary of the
two-triplet continuum is calculated as

E2(k) = min
q ∈1BZ

m,n = 1,2

= [ωm(k − q) + wn(q)], (6)

where ω1(k) and ω2(k) represent the two one-triplet bands,
and is also shown in Fig. 7(b). The large value of the spin gap
compared to the modest triplet excitation bandwidth pushes
this continuum lower bound well above the maximum of the
highest one-triplet band. The ED results are close to the fifth-
order expansion, i.e., both of them can be considered accurate.
The exception is the top of the upper band where proximity
to the continuum leads to larger finite-size effects and slower
convergence of the series (see Appendix B for details). Exact
diagonalization, furthermore, reveals the presence of lower-
lying singlets above and below the continuum, which do
not interfere with the upper triplet band, as can be seen in
Fig. 7(b). Similar excitations have already been reported in
ladder systems, where they can be understood as bound states
of two triplets [8,33,34].

IV. DISCUSSION

The theoretical results presented in the previous section
provide solid ground for analyzing the experimental results
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FIG. 7. (a) One-triplet dispersion relation calculated from second- to fifth-order perturbation theory. (b) Comparison of the one-triplet
dispersion relation obtained for the fifth-order perturbation theory with exact diagonalization results obtained on finite lattices up to N = 32
sites. The first few lowest-lying singlets (in red) and triplets (in blue) obtained from ED are shown. The blue filled area corresponds to the free
two-triplet continuum. (c) One-triplet density of states obtained from fifth-order perturbation theory dispersion relations shown in (b). Energies
given in meV were obtained by downscaling the DFT isotropic magnetic couplings by 50%.

obtained for Li2Cu2O(SO4)2. It should be noted, however,
that the global energy scale obtained from first-principles cal-
culations [18] is not consistent with our experimental obser-
vations. Indeed, as already reported, a straightforward use of
the magnetic couplings provided by density functional theory
(DFT) calculations leads to a substantial overestimation of the
experimental spin gap [18]. Although the amplitudes of these
couplings are often overestimated and strongly depend on the
approximate treatment of exchange and correlation employed
in the calculations [35,36], their ratios are expected to be
subject to smaller errors [37]. In this framework, the ratios
between the seven couplings involved in the spin Hamiltonian
were considered to be fixed. The global energy scale was thus
taken as the only variable parameter, adjusted to reproduce
the experimental value of the spin gap. This led to an approx-
imate 50% downscaling of the DFT coupling amplitudes. The
resulting energy scale in millivolts is shown on the vertical
axes of Figs. 7(a) to 7(c).

Under these assumptions, powder INS can be qualitatively
discussed in terms of the one-triplet excitation density of
states (DOS) shown in Fig. 7(c). In the first approximation, the
experimental peaks A, B, and C shown in Fig. 3 can, indeed,
be interpreted as arising from the DOS singularities, at the
bottom of the lowest band for peak A and in the overlapping
region of the two bands for peaks B (bottom of the upper
band) and C (top of the lower band). Although this qual-
itative analysis provides a satisfying explanation regarding
the origins of the low-energy part of the INS data, it also
predicts the presence of higher-lying features corresponding
to the top of the highest one-triplet band, i.e., at ∼20 meV,
which was not observed experimentally. This could simply
be a matrix element effect. Alternatively, although our model
locates the two-triplet continuum lower bound above the
highest one-triplet branch over the entire first Brillouin zone
[see Fig. 7(b)], they remain close in energy. Therefore, only
minor modifications of the model employed in this work
would be necessary to change this picture and, in particu-

lar, restore a significant overlap between the highest triplet
quasiparticle mode and the two-particle continuum. This over-
lap will provide spontaneous decay channels [38,39], leading
to significant damping of these quasiparticles and therefore to
the absence of visible signatures in INS data.

A second important question arises from the likely de-
tection of triplet excitations in IR spectroscopy presented in
Sec. II C. Indeed, dominant electric dipole transitions induced
by light are strictly confined to spin-conserving excitations
(�S = 0) and are therefore, in principle, unable to reveal
singlet-to-triplet transitions. However, it has been shown that,
in a number of low-dimensional quantum magnets, this se-
lection rule can be circumvented through essentially two
mechanisms relying on the presence of spin-phonon coupling
and involving one or multiple magnetic excitations.

A successful and now well-established model employed
to describe the infrared optical absorption of one- and two-
dimensional undoped cuprates is based on phonon-assisted
bimagnon absorption [34,40–43]. The excitation of singlet
bound states, resulting from the coupling of two spin-carrying
modes (triplets, in our case) in such a way that the total spin
amounts to zero, indeed obeys the imposed spin selection
rule. Lorenzana and Sawatzky further showed that, when a
center of inversion is present, dipole-allowed absorption is
possible only if a symmetry-breaking phonon is also involved
in the process [40,41]. In our case, an attribution of the IR
band observed at 14.3 meV for T < 70 K to the absorption
of phonon-assisted bimagnons is very unlikely as the typical
energy of these excitations, already of the order of ∼2� =
21.2 meV when neglecting the phonon energy, is much larger.

An alternative mechanism, arising from the spin-orbit cou-
pling, has been proposed to explain the detection of singlet-to-
triplet excitations in dimerized quantum magnets using IR ab-
sorption [25,44]. It can be described qualitatively as a process
in which light excites the system into a virtual spin-singlet
one-phonon state coupled, through a dynamic Dzyaloshinskii-
Moriya (DM) interaction, to a spin-triplet zero-phonon state
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[45]. This mechanism thus relies on the assumption that the
virtual polar phonon involved in the process is associated
with atomic displacements able to induce an instantaneous
variation of the DM vector. Assuming that such a mechanism
is effective in the low-temperature phase of Li2Cu2O(SO4)2,
the 14.3 meV IR absorption band would, quite accurately,
match the zone center maximum of the lowest one-triplet
excitation and the corresponding Van Hove singularity in
the DOS.

V. CONCLUSION

In conclusion, we reported an experimental investigation
of magnetic excitations in the low-temperature, dimerized
phase of the recently discovered frustrated spin-1/2 two-
leg ladder Li2Cu2O(SO4)2. Through a combined analysis
of inelastic neutron scattering, magnetic susceptibility, and
infrared absorption spectroscopy data obtained from powder
samples, dispersive excitations of bandwidth of the order
of 5 meV have been clearly identified above a large spin
gap of 10.6 meV. Exact diagonalization and higher-order
perturbation theory calculations allowed for an overall con-
sistent interpretation of these results in terms of one-triplet
quasiparticle excitations above the singlet ground state. While
experiments and theory show an overall good agreement,
the only exception lies in the high-energy part of the triplet
excitation spectrum, where a possible coupling between the
quasiparticles and the high-lying many-particle continuum
may be responsible for the absence of a high-energy structure
in the INS spectra. This calls for further experimental and
theoretical investigations of this very rare example of the
frustrated spin-1/2 ladder, which will heavily rely on the
future availability of single crystals.
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APPENDIX A: SERIES EXPANSIONS

The evaluation of the one-triplet dispersion relation was
carried out by solving the spin Hamiltonian parametrized from
first principles around the limit of the isolated dimer (low-
temperature phase), implementing a high-order perturbative
approach in the strong-coupling expansion in the spirit of
textbooks such as chapter 11 of Ref. [46].

Following Ref. [18], the triclinic phase can be described
by the staggered S = 1/2 dimer structure schematized in
Fig. 1(e). In this structure one of the couplings along the legs,
Jd , is much stronger than all the others. The triclinic Hamil-
tonian H can thus be written as the sum of an unperturbed
part H0, for decoupled dimers along the legs [thick dark blue
lines in Fig. 1(e)], and a perturbation W , accounting for the
coupling between the dimers with

H0 =
∑

m

[
Jd

(
Sm

1,a · Sm
2,a + Sm

1,b · Sm
2,b

)]
(A1)

and

W =
∑

m

[
Ja
⊥
(
Sm

1,a · Sm
2,b

) + Jb
⊥
(
Sm−1

2,a · Sm
1,b

) + J2
(
Sm

1,a · Sm+1
1,a + Sm

2,a · Sm+1
2,a + Sm

1,b · Sm+1
1,b + Sm

2,b · Sm+1
2,b

)

+ Ja
(
Sm

1,a · Sm−1
2,a + Sm

1,b · Sm−1
2,b

) + Jb
×
(
Sm−1

1,a · Sm
1,b + Sm−1

2,a · Sm
2,b

) + Jc
×
(
Sm

1,a · Sm
1,b + Sm

2,a · Sm
2,b

)]
, (A2)

where m is the cell index, a and b denote the two legs of the
ladder, the numbers 1 and 2 distinguish the upper and lower
spin sites of a dimer, and Sm

i,α , with α = {a, b} and i = {1, 2},
are the spin-1/2 operators.

At W = 0, the system consists of isolated dimers and the
unperturbed ground state corresponds to a product of singlets
on the leg dimers. The first excited state is the one-triplet
state |t〉m

α , a state with a single triplet on a dimer (m, α) and
singlets on all the other dimers. As Li2Cu2O(SO4)2 contains
two dimers per unit cell, a 2 × 2 effective Hamiltonian, W
has to be computed for each value of k in Fourier space.
This leads to two separate bands of triplets. The dispersion
relation is obtained by diagonalizing the effective Hamiltonian
up to a given order starting from the Bloch states |T 〉α =

2√
Nc

∑
m eikm|t〉m

α , where α = {a, b} and Nc is the number of
unit cells.

1. First order

At first order, the effective Hamiltonian Wo1 is given
simply by the matrix elements of Eq. (A2) between the states
|T 〉α . The diagonal elements Wo1(1, 1) = Wo1(2, 2) and the

off-diagonal Wo1(2, 1) = W∗
o1(1, 2) can be found by elemen-

tary means and read

Wo1(1, 1) =
(

J2 − Ja

2

)
cos k, (A3)

Wo1(1, 2) = 1

4
[(cos k − i sin k)(2Jb

× − Ja
⊥) + 2Jc

× − Jb
⊥].

(A4)

2. Second order

Computation of the second order is already more cum-
bersome but can still be performed by elementary means
(following, for example, the strategy of Secs. IV and V
of Ref. [47]). The second-order corrections Wo2(1, 1) =
Wo2(2, 2) and Wo2(2, 1) = W∗

o2(1, 2) read

Wo2(1, 1) = 1
32

{
12(Jc

× − Jb
⊥)Jc

× − (Ja
⊥)2 − (Jb

⊥)2

+ 12(Jb
× − Ja

⊥)Jb
× − 2(Ja)2 + 24(J2 − Ja)J2

− 2(2J2 − Ja)2 cos(2k) + 2[(2Jc
× − Jb

⊥)Ja
⊥

− 4(Ja)2 − 2(2Jc
× − Jb

⊥)Jb
×] cos k

}
, (A5)
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Wo2(1, 2) = 1
16

{
2[−(Jb

⊥)2 + i sin k(Ja
⊥)2] − (2J2

− Ja)(2Jb
× − Ja

⊥) − [cos(2k) − i sin(2k)](2J2

− Ja)(2Jb
× − Ja

⊥) − 2[(2J2 − Ja)(2Jc
× − Jb

⊥)

+ (Ja
⊥)2] cos k

}
. (A6)

3. Fifth order

To proceed beyond second order, we adapted a C code
that was used previously, e.g., in Refs. [48,49] to the present
situation. The main challenges here include the large number
of variables (six coupling ratios) and the rather long-range
nature of some couplings [see Fig. 1(e)]. This limits us to
fifth order; the resulting expressions are too cumbersome to
present here (the full expression of the perturbation matrix W
can be found in the Mathematica notebook provided in the
Supplemental Material [50] that also contains a seventh-order
series for the ground-state energy). Nevertheless, we note that
there is a freedom of the choice of basis and implementation
of the perturbation theory that starts to impact the effective
Hamiltonian W at order 3. For efficiency reasons, we decided
to implement the perturbative corrections to the basis vectors
starting from |T 〉α such that orthonormality is lost at higher
order. As a consequence, the matrix representation of W no
longer needs to be Hermitian, and indeed, we find complex
diagonal matrix elements starting at order 3. Nevertheless, we
have checked that the eigenvalues of this 2 × 2 matrix are
always real, as they should be since they are independent of
the choice of basis.

We have also double-checked that we recover known
limiting cases from our six-variable expressions: for Ja

⊥ =
Jb
⊥ = Ja = J2 = 0 and Jb

× = Jc
× we recover the conventional

two-leg ladder, and our results for the eigenvalues are indeed
consistent with Ref. [51]; for Ja

⊥ = Jb
⊥ = Jb

× = Jc
× = 0 our

model specializes to two decoupled frustrated and dimerized
chains, a system that was studied in Refs. [52,53] for J2 = 0.

For illustration purposes, we report a numerical expression
of the dispersion relation up to full fifth order, obtained by
substituting the DFT values of the coupling constants given in
Sec. III,
ωo5±(k) = 1.09 + 1.65 × 10−1 cos(k) − 3.54 × 10−2 cos(2k)

− 1.60 × 10−3 cos(3k) − 2.68 × 10−3 cos(4k)

+ 1.54 × 10−4 cos(5k) ± [4.07 × 10−2

− 8.75 × 10−4 cos(k)

− 2.35 × 10−2 cos(2k) + 4.38 × 10−3 cos(3k)

+ 7.68 × 10−4 cos(4k) + 1.94 × 10−4 cos(5k)

− 1.20 × 10−4 cos(6k) − 2.27 × 10−6 cos(7k)

+ 1.04 × 10−6 cos(8k)+7.15 × 10−7 cos(9k)]1/2.

(A7)

FIG. 8. Exact diagonalization results obtained on finite lattices
up to N = 32 sites. The triplet (S = 1) energies for k = 0 and k = π

are plotted as a function of 1/N .

For reasons of compactness of presentation, we have
rounded the numerical coefficients to three significant digits.
Expression (A7) is used in Fig. 7 for order 5 in Fig. 7(a) and
systematically in Fig. 7(b).

APPENDIX B: FINITE-SIZE EFFECTS

Here we take a closer look at the finite-size effects present
in the numerical results for the one-triplet dispersion shown in
Sec. III. Indeed, Fig. 7(b) exhibits a remarkable convergence
of the numerical results towards the fifth-order perturbative
expansion with increasing N . Figure 8 shows the ED energies
of the triplet excitations for two different values of k, k = 0
and k = π , as a function of the inverse of the size, 1/N ,
including the smaller system sizes N = 12 and 16 not shown
previously. One observes that the values of the energies for
k = π and for the lower band of the triplet at k = 0 converge
rapidly. Larger finite-size effects are observed only at the top
of the upper band at k = π . This corresponds to the region
where the series also show a slow convergence [see Fig. 7(a)],
and we speculate that this is again due to the proximity to the
continuum. Still, for systems with N > 20, the data can also
be considered to converge to the thermodynamic limit. Even in
this least favorable case, finite-size corrections to the N = 32
data are presumably negligible for both bands and all values
of k.
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