
PHYSICAL REVIEW B 99, 064407 (2019)

Four definitions of magnetic permeability for periodic metamaterials
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We state and compare four different definitions of magnetic permeability for periodic, artificial media, or
metamaterials. The connections among them, and properties in general, are discussed in detail, including causal-
ity, passivity, symmetry, asymptotic behavior, and origin dependence. The analysis is limited to metamaterials
made from linear and nonmagnetic constituents.
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I. INTRODUCTION

In their famous textbook [1], Landau and Lifshitz argue
that magnetic permeability ceases to have any physical mean-
ing at relatively low frequencies and above. The basis of their
argument is that for high frequencies, the electric polarization
current may become comparable or even larger than the
current from the microscopic magnetization, contributing to
the magnetic moment of the sample. The microscopic magne-
tization cannot therefore be interpreted as the total magnetic
moment density.

For metamaterials, such as the split-ring resonator medium
proposed by Pendry [2], the induced current in the inclusions
is actually the main source of magnetism. By defining a
macroscopic magnetization vector to describe a given part of
the induced current, we obtain a definition of magnetic per-
meability which in principle can be used for all frequencies.
However, this raises several questions. First, how should the
induced current be decomposed into a magnetization term,
electric polarization term, and possibly other terms? Second,
will the resulting permeability have the “conventional” prop-
erties that we expect for a permeability?

We limit the discussion to periodic media. Clearly, there is
an infinite number of possibilities to decompose the induced
current [1,3–9]; any transversal part of the induced current
can be described both as a time-dependent, electric polariza-
tion term and a magnetization term. We will consider four
possibilities: In the so-called Landau-Lifshitz formulation
(Sec. III A), all induced current is described by the electric
polarization vector and therefore permittivity. Another natural
and well-known possibility is to define the magnetization as
the magnetic moment density of the sample, using a fixed
origin in each unit cell (Sec. III B). A variant of this ap-
proach was proposed by Yaghjian, Alù, and Silveirinha [8],
using a decomposition of induced current in Vinogradov and
Aivazyan [3] (Sec. III C). A final possibility is to define the
permeability to include “as much as possible” of the second-
order spatial dispersion of the Landau-Lifshitz permittivity.
This approach was used by Landau, Lifshitz, and Pitaevskii
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[1] and Silveirinha [5] and is generalized here (Sec. III D).
The method used to construct other decompositions will be
described briefly in Sec. III E.

Dependent on the particular decomposition, the resulting
permeability gets more or less nonlocal (or dependent on
wave number k). However, at least for metamaterials which
mimic natural magnetism, we expect that all four perme-
abilities coincide for low frequencies and that they are local
there. Nevertheless, to obtain a sufficiently large response,
metamaterials are often used for relatively large frequencies
where the lattice constant is comparable to the wavelength. In
this region the permeabilities may differ (Sec. IV).

In Secs. III and IV we will compare the different per-
meabilities and discuss their properties, including causal-
ity/analyticity, passivity, symmetry, asymptotic behavior, and
origin dependence. While some of these properties have been
established previously, at least for certain permeabilities or
with limited generality, the complete list, with associated
proofs, is new, to the best of our knowledge. In particular,
we develop a rigorous framework where the source is treated
as the proper input to the system and obtain analyticity and
invertibility for the tensor response function and the Landau-
Lifshitz permittivity tensor. This framework turns out to be
useful to establish that all inverse permeabilities are causal
(only one of them were known to be causal from Ref. [8]).
Furthermore, we determine the asymptotic behavior of the
permeabilities. We also find analytically and numerically that
all permeabilities may be different even for small ka, where
a is the lattice constant. This may appear surprising when
comparing the definitions of magnetization in Secs. III B
and III C. Finally, a novel feature about the formulations is
that even for nongyrotropic media, the magnetizations are
allowed to depend on the longitudinal electric field. This is
necessary to obtain a general treatment valid in the absence of
symmetries.

Before reviewing the homogenization procedure, we will
make a couple of definitions. The analysis happens in the
frequency domain. The fields and parameters are clearly
dependent on frequency in general; however, for simplicity in
notation, we will usually not write this dependence explicitly.
We use the standard notations O(kn) and �(kn) for the
asymptotic behavior near zero or infinity; O(kn) is used for
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expressions that are less than or equal to Ckn (C sufficiently
large constant), while �(kn) means expressions that tends to
Ckn for some constant C.

A time-domain function or distribution f (t ) is said to be
causal if it vanishes for t < 0. A frequency-domain function
f (ω) is said to be causal if

(i) f (ω) is analytic in an upper half-plane Im ω > γ ,
where γ is some real constant;

(ii) f (ω) = O(|ω|n) as ω → ∞ in this half-plane, for
some integer n.

This definition makes sense because of the following result
from the theory of Laplace transforms [10]: Any function
f (ω) satisfying (i) and (ii) above can be represented as a
Laplace transform of a causal time-domain function or dis-
tribution f (t ), setting the Laplace variable s = −iω.

II. HOMOGENIZATION

We consider a cubic periodic metamaterial. The meta-
material inclusions are assumed to be linear, nonmagnetic,
passive, and time-shift invariant. The microscopic, complex,
relative permittivity in a unit cell will be denoted ε(r). The
permittivity and permeability in vacuum are ε0 and μ0, re-
spectively, and the vacuum light velocity is c = 1/

√
ε0μ0.

Angular frequency is denoted ω. The microscopic Maxwell
curl equations in the frequency domain are

∇ × e(r) = iωb(r), (1a)

1

μ0
∇ × b(r) = −iωε0e(r) + j(r) + jext(r), (1b)

with time dependence convention exp(−iωt ). Here j(r) is the
induced current density, which includes the “bound” current
due to time-dependent, electric polarization density. More-
over, jext(r) represents an external source current density,
which can be expressed by an inverse Fourier transform

jext(r) = 1

(2π )3

∫
Jext(k)eik·rd3k. (2)

To probe the metamaterial in the appropriate regime, it is
natural to assume that the source is slowly varying over a
unit cell size a, so that essentially only k values with ka � 1
contribute in the integral. However, this assumption is only
necessary if we want our macroscopic fields to be true spatial
averages [see the paragraph with Eqs. (8) and (9)].

It is convenient to consider each spatial Fourier component
in (2) separately to enable the use of Floquet theory. Rather
than (2), we will therefore use a source1

jext(r) = Jext(k)eik·r. (3)

Then Floquet theory ensures that the fields can be written in
the forms

e(r) = ue(r, k)eik·r, (4a)

b(r) = ub(r, k)eik·r, (4b)

j(r) = uj(r, k)eik·r, (4c)

1The dimension of Jext(k) in (3) has an extra m−3.

where ue(r, k), ub(r, k), and uj(r, k) are periodic functions
with periods equal to those of the material. Thus we can write

ue(r, k) =
∑
lmn

Elmn(k)eiblmn·r, (5)

where blmn’s are the reciprocal lattice vectors. In other words,
the resulting field e(r) contains a discrete Fourier spectrum,
with a fundamental component

E(k) ≡ E000(k). (6)

This component is the zeroth Fourier coefficient of the peri-
odic function ue(r, k):

E(k) = 1

V

∫
V

ue(r, k)d3r = 1

V

∫
V

e(r)e−ik·rd3r, (7a)

where V denotes the volume of a unit cell. Note that (7a) is
not a Fourier transform, as e(r) is dependent on k. Similarly,
we have

B(k) = 1

V

∫
V

ub(r, k)d3r = 1

V

∫
V

b(r)e−ik·rd3r, (7b)

J(k) = 1

V

∫
V

uj(r, k)d3r = 1

V

∫
V

j(r)e−ik·rd3r. (7c)

As in Refs. [5,7,8], we define the macroscopic field associ-
ated with the single-Fourier-component source as

E (r) = E(k)eik·r, (8a)

B(r) = B(k)eik·r, (8b)

J (r) = J(k)eik·r. (8c)

This definition, from the fundamental Floquet mode can
in principle be used for all k and ω. Only when ka � 1
can we view the macroscopic fields as true spatial averages
according to

E (r) =
∫

f (r′)e(r − r′)d3r′, (9a)

B(r) =
∫

f (r′)b(r − r′)d3r′, (9b)

J (r) =
∫

f (r′)j(r − r′)d3r′. (9c)

Here f (r) is a test function whose Fourier transform is
negligible outside the first Brillouin zone and normalized to
unity for k = 0. The equivalence of (9) and (8) under these
conditions is established by Fourier transforming (9) [11].

Starting from the microscopic Maxwell equations (1), us-
ing (4) and (5), we can prove (see Appendix A for details):

ik × E(k) − iωB(k) = 0, (10a)

1

μ0
ik × B(k) + iωε0E(k) − J(k) = Jext(k). (10b)

As will become clear in the next two paragraphs, Eqs. (10)
should be viewed as the k-space counterparts of Maxwell’s
equations for macroscopic fields E (r), B(r), and J (r). They
are not the k-space counterparts of the microscopic Maxwell
equations.
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In this work we will mostly use the single-Fourier-
component source. However, we will now discuss the macro-
scopic field after superposition of the spatial Fourier com-
ponents according to (2). Rather than (8a) we then have the
macroscopic field

E (r) = 1

(2π )3

∫
E(k)eik·rd3k, (11)

which is the inverse Fourier transform of the fundamental
Floquet mode E(k). The macroscopic fields B(r) and J (r)
are expressed similarly. It is important to note that E (r) �=
e(r) in general. Even for wave-number spectra with ka � 1,
the microscopic field e(r) may vary rapidly in the unit cell,
as described by the periodic function (5). The operation (7a)
picks only out the constant term in (5), and the inverse Fourier
transform (11) is not able to restore the rapid variation.

By inverse Fourier transforming (10) we obtain the
Maxwell equations for the macroscopic fields (or fundamental
Floquet modes):

∇ × E (r) − iωB(r) = 0, (12a)

1

μ0
∇ × B(r) + iωε0E (r) − J (r) = jext(r). (12b)

In principle, the Maxwell equations (10) and (12) are valid
for all ω and any spectra of k’s. In other words, although it
is natural to assume that ka � 1 for the contributing modes,
such that the macroscopic fields are true spatial averages, we
may in principle use the macroscopic fields for the entire
k and ω spectrum, as long as we recall their meaning as
fundamental Floquet modes. A natural question then is if the
macroscopic fields have any physical significance for arbitrary
ka. Indeed, it turns out that they can be used to calculate
the work done by the source in each unit cell, provided the
wave-number spectrum is sufficiently narrow (Appendix B).

Note that in the presence of a source, ω and k are free
parameters [5,7,8,12], resulting from the Fourier decomposi-
tion of the source with respect to t and r. For example, the
homogenized electric field is described in (ω, k) space by the
quantity E(k), which is dependent on ω and k separately (the
ω dependence is suppressed in the notation). For discussions
on causality and asymptotic behavior we will hold k fixed
and vary ω. This corresponds to considering the frequency (or
temporal) dependence of a single spatial Fourier component
of the source and the associated response. As seen below, this
leads, e.g., to a causal Landau-Lifshitz permittivity [1,12].

III. INDUCED CURRENT

Now the big question is how to decompose the induced
current density to obtain a macroscopic permittivity, perme-
ability, and possibly other parameters. In the most convenient
and conventional case, we can express

J(k) = −iωP(k) + ik × M(k), (13a)

P(k) = ε0(ε − 1)E(k), (13b)

M(k) = μ−1
0 (1 − μ−1)B(k), (13c)

for some relative permittivity and permeability tensors ε and
μ independent of k. Then we have a local description of the
constitutive relations. By defining auxiliary fields

D(k) = ε0E(k) + P(k), (14a)

H(k) = B(k)/μ0 − M(k), (14b)

Maxwell’s equations (10) can be written

ik × E(k) − iωB(k) = 0, (15a)

ik × H(k) + iωD(k) = Jext(k). (15b)

Transforming to the spatial domain,

∇ × E (r) − iωB(r) = 0, (16a)

∇ × H(r) + iωD(r) = jext(r), (16b)

with

D(r) = ε0E (r) + P (r) = ε0εE (r), (17a)

H(r) = B(r)/μ0 − M(r) = μ−1
0 μ−1B(r), (17b)

where P (r) and M(r) are the inverse Fourier transform of
P(k) and M(k), respectively. The equation set (16) with (17)
is a local description of the electromagnetic fields.

In general, it is not always possible to express the induced
current exactly as in (13) with local constitutive parameters ε

and μ (independent of k). In Secs. III A–III D we will consider
four possibilities of how to decompose the induced current.
All decompositions have appeared in previous literature, al-
though the one in Sec. III D has been generalized. In each
subsection, we will discuss the properties of the different,
resulting permeabilities. In Sec. III E we discuss how one can
construct other decompositions and analyze their properties.

We want Maxwell equations in the forms (15) and (16) to
be valid in all cases, however, with different expressions for
the auxiliary fields D(k) and H(k). The strategy will be, first,
to define a magnetization M(k) and then put

D(k) = ε0E(k) + J(k) − ik × M(k)

−iω
, (18a)

H(k) = B(k)/μ0 − M(k). (18b)

Substituting (18) into (15), we recover (10).
From now on, we will omit the k dependence in the nota-

tion, i.e., we will, e.g., write J rather than J(k). An exception
is the Landau-Lifshitz permittivity in Sec. III A, which always
will be denoted ε(ω, k), i.e., with arguments. Note that the
fundamental fields, i.e., E, B, J, and Jext, are the same in all
formulations. We will often, without loss of generality, orient
the coordinate system such that k points in the x̂ direction, i.e.,
k = kx̂.

A. Landau-Lifshitz (ll) formulation

In the Landau-Lifshitz formulation [1], we describe all
induced current in terms of a electric polarization density Pll:

J = −iωPll. (19)

This means that the magnetization is zero (Mll = 0), and the
permeability is trivial, μll = I. The displacement vector is
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Dll = ε0E + Pll, or

Dll = ε0E − J/iω. (20)

In a linear medium, there is a linear constitutive relation
between Dll and E:

Dll = ε0ε(ω, k)E. (21)

This defines the Landau-Lifshitz permittivity ε(ω, k). We note
that the constitutive relations are described in the form of
a single parameter, ε(ω, k). Considering terms up to second
order in k,

εi j (ω, k) − δi j = χi j + αik jkk/ε0 + βikl jkkklc
2/ω2, (22)

for some tensors χi j , αik j , and βikl j , independent of k. In (22)
summation over repeated indices is implied. In the presence
of strong spatial dispersion, where higher-order terms are
not negligible, we let the βikl jkkkl c2/ω2 term absorb the
remainder. For such media the βikl j tensor gets dependent
on k.

Maxwell’s equations (10) take the form

ik × E − iωB = 0, (23a)

1

μ0
ik × B + iωε0ε(ω, k)E = Jext. (23b)

By eliminating B, we obtain[
k2I⊥ − ω2

c2
ε(ω, k)

]
E = iωμ0Jext, (24)

with I⊥ = I − kk/k2, where I is the identity, or

I⊥ =

⎡
⎢⎣

0 0 0

0 1 0

0 0 1

⎤
⎥⎦, (25)

expressed in a coordinate system where k = kx̂. The matrix
in the brackets in (24) can be inverted (Appendix C) to obtain
an input-output relation

E = G(ω, k)Jext, (26)

where G(ω, k) is a (matrix) response function given by

G(ω, k)−1 = (iωμ0)−1

[
k2I⊥ − ω2

c2
ε(ω, k)

]
. (27)

For an isotropic medium, the permittivity tensor can be written

ε(ω, k) =

⎡
⎢⎣

ε‖ 0 0

0 ε⊥ 0

0 0 ε⊥

⎤
⎥⎦, (28)

for a longitudinal ε‖ and transversal ε⊥ permittivity, respec-
tively. In this case the response function G(ω, k) becomes
G(ω, k) = 1/iωε0ε‖ or

G(ω, k) = iωμ0

k2 − ω2

c2 ε⊥
, (29)

dependent on the direction of the source Jext.

For each k, we have, due to passivity and causality (Ap-
pendix C):

G(ω, k) analytic for Im ω > 0 and fixed k, (30a)

−G(ω, k)−1 − G(ω, k)−1† positive definite, (30b)

det G(ω, k) �= 0 for Im ω > 0, (30c)

det G(ω, k)−1 �= 0 for Im ω > 0, (30d)

ε(ω, k) analytic for Im ω > 0 and fixed k, (30e)

−iω[ε(ω, k) − ε(ω, k)†] positive semidefinite. (30f)

Here † denotes Hermitian conjugate (transpose and com-
plex conjugate). For (30f) we have assumed real ω and k, as
is the case for Fourier decomposition of the fields (Sec. II). If
the Fourier integrals in ω and k are deformed into the complex
plane, then the permittivity satisfies (C13) rather than (30f).

For reciprocal metamaterial inclusions, we have

GT (ω,−k) = G(ω, k), (31a)

εT (ω,−k) = ε(ω, k), (31b)

where the superscript “T” denotes transpose. From (27) the
two equations in (31) are equivalent. The symmetry relation
(31b) is well known in the literature [1,12]; a proof can be
found in Ref. [8].

For nongyrotropic media, we have ε(ω,−k) = ε(ω, k)
[1,12]. This will be the case if there is a center of symmetry in
the medium. Then the odd-order term in (22) vanishes,

αik j = 0. (32)

The asymptotic behavior of ε(ω, k) as ω → ∞ can be viewed
in two different ways. In principle, for sufficiently large fre-
quencies the permittivities of the inclusions and host medium
tend to unity [1]; thus eventually ε(ω, k) → I. Nevertheless,
in some cases it can be convenient to describe the asymptotic
behavior as ε(ω, k) → const, where the constant tensor limit
can be different from identity. This may be the case, e.g., if
the permittivities of the inclusions and the host medium are
considered nondispersive in the frequency range of interest.

With either of these asymptotic behaviors, the tensors
ε(ω, k), G(ω, k)−1, and G(ω, k) are causal functions. This
follows from the definition of a causal function in Sec. I and
(27) and (30).

B. Multipole decomposition

The traditional way to decompose the induced current is
by multipole expansion [7,9,13]. Consider the unit cell that
contains the origin. Using

exp(−ik · r) = 1 − ik · r − (k · r)2/2 + �[(k · r)3], (33)

we obtain from (7c) to second order in k:

J = 1

V

∫
V

je−ik·rd3r (34)

= 1

V
·
[∫

V
jd3r − ik ·

∫
V

rjd3r − 1

2

∫
V

(k · r)2jd3r

]
≡ −iωP + ik × M − ωk · Q/2 − iωR, (35)
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where

P = 1

−iωV

∫
V

jd3r, (36a)

M = 1

2V

∫
V

r × jd3r, (36b)

Q = 1

−iωV

∫
V

(rj + jr)d3r, (36c)

R = 1

2iωV

∫
V

(k · r)2jd3r. (36d)

Here we have decomposed the tensor rj into its antisym-
metric and symmetric parts,

k · rj = k · (rj − jr)/2 + k · (rj + jr)/2

= −k × r × j/2 + k · (rj + jr)/2. (37)

In addition to the polarization vector P, magnetization vector
M, and quadrupole tensor Q, the extra term R includes electric
octupole and magnetic quadrupole. All these multipole terms
are dependent on k although not explicitly specified.

A convenient feature of the multipole decomposition is that
the terms have a clear physical interpretation. In particular,
M quantifies the amount of circulating, induced currents. For
example, if a 2D metamaterial unit cell consists of a cylinder
inclusion with a circular symmetric current in the azimuthal
direction, we obtain P = 0, Q = 0, and R = 0, while M is
nonzero.

From M we define, as usual,

H = B/μ0 − M. (38)

The remaining terms in (35) go into the displacement vector,
according to(18a)2:

D = ε0E + P − ik · Q/2 + R. (39)

In a linear medium, we can write the associated constitutive
relations

Pi = ε0χi jE j + ξik jkkE j + ηikl jkkklE j/(μ0ω
2), (40a)

Mi = ωζi jE j + νil jkl E j/(μ0ω), (40b)

Qik = 2iσik jE j + 2iγikl jkl E j/(μ0ω
2), (40c)

Ri = ψikl jkkklE j/(μ0ω
2), (40d)

for some tensors χi j , ξik j , ηikl j , σik j , γikl j , ψikl j , and pseu-
dotensors ζi j and νil j . Treating the (pseudo-)tensors as Taylor
coefficients independent of k, we have included the necessary
orders of k such that J is second order when substituting in
(35). We can consider higher-order spatial dispersion by let-
ting the highest-order term in (40) take care of the remainder.
For example, in (40b) this will lead to a νil j which is dependent
on k.

From Faraday’s law B = k × E/ω, we note that any de-
pendence on B is taken care of by the k-dependent terms

2Alternatively, the electric octupole–magnetic quadrupole term R
could be split such that the magnetic quadrupole is included into (38).

in (40). For later convenience we have included certain k-
independent quantities (such as μ0ω

2) in the tensor elements.
Magnetoelectric coupling is taken into account in terms of ξik j

and ζi j .
We are interested in the magnetization (40b). Choosing a

coordinate system such that k = kx̂, we can write

Mi = ωζi jE j + kνi1 jE j/(μ0ω)

= ωζi jE j + kνi11E1/(μ0ω) + μ−1
0 (1 − μ−1)i jB j, (41)

with

1 − μ−1 =
[−ν213 ν212

−ν313 ν312

]
. (42)

Here μ−1 is identified as an inverse permeability, resulting
from the magnetization M defined as the averaged magnetic
moment density (36b). Note that in the coordinate system
where k = kx̂, the inverse permeability is described as 2 × 2.
The reason for this is that B is transversal (i.e., B1 = 0) and
that only the transversal part of M contributes to J by (35). In
an arbitrary coordinate system, (42) can be written

(1 − μ−1)im = εmk j
kkkl

k2
νil j, (43)

where εmk j is the Levi-Civita symbol. This means that 1 −
μ−1 is a tensor.

We will now compare the Landau-Lifshitz formulation and
the multipole decomposition. By eliminating D from (20) and
(21), and comparing with (35), we obtain

ε0ε(ω, k)E = ε0E + P − k × M/ω − ik · Q/2 + R. (44)

Using the constitutive relations (40), this gives

εi j (ω, k) − δi j

= χi j + (ξik j + σik j − εikmζm j )kk/ε0

+ (γikl j + ψikl j + ηikl j − εikmνml j )kkklc
2/ω2. (45)

Comparing (22) and (45), and noting that βikl j , ψikl j , and ηikl j

can be taken to be symmetric in k and l , we have

αik j = ξik j + σik j − εikmζm j, (46a)

βikl j = ψikl j + ηikl j + γikl j + γilk j

2
− εikmνml j + εilmνmk j

2
.

(46b)

For nongyrotropic media, if there is a center of symmetry
in the medium, then we can take the center of the unit cell to be
the center of symmetry. For k = 0, from symmetry and (36),
it follows that M = 0 and Q = 0. This means that ζi j = 0,
σik j = 0, and from (32), ξik j = 0.

In other words, for nongyrotropic media, M and Q contain
only first-order terms in k, which means that all terms in (35)
except P are second order in k. This means that the electric
octupole-magnetic quadrupole term R can be of the same
order of magnitude as the magnetization and quadrupole
terms [9]. Thus, when concerned with the magnetic response,
the R term and Q should in general be taken into account in
addition to M.

Even when considering an asymptotic behavior of the mi-
croscopic permittivity ε(r) → 1 as ω → ∞, it turns out that
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for fixed k, we have μ−1 �→ I in general [14]. An asymptotic
value different from identity does not violate causality, as
μ−1 → I is only required for eigenmode propagation where
ω and k are connected. Even though the asymptotic behavior
for fixed k may have limited direct physical importance,
it has implications for the Kramers-Kronig relations, being
formulated for fixed k. The asymptotic behavior of μ is
found as follows. The asymptotic behavior of any microscopic
permittivity is of the form [1]

ε(r) = 1 − ω2
p(r)

ω2
+ O(ω−3), (47)

where ωp(r) is the plasma frequency. As ω → ∞ the fields
will tend to those we would have if the metamaterial were
replaced by vacuum. Thus we can write

e(r) = E exp(ik · r) + f (r), (48a)

j(r) = −iωε0[ε(r) − 1][E exp(ik · r) + f (r)], (48b)

for some f (r), with

f (r) → 0 as ω → ∞. (49)

Here we have assumed a source such that E is independent
of ω for large frequencies (this condition can be removed).
Having an expression for j(r), it is straightforward to obtain
M by (36b):

M = iωε0

2V
E ×

∫
V

r[ε(r) − 1]eik·rd3r

− iωε0

2V

∫
r × f (r)[ε(r) − 1]d3r. (50)

According to (47) and (49), the last term in (50) tends to zero
faster than ω−1. Comparing with (40b), this means that the
term will not contribute to νil j in the limit ω → ∞. The first
term in (50) can be written

−iε0

2ωV
E ×

∫
V

r ω2
p(r)eik·rd3r + O(ω−2). (51)

The integral in (51) is clearly nonzero in general. Then (51) is
�(ω−1), which by (40b) means that ν �→ 0. We therefore find
that

1 − μ−1 = O(1) as ω → ∞, for fixed k, (52)

and, in general, μ−1 �→ I.
For diagonal μ it is straightforward to find examples

where Im μ is both positive and negative, depending on the
frequency (see Sec. IV). This is not a violation of passivity;
it is just an indication of the phase relationship between
the magnetization and the macroscopic field in the unit cell.
The fundamental passivity condition is only that the Landau-
Lifshitz permittivity satisfies (30f).

We will now consider the causality and analyticity of the
inverse permeability. Note that E is the same in all formu-
lations, so we can use the Landau-Lifshitz formulation to
express

E = G(ω, k)Jext, (53)

with a response function G(ω, k), as in (26). According to
(30c), G(ω, k) is invertible in the upper half-plane Im ω > 0.

Hence, we can choose Jext such that only a single component
of E is nonzero, say, Ej , and such that Ej is any analytic
and causal function. The required Jext is analytic in the up-
per half-plane from the analyticity of G(ω, k)−1. Taking the
asymptotic behavior of G−1(ω, k) as ω → ∞ into account,
the required Jext is realizable as a causal source.

We have from (41) that

Mi = ωζi jE j + kνi1 jE j/(μ0ω), (54)

where now only a single component Ej is nonzero. Clearly, the
microscopic, induced current j is causal, since it is causally
related to the source. Thus Mi, as given by (36b), is causal.
Putting k = 0 in (54), and remembering that Ej is any causal
function, it follows that ζi j is analytic in the upper half-plane.
By letting k �= 0, we find that νi1 j is analytic there, since Mi

and ωζi jE j are. From (42) we conclude that μ−1 is analytic in
the upper half-plane. Moreover, taking (52) into account, μ−1

is causal. Writing μ−1(ω, k) → μ−1(∞, k), we can establish
Kramers-Kronig relations (C10) for χ(ω, k) ≡ μ−1(ω, k) −
μ−1(∞, k) [15].

It is also possible to combine ζi j and μ−1
i j into a single,

inverse permeability tensor [8] and consider its causality. In
a coordinate system where k = kx̂, Faraday’s law (10a) be-
comes E2 = B3ω/k and E3 = −B2ω/k. We can then express
(41) as

Mi = ωζi1E1 + kνi11E1/(μ0ω) + ω2ζi2B3/k

−ω2ζi3B2/k + μ−1
0 (1 − μ−1)i jB j (55)

or

Mi = ωζi1E1 + kνi11E1/(μ0ω) + μ−1
0 (1 − μ̃−1)i jB j (56)

with the modified inverse permeability

μ̃−1 = μ−1 − μ0ω
2

k

[−ζ23 ζ22

−ζ33 ζ32

]
. (57)

In the two previous paragraphs we found that μ−1 and ζi j are
analytic in the upper half-plane; thus so is μ̃−1.

It is interesting to note that all (pseudo-)tensor elements
in (40) are analytic in the upper half-plane. This is seen as
follows. First, recall from (53) and (30c) that the source can be
chosen such that only a single component of the electric field,
say, Ej , is nonzero and such that Ej is any analytic function.
Also, Pi, Mi, Qik , and Ri are analytic, since they are given by
the induced, microscopic current through (36). We now apply
the general result in Appendix E to the expansions (40), with
the result that all (pseudo-)tensor elements in (40) are analytic
in the upper half-plane.

Finally, we note the well-known fact [16] that, in general,
the multipole quantities are dependent on the choice of origin.
We have assumed that the origin is inside the unit cell V , but
we are free to move the origin inside the cell. Substituting r =
r′ + r0 in (34) and expanding the exponential exp(−ik · r′)
give

J = e−ik·r0 (−iωP + ik × M′ − ωk · Q′/2 − iωR′), (58)
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with

M′ = 1

2V

∫
V

r′ × jd3r, (59a)

Q′ = 1

−iωV

∫
V

(r′j + jr′)d3r, (59b)

R′ = 1

2iωV

∫
V

(k · r′)2jd3r. (59c)

By changing r0, the different multipole quantities will
change, however, such that the sum of contributions to the
induced current [right-hand side of (58)] is constant. Since

M′ = M + iωr0

2
× P, (60)

we have M′ ≈ M when ωaP � M.
Since the magnetization vector is dependent on the choice

of origin, so is the resulting μ in general. This dependence is
not only a consequence of the difference between M′ and M
but also the exponential factor exp(−ik · r0) ≈ 1 − ik · r0 in
(58). This factor will mix the �(1) and �(k) terms in (54) in
the presence of magnetoelectric coupling (ζi j �= 0).

C. Vinogradov-Yaghjian (vy) decomposition

In Vinogradov and Aivazyan [3] the microscopic current is
decomposed into three terms:

j = −r ∇ · j + 1
2∇ × (r × j) + 1

2∇ · (rj + jr). (61)

Equation (61) can be verified by straightforward calcula-
tion. The microscopic current satisfies continuity ∇ · j =
iω�, where � is the microscopic induced charge density.
Yaghjian, Alù, and Silveirinha [8] suggested to decompose
the macroscopic induced current by substituting (61) into (7c),
resulting in

J = −iωPvy + ik × Mvy + ωk · Qvy/2, (62)

where

Pvy = 1

V

∫
V

�(r)re−ik·rd3r, (63a)

Mvy = 1

2V

∫
V

r × j(r)e−ik·rd3r, (63b)

Qvy = − 1

iωV

∫
V

(jr + rj)e−ik·rd3r. (63c)

The integrals are over the unit cell containing the origin. To
obtain (62) it is assumed that the boundaries of the unit cells
lie in free space. Equation (62) is not a multipole expansion,
due to the factor exp(−ik · r) in the integrands of (63). All
induced current is described by the three terms in (62), as
opposed to a multipole expansion with an infinite number of
terms. Note that the sign of the “quadrupole” term ωk · Qvy/2
is opposite of that resulting from a conventional multipole
expansion (35).

From the magnetization Mvy, we can define a permeability
exactly as in Sec. III B. From a constitutive relation

Mvy
i = ωζ

vy
i j E j + ν

vy
il jklE j/(μ0ω), (64)

set (
1 − μ−1

vy

)
im = εmk j

kkkl

k2
ν

vy
il j (65)

or

1 − μ−1
vy =

[−ν
vy
213 ν

vy
212

−ν
vy
313 ν

vy
312

]
(66)

in a coordinate system where k = kx̂. (Alternatively, as in
Ref. [8] and in (57), we can define a new permeability μ̃vy
by combining μvy and ζvy into a single tensor.)

The asymptotic behavior of μ−1
vy turns out to be different

from that of μ−1 in Sec. III B. Substituting (48b) into (63b):

Mvy = iωε0

2V
E ×

∫
V

r[ε(r) − 1]d3r

− iωε0

2V

∫
r × f (r)[ε(r) − 1]e−ik·rd3r. (67)

The first integral is independent of k and therefore cannot
contribute to the last term in (64). The second term in (67)
tends to zero faster than ω−1 [see (47) and (49)] and leads to
a ν

vy
il j that tends to zero. We therefore find that

μ−1
vy → I as ω → ∞. (68)

The definition of Mvy in (63b) can be used to prove that μ−1
vy

is analytic in the upper half-plane Im ω > 0, using the exact
same method as in Sec. III B. This result is already known
from Ref. [8]. Taking (68) into account, we conclude that μ−1

vy
is causal for each, fixed k.

The connection between the constitutive parameters for
Pvy, Mvy, Qvy, and the Landau-Lifshitz permittivity can be
obtained directly from (45) by setting ψikl j = 0 (and adding
superscripts “vy”).

At first sight, the multipole quantities in (36) and in (63)
seem to be quite similar; the difference is only a factor
exp(−ik · r) in the integrands. The connection between the
multipole quantities can be established by expanding the
exponential (33). Note that since we are interested in magnetic
effects, which are known to be a second-order �(k2) effect
in the Landau-Lifshitz permittivity, we include terms for the
induced current up to order �(k2). Expressing iω� = ∇ · j
and using integration by parts, we obtain from (63a):

−iωPvy = 1

V

∫
V

je−ik·rd3r − ik·
V

∫
V

jre−ik·rd3r. (69)

Expanding the exponential we find to second order in k:

−iωPvy = −iωP − ωk · Q − iωR − 1

V

∫
V

(k · j)(k · r)rd3r.

(70)
Furthermore, we obtain

ik × Mvy = ik × M + k
2V

·
∫

V
(jr − rj)(k · r)d3r (71)

and

ωk · Qvy = ωk · Q + k
V

·
∫

V
(jr + rj)(k · r)d3r. (72)

Equations (70)–(72) show the relation between the “dipole”
and “quadrupole” terms in (62) compared to the usual ones.
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For example, (71) shows that the difference ik × (Mvy − M)
is given by a magnetic quadrupole term.

Summing the contributions to the induced current, we
obtain

−iωPvy + ik × Mvy + ωk · Qvy/2

= −iωP + ik × M − ωk · Q/2 − iωR. (73)

Equation (73) could have been found directly by comparing
(35) and (62).

One may think that Mvy and M, and the corresponding
permeabilities, are equal in the limit ka → 0, since then the
exp(−ik · r) factor in the integrand in (63b) tends to unity.
Surprisingly, this is, however, not true in general. As an
example, consider a metamaterial with a center of symmetry
in the unit cell, which is taken as the origin. We must have

j(−r) = j(r) when k → 0, (74)

which means that M → 0 as k → 0. In other words, M =
O(k). This can also be realized from Faraday’s law: When
there is no magnetoelectric coupling, M is proportional to B,
i.e., M = χB = χ(k × E)/ω = O(k) for some tensor χ. By
expanding the exponential in the definition of Mvy (63b), the
connection between Mvy and M can be written

Mvy = M + −i

2V

∫
V

(k · r)r × j(r)d3r. (75)

The factor k · r in the integrand destroys the odd inversion
symmetry, so the integral does not vanish in general. Thus the
integral is �(k) and may be equally important as M in the
limit ka → 0. Recall that the permeabilities are found from
the O(k) part of Mvy and M, respectively. In other words,
even though both Mvy and M tend to zero, the permeabilities
derived from Mvy and M may be different. The difference
between the permeabilities will be explored numerically in
Sec. IV.

Finally, we note that in general, the quantities Pvy, Mvy,
and Qvy are dependent on the choice of origin inside the cell
V . Since Mvy may be origin dependent, so is the resulting
permeability μvy. From the definition (63b) it follows that the
relative size of the origin dependence of Mvy is negligible
when ωaPll � Mvy. Numerically, the origin dependence of
μvy turns out to be minor, as discussed in Sec. IV.

D. Transversal-longitudinal (tl) decomposition

Starting from the Landau-Lifshitz permittivity, it is natural
to use a strategy to put “as much as possible” of the k-
dependent induced current into the magnetization and there-
fore the permeability. The resulting permeability is a gen-
eralization of that in chapter XII of Landau and Lifshitz’s
textbook [1] and in Silveirinha [5].

The induced current can be divided into two parts:

J = −iωPtl + ik × Mtl. (76)

In (76) the part which is independent of k is put into the first
term −iωPtl. Moreover, the k-dependent part is divided into a
longitudinal part (which is parallel to k) and a transversal part.
The longitudinal part is also absorbed by the −iωPtl term,
while the transversal part is taken care of by the magnetization

term ik × Mtl. In a coordinate system oriented such that k =
kx̂, we can write

J = ( − iωPtl
1 ,−iωPtl

2 − ikM tl
3 ,−iωPtl

3 + ikM tl
2

)
, (77)

where Ptl
2 and Ptl

3 are independent of k. As in Sec. III B (41),
we express

M tl
i = ωζ tl

i jE j + kν tl
i1 jE j/(μ0ω)

= ωζ tl
i jE j + kν tl

i11E1

μ0ω
+ μ−1

0

(
1 − μ−1

tl

)
i jB j

= ωζ tl
i jE j + kν tl

i11E1

μ0ω
+ 1

μ0ω

[(
1 − μ−1

tl

)
k × E

]
i (78)

for some ζ tl
i j , ν tl

ilk , and μtl.
The induced current density can also be expressed

Ji = −iωε0[εi j (ω, k) − δi j]Ej, (79)

= −iωε0[χi j + αik jkk/ε0 + βikl jkkklc
2/ω2]Ej, (80)

where we have substituted the Landau-Lifshitz permittivity
(22). Equating the O(k2) part of (77) and the last term in (80),
we obtain

1 − μ−1
tl =

[
β3113 −β3112

−β2113 β2112

]
. (81)

In an arbitrary coordinate system, the tensor (81) can be
written [

1 − μ−1
tl

]
mn = εmipεn jq

kkklkpkq

k4
βikl j . (82)

For strongly spatially dispersive media, we have let the last
term in (80) contain the remainder [�(k2) and higher order].
Then βikl j and the resulting μtl become dependent on k.

The symmetry (31b) means, according to (22), that
βikl j (k) = β jkli(−k). This means that

μT
tl (−k) = μtl(k). (83)

In particular, if we only consider terms of ε(ω, k) up to second
order in k (weakly spatially dispersive media), then we have
μT

tl = μtl.
As for the asymptotic behavior of μtl as ω → ∞, recall

that the microscopic field tends to a plane wave in this limit,
approximately unaffected by the structure. Using (7c) and
(48), we find

J = −iωε0E
V

∫
V

[ε(r) − 1]d3r + �J, (84)

where

�J = − iωε0

V

∫
V

[ε(r) − 1]f (r)e−ik·rd3r. (85)

The asymptotic behavior of ε(r) as ω → ∞ is of the form
(47). From (49) it is clear that �J → 0 faster than J. By
comparison to (79) the resulting Landau-Lifshitz permittivity
becomes

εi j (ω, k) = δi j

V

∫
V

ε(r)d3r + Fi j (ω, k), (86)

where Fi j (ω, k) tends to zero faster than ω−2. The first term
in (86) is independent of k; thus it does not contribute to the
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�(k2) term of the Landau-Lifshitz permittivity (22). The term
Fi j (ω, k) may contribute but gives a βikl j that tends to zero as
ω → ∞. In other words,

μ−1
tl → I when ω → ∞. (87)

Since βikl j are the second-order coefficients of εi j (ω, k), we
can apply the general result in Appendix E to deduce that βikl j

and therefore μ−1
tl are analytic in the upper half-plane. With

(87) we conclude that μ−1
tl is causal.

The relation between the permeability resulting from the
magnetic moment density (Sec. III B) and that in (81) can be
found by subtracting (81) and (42):

μ−1 − μ−1
tl =

[
(γ + ψ + η)3113 −(γ + ψ + η)3112

−(γ + ψ + η)2113 (γ + ψ + η)2112

]
.

(88)

In other words, the difference is due to the electric quadrupole,
magnetic quadrupole + electric octupole, and �(k2) part of
electric dipole. The difference μ−1

vy − μ−1
tl can be expressed

similarly as in (88), however, without the ψ tensor.
We have chosen, somewhat arbitrarily, to associate the

entire �(k) term of the transversal current with the magnetiza-
tion Mtl. The �(k) term could be associated with polarization
Ptl instead or shared between the two. This has, however, no
influence on the permeability (81), being defined from the
O(k2) term.

Since the permeability μtl is derived from the Landau-
Lifshitz total permittivity ε(ω, k), which in turn is found from
J and E with (7a) and (7c), it follows that μtl is not dependent
on the choice of origin.

E. Other decompositions

Clearly, there are infinite number of ways to decompose the
induced current, obtaining “P,” “M,” and possibly other “mul-
tipole” terms. The possible decompositions fall roughly into
two categories. In the first category the magnetization vector is
defined from an integral of the microscopic current. Examples
include (36b) and (63b). The analyticity of the resulting
inverse permeabilities, asymptotic behavior, and connection
to the Landau-Lifshitz permittivity follow in the same way
as in Sec. III B. In the second category the magnetization is
defined from a certain division of the O(k2) part of the induced
current by including any desired part of the βikl j tensor in
(22). Then the properties of the resulting μ−1 can be explored
along the lines in Sec. III D. Of course, not all such definitions
lead to an analytic μ−1; this must be ensured by carefully
considering the frequency dependence of the division. Also,
to ensure that μ−1 is a tensor, the division of βikl j must be
possible to formulate in tensor form.

IV. NUMERICAL RESULTS

We will now consider some concrete examples of 2D meta-
materials, using a finite-difference-frequency-domain numer-
ical method [9,17]. The metamaterial unit cells, and the
associated, inverse permeability element 33 (perpendicular
to the unit cell figures) are shown in Figs. 1–4 for k = 0.
For all examples except that in Fig. 1(b), we have used

FIG. 1. (a) Unit cell with an annulus; (b) 1 − permeability−1

when the annulus is a lossless dielectric (ε = 16). Real (c) and
imaginary (d) parts when the annulus is made from silver, a = 1 μm.

silver inclusions described by a Drude-Lorentz model with
parameters from Ref. [18].

We observe that the different permeabilities are identical in
the low-frequency limit. However, for the dielectric inclusions
[Fig. 1(b)], the relative differences are relatively large and
do not vanish in the low-frequency limit. For ωa/c > 0.6,
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FIG. 2. (a) Unit cell with a split-ring resonator made from silver,
a = 1 μm. Real (b) and imaginary (c) part of 1 − permeability−1.

corresponding to a/λ > 0.1 (λ is the vacuum wavelength), the
differences between the permeabilities are quite visible for all
examples except the split ring resonator medium (Fig. 2).

Note that although the definition of μvy is similar to that of
μ, in the examples μvy is closer to μtl in magnitude.

In Fig. 4 we observe the origin dependence of the per-
meabilities. The permeability μtl is origin independent by
definition, while μ and μvy are dependent on the choice of
origin. The origin dependence is, however, rather weak in the
considered frequency range. In general, the origin dependence
of μvy seems to be weaker than that of μ. In fact, for the
examples in Figs. 1–3 the origin dependence of μvy turned
out to be negligible (not shown).

In Fig. 4 we find that for larger frequencies, the imaginary
parts of the three permeabilities can be negative. Clearly, the
medium response must be highly nonlocal in this region; in
the presence of spatial dispersion the condition for passivity
is formulated in terms of the Landau-Lifshitz permittivity
ε(ω, k) [see (C14)].

FIG. 3. (a) Unit cell with two bars made from silver, a = 1 μm.
Real (b) and imaginary (c) part of 1 − permeability−1.

The causal properties of the inverse permeabilities μ−1,
μ−1

vy , and μ−1
tl , proven in Sec. III, have been verified nu-

merically for the metamaterials in Figs. 1(a)–4(a) using a
Lorentzian model for the microscopic permittivity. This is
done by first computing the (3,3) elements of the inverse per-
meabilities over a large bandwidth (such that the asymptotic
limit can be seen). Then the results are Fourier transformed
and verified to be vanishing small for negative time.

Although the inverse permeabilities are causal, the per-
meabilities are generally not. This was noted for the μvy
permeability in Ref. [19]. Note that the inverse permeability
is the natural response quantity appearing when expressing
M from the fundamental field B [or expressing M from
the applied current density Jext, using (54), (53), and (42)].
Therefore, the inverse permeability is causal. Proving that the
permeability itself is causal, from the causality of the inverse
permeability, is possible only in certain special cases [1,19].
For example, when the inverse permeability is scalar, and
Im μ−1 takes only negative values, the inverse permeability
turns out to be zero free in the upper half-plane Im ω > 0.
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FIG. 4. (a) Unit cell with a “U” made from silver, a = 1 μm.
Real (b) and imaginary (c) part of 1 − permeability−1. Also shown
are the results when the origin has been shifted from the center of
the cell (0,0) to top right corner (a/2, a/2). In (d) and (e) the results
are plotted for higher frequencies, demonstrating that the imaginary
parts can have either sign in this region. This does not mean violation
of passivity but that the medium response is nonlocal.

Then the permeability becomes causal. Otherwise, as for
the metamaterials in Figs. 1(a)–4(a), the permeabilities are
noncausal despite the inverse permeabilities being causal.

V. DISCUSSION AND CONCLUSION

In conclusion we have considered four definitions of per-
meability for periodic metamaterials and their properties. The
properties of the induced current decompositions and associ-
ated permeabilities are summed in Table I.

Having considered several different definitions of the mag-
netic permeability, it is natural to ask which is preferred.
Of course there is no simple answer to this question. The
Vinogradov-Yaghjian decomposition has the advantage of
representing all induced current with only three terms. On the
other hand, the conventional multipole decomposition has a
clear physical interpretation; in particular, the permeability μ

is induced from the magnetic moment density M. However,
the asymptotic behavior for ω → ∞ and fixed k is not nec-
essarily μ → I, and the origin dependence is generally larger
than that of μvy. The permeability μtl has a less direct physical
interpretation compared to μ but has the nice properties that
it is independent of the choice of origin and symmetric. In
addition it is appealing that it contains “as much as possible”
of the O(k2) part of the Landau-Lifshitz permittivity.

For weakly spatially dispersive media where the higher-
order O(k3) terms are ignored, all permeabilities are indepen-
dent of k. For μ and μvy, higher-order terms are included
by allowing νil j in (40b) and (64) to be dependent on k.
For μtl, higher-order terms are included by letting βikl j in
(22) be dependent on k. In all these cases the highest-order
term in the Taylor expansions absorbs the remainder, making
the permeabilities dependent on k in a straightforward way.
For strongly spatially dispersive media, this could perhaps be
useful in certain cases where the magnetization part of the
induced current dominates.

Despite the induced current being exactly represented by
the expansion terms, neither of the permeabilities can alone
describe the entire �(k2) part of the Landau-Lifshitz permit-
tivity. Therefore, even for weakly spatially dispersive media,
we cannot always use one of the permeabilities in addition
to a permittivity in Fresnel equations to describe reflection
and transmission at an interface. When using the Fresnel
equations, the errors will be dependent on the impact of the
missed terms but also induced by the fact that the conventional
boundary conditions are not necessarily valid for the funda-
mental Floquet mode fields [20]. In the multipole expansion,
the missed terms are the �(k2) part of P, Q, and R. In the
Vinogradov-Yaghjian decomposition, the missed terms are the
�(k2) part of Pvy and Qvy. In the transversal-longitudinal
decomposition the missed term is the �(k2) part of Ptl. Here
we have assumed a nongyrotropic medium.

The semi-infinite case has been studied numerically in
a separate work [20]. It was found that Fresnel equations
with the three permeabilities in Secs. III B–III D give accurate
results for 2D metamaterials which mimic natural magnetism
in a frequency range with nontrivial magnetic response. The
frequency range where the prediction of Fresnel’s equation is
accurate is where the three permeabilities are approximately
equal. Considering the numerical examples in Sec. IV, we can
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TABLE I. General properties of induced current expansions and associated permeabilities; i.g. = in general. For the Landau-Lifshitz
formulation the permeability is trivial, and the table column displays the properties of the permittivity tensor ε(ω, k).

III B III C III D III A
Multipole Vinogradov-Yaghjian Transversal-longitudinal Landau-Lifshitz, μll = I

Number of J expansion terms ∞ (P, M, Q, R, ...) 3 (Pvy, Mvy, Qvy) 2 (Ptl, Mtl) 1 (Pll)
Causal, μ−1 analytic for Im ω > 0 Yes Yes Yes G(ω, k) causal
Causal, μ analytic for Im ω > 0 No (i.g.) No (i.g.) No (i.g.) ε(ω, k) causal
For ω → ∞ and fixed k μ → const μvy → I μtl → I ε(ω, k) → I
Sign of Im μ (for diagonal μ) Both (i.g.) Both (i.g.) Both (i.g.) ω[ε(ω, k) − ε(ω, k)†] pos.
Symmetry – – μT

tl (−k) = μtl (k) εT (ω,−k) = ε(ω, k)
Origin dependence Yes (i.g.) Yes (i.g.) No No

therefore expect that the permeabilities (except the trivial one
in Sec. III A) are useful in Fresnel’s equation in the range
where they approximately coincide.

For media with strong electric quadrupole response, and/or
higher-order multipoles, the basic Fresnel equation will not
give an accurate prediction. The permeability can still be
relevant, provided additional boundary conditions for the par-
ticular structure are found [21–25]. In these cases, a better
alternative could perhaps be to calculate the reflection and
transmission using exact mode matching techniques or even,
e.g., finite-difference time-domain simulations.

It is natural to ask whether the permeabilities are useless
in the frequency ranges where they cannot be used to predict
the reflection from a semi-infinite structure. Although the
permeabilities have limited use in these cases, it is convenient
to have definitions which are valid for all frequencies. This
makes it possible to apply Kramers-Kronig relations and other
theoretical constraints which are formulated for the entire
frequency range. Although the permeabilities lose their usual
physical interpretation for sufficiently large frequencies, they
are still physical in the sense that they are found from the
physical, microscopic fields using the particular definition.
For example, μ in Sec. III B results from a magnetization M
which quantifies the magnetic moment of the unit cell.
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APPENDIX A: DERIVING k-DOMAIN MAXWELL
EQUATIONS FOR HOMOGENIZED FIELDS

Our starting point is the microscopic Maxwell equations:

∇ × e = iωb, (A1a)

1

μ0
∇ × b = −iωε0e + j(r) + Jexte

ik·r. (A1b)

Since the structure is periodic, and the source is of the
form Jexteik·r with constant Jext, all fields can be written in
Floquet form. For example, e = ueeik·r. Substituting into (A1)
we obtain

∇ × ue + ik × ue = iωub, (A2a)

1

μ0
∇ × ub + 1

μ0
ik × ub = −iωε0ue + uj + Jext. (A2b)

Recall that the periodic u functions can be written in
terms of their Fourier components, as in (5). Equations (A2)
[and therefore (A1)] are satisfied if and only if the Fourier
components of (A2) satisfy:

i(blmn + k) × Elmn = iωBlmn, (A3a)

1

μ0
i(blmn + k) × Blmn = −iωε0Elmn + Jlmn, (A3b)

for all l, m, n except l = m = n = 0, for which the set can be
written

ik × E = iωB, (A4a)

1

μ0
ik × B = −iωε0E + J + Jext. (A4b)

Equations (A4) are the Maxwell equations for the fun-
damental Floquet modes, which we have taken to be the
macroscopic fields. Equations (A3) are the equations that the
other Fourier components must satisfy.

The induced current Jlmn couples between sets with differ-
ent indices. Defining σ (r) = −iωε0[ε(r) − 1], we have

Jlmn = 1

V

∫
j(r)e−ik·r−iblmn·rd3r

= 1

V

∫
σ (r)e(r)e−ik·r−iblmn·rd3r

=
∑
l ′m′n′

El ′m′n′ · 1

V

∫
σ (r)ei(bl′m′n′−blmn )·rd3r (A5)

By eliminating Blmn from (A3) and (A4), and using (A5), we
obtain a linear equation set in the form∑

n

AmnEn = Jextδm0, (A6)

where the matrix Amn depends on ω, k, and microscopic
permittivity but not the fields. The three indices lmn and the
index of the vector components have been combined into a
single index n or m, and the coordinate system is oriented such
that Jext is along one of the axes, corresponding to m = 0.
The elements En of the new field vector contains the three
components of each Elmn. From (A6) we note that all fields,
e.g., Elmn or E, are proportional to Jext.
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APPENDIX B: MACROSCOPIC FIELDS
FOR ARBITRARY ka

Here we will prove that the macroscopic fields (or funda-
mental Floquet mode fields) can be used to calculate the work
done by the source in a unit cell, even for large wave numbers.
Consider, first, a source with a single, spatial Fourier com-
ponent, jext(r) = Jext(k)eik·r. The work done by the source
per unit volume and per unit time (after averaging over a
period) is

pext = 1
2 Re {jext · (−e∗)}, (B1)

where e is the microscopic electric field. Substituting (3) and
(4a) we find

pext = 1
2 Re {Jext · (−u∗

e )}, (B2)

which after averaging over a unit cell V [using (7a)] becomes

〈pext〉 = 1
2 Re {Jext · (−E∗)} (B3)

or

〈pext〉 = 1
2 Re {jext · (−E∗)}. (B4)

In other words, we can find the work from the macroscopic
field E .

For a source in the form

jext(r) = j0(r)eik0·r, (B5)

where k0 is any constant vector, and j0(r) �= 0, (B4) remains
valid if the source contains a sufficiently narrow band of wave
vectors around k0. This can be demonstrated by expressing
the Fourier integrals of the source and the microscopic electric
field and averaging (B1) over a unit cell. For more details on
sources of finite sizes, see Appendix D.

APPENDIX C: CAUSALITY, PASSIVITY,
AND KRAMERS-KRONIG RELATIONS

Here we will establish a framework for studying the
analytic properties of the electromagnetic parameters and
the implications of passivity [1,8,12,26,27]. If we use the
Landau-Lifshitz formulation in which the medium is de-
scribed solely by a permittivity ε(ω, k), then it has been
stated that ε(ω, k) is an analytic function in the upper half-
plane Im ω > 0 for fixed k, at least for sufficiently small
k [1,12]. This follows by regarding the electric field as the
excitation and the displacement field as the response. How-
ever, as pointed out in Ref. [26], such an argument is not
compelling since the electric field includes the response of the
medium. Here we will use the relation between the applied
source and the resulting field to prove that for fixed, real k,
the Landau-Lifshitz permittivity tensor ε(ω, k) is analytic in
the upper half-plane, even for anisotropic, bianisotropic, and
spatially dispersive media. We will also provide the passivity
condition.

Since the medium is assumed linear and time-shift invari-
ant, the resulting macroscopic field E is related to the source
Jext by a linear relation

E = G(ω, k)Jext, (C1)

where G(ω, k) is a (matrix) response function. For simplicity
in notation we have suppressed the ω and k dependence of
the fields. Recall that the medium is assumed to be causal
and passive, so if the time-domain source current is any finite-
duration pulse starting at t = 0, then the time-domain electric
field vanishes for t < 0 and does not blow up as t → ∞. It
follows that

G(ω, k) analytic for Im ω > 0 and fixed k. (C2)

This applies to all elements of the matrix, since Jext can be
chosen to point in any direction.

Since the work done by the source must be non-negative,
we must have −Re J∗

ext · E � 0 [see (B3)], or

−Re J†
extG(ω, k)Jext � 0, (C3)

for real frequencies. Here † stands for Hermitian conjugate,
i.e., transpose and complex conjugate. We have argued for
(C2) and (C3) using a single k source; however, as shown in
Appendix D, they also follow when using a realistic source
of finite size. Inequality (C3) is valid in the upper half-plane
Im ω > 0, as shown in Appendix D.

Define a function

f (ω) = −J†
0G(ω, k)J0, (C4)

where J0 is an arbitrary but constant vector. We have just
seen that Re f (ω) � 0 for Im ω > 0. In fact, since f (ω) is an
analytic function, it must be that Re f (ω) > 0 for Im ω > 0:
Assume f (ω) = 0 somewhere in the upper half-plane. A zero
of an analytic function is isolated, and in the vicinity of a zero,
the function’s complex argument takes all values from 0 to
2π . This would make Re f (ω) < 0 somewhere around zero,
which contradicts Re f (ω) � 0.

We have proved that

−Re [J†
0G(ω, k)J0] > 0 for Im ω > 0 (C5)

for any constant J0. Thus E = G(ω, k)Jext �= 0 for any
nonzero Jext for Im ω > 0. This means that

det G(ω, k) �= 0 for Im ω > 0. (C6)

In other words, for all ω in the upper half-plane, we can invert
G(ω, k) to obtain G(ω, k)−1. Since G(ω, k) is analytic, so is
G(ω, k)−1.

In the Landau-Lifshitz formulation, the Maxwell equations
take the form

ik × E − iωB = 0, (C7a)

1

μ0
ik × B + iωε0ε(ω, k)E = Jext (C7b)

in the frequency–wave-number space. Combining them, we
obtain [

k2I⊥ − ω2

c2
ε(ω, k)

]
E = iωμ0Jext, (C8)

with I⊥ = I − kk/k2 [or expressed by (25) in a coordinate
system where k = kx̂]. Comparing (C8) and E = G(ω, k)Jext,
we identify

G(ω, k)−1 = (iωμ0)−1

[
k2I⊥ − ω2

c2
ε(ω, k)

]
. (C9)
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We have already proved that G(ω, k)−1 is analytic in the upper
half-plane Im ω > 0; thus so is ε(ω, k).

With an asymptotic behavior ε(ω, k) → ε(∞, k) as ω →
∞ and k is fixed, we can now state the Kramers-Kronig
relations for χ(ω, k) ≡ ε(ω, k) − ε(∞, k):

Re χ(ω, k) = 2

π
P

∫ ∞

0

Im χ(ν, k)ν

ν2 − ω2
dν, (C10a)

Im χ(ω, k) = −2ω

π
P

∫ ∞

0

Re χ(ν, k)

ν2 − ω2
dν. (C10b)

Here ω is real, and P denotes the Cauchy principal value.
To obtain the Kramers-Kronig relations from the analyticity
and the asymptotic behavior, we have used the Titchmarsh
theorem [15]. To this end we have assumed that χ(ω, k) → 0
sufficiently fast as |ω| → ∞, and that χ (ω, k) does not have
singularities for real frequencies.3

Substituting J0 = G(ω, k)−1E0 in (C5) gives

−Re [E†
0G(ω, k)−1†E0] > 0 for Im ω > 0, (C11)

valid for any vector E0. This can be written

−G(ω, k)−1 − G(ω, k)−1† positive definite, (C12)

or, using (C9),

i

[
ωε(ω, k) − k2c2

ω
I⊥

]†

− i

[
ωε(ω, k) − k2c2

ω
I⊥

]
positive definite. (C13)

In principle, the passivity condition (C13) has been derived for
Im ω > 0. By taking the limit Im ω → 0, the passivity condi-
tion remains valid for all Re ω where this limit exists, provided
we relax “positive definite” to “positive semidefinite.” When
both ω and k are real, as is the case when they represent a
Fourier component in time and space, the passivity condition
becomes

−iω[ε(ω, k) − ε(ω, k)†] positive semidefinite. (C14)

This reduces to the well-known condition Im ε(ω, k) � 0 for
scalar permittivity and positive frequency.

APPENDIX D: SOURCE OF FINITE SIZE

In Appendix C we imagined a source with a single wave
vector k. This source is somewhat unphysical, since it is
present everywhere. Here we will consider sources of finite
size and rederive the causality and work results (C2) and (C3).

In this section we will write out the ω and k dependence
explicitly. Let us consider a causal source in product form,

Jext(ω, k) = F (k)W(ω). (D1)

3To establish Kramers-Kronig relations, the Titchmarsh theorem
requires the function to be uniformly square integrable along a line in
the upper half-plane, parallel to the real axis. The assumption is for
example valid if the function vanishes as 1/|ω| or faster, but, clearly,
weaker conditions are possible. If the function has singularities
on the real axis, then modified Kramers-Kronig relations can be
derived [1].

From (4a) and (5) the frequency-domain microscopic electric
field is

e(ω, r) = 1

(2π )3

∫ ∑
lmn

Elmn(ω, k)eiblmn·r+ik·rd3k

= 1

(2π )3

∑
lmn

∫
Elmn(ω, k)eiblmn·r+ik·rd3k

= 1

(2π )3

∑
lmn

∫
Elmn(ω, k′ − blmn)eik′ ·rd3k′

= 1

(2π )3

∫ ∑
lmn

Elmn(ω, k − blmn)eik·rd3k, (D2)

where Elmn(ω, k) is proportional to F (k). Since e(ω, r) de-
scribes a causal field for all r, we must have∑

lmn

Elmn(ω, k − blmn) causal, for fixed k. (D3)

The source function F (k) can be chosen such that

F (k0) = 1 for lmn = 000,

F (k0 − blmn) = 0 for all lmn �= 000. (D4)

In other words, there is a peak at k = k0 and zeros at k =
k0 − blmn for lmn �= 000. This is achieved, e.g., if

F (k)=sinc2[(kx−k0x )a]sinc2[(ky−k0y)a]sinc2[(kz−k0z )a].

(D5)

This source has a finite extent, as seen by inverse Fourier
transforming (D5). By setting k = k0, and considering (D3),
we find that E(ω, k) ≡ E000(ω, k) is causal.

We can write

E(ω, k) = G(ω, k)Jext(ω, k), (D6)

where G(ω, k) is a (tensor) response function. We choose
a source with finite duration in the time domain. Since the
medium is passive, the electric field does not blow up as t →
∞. Since Jext(ω, k) and E(ω, k) are causal, it follows that they
are analytic in the upper half-plane Im ω > 0. As Jext(ω, k)
is otherwise arbitrary, the response function G(ω, k) must
therefore be analytic for Im ω > 0 for each fixed k (C2).

The properties of G(ω, k) in the upper half-plane can be
further explored by considering sources with time dependence
exp(γ t − iω′t ) [28]:

jext(t, r) = Re [f (r)u(t )eγ t−iω′t ]. (D7)

Here u(t ) is the unit step function, γ > 0, and ω′ is real. Tak-
ing f (r) to be real, this source can be expressed in frequency–
wave-number space

Jext(ω, k) = F(k)W (ω), (D8)

where F(k) is the Fourier transform of f (r), and W (ω) is the
Laplace transform of eγ t cos(ω′t ), after setting the Laplace
variable s = −iω.

At least for t � 1/γ , the transients can be ignored com-
pared to the exponentially increasing field. Then the electric
field will be of the form exp(γ t − iω′t ), and the power density
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pext(t ) = −jext(t, r) · e(t, r) becomes

pext(t ) = −Re

[
eγ t−iω′t

(2π )3

∫
F(k)eik·rd3k

]

·Re

[
eγ t−iω′t

(2π )3

∫ ∑
lmn

Ẽlmn(ω, k − blmn)eik·rd3k

]
.

(D9)

Here Ẽlmn(ω, k) is the same as Elmn(ω, k) except that the fac-
tor W (ω) has been removed and ω = ω′ + iγ . Using Re α =
(α + α∗)/2, and integrating the resulting expression over all
space and from time t0 to t1, we find the total work in this time
interval:

Wext =
∫ t1

t0

∫
pextd

3rdt

= −e2γ t1 − e2γ t0

4γ (2π )3
Re

∫
F∗(k) ·

∑
lmn

Ẽlmn(ω, k − blmn)d3k

+ Re [C(e2γ t1−2iω′t1 − e2γ t0−2iω′t0 )], (D10)

where C is a complex-valued quantity which is independent
of t0 and t1. Let t0 � 1/γ . Since t0 is finite, the source has
only done a finite amount of work W0 before t0. Assuming
the medium has no stored energy before t = 0, we must
have W0 + Wext � 0. For a sufficiently large t1, but such that
Ce−2iω′t1 is imaginary, we obtain the condition

−Re
∫

F∗(k) ·
∑
lmn

Ẽlmn(ω, k − blmn)d3k � 0. (D11)

Recall that Ẽlmn(ω, k) is proportional to F (k). Thus, by
picking a source with a sufficiently narrow, effective band �k
around a fixed wave number k0 (�ka � 1, which means that
the source must cover several unit cells), we can make the
terms with lmn �= 000 arbitrarily small. Hence we must have

−Re
∫

F∗(k) · Ẽ(ω, k)d3k � 0. (D12)

We now use (D6), which means Ẽ(ω, k) = G(ω, k)F(k).
Choosing a F(k) which is narrow banded in k compared to
the variations in G(ω, k), we obtain

−Re J†
0G(ω, k)J0 � 0 (D13)

for all constant vectors J0.

APPENDIX E: ANALYTICITY OF TENSOR ELEMENTS

Suppose we have an expansion in the form

f (ω, k) = a(ω) + bi(ω)ki + ci j (ω)kik j, (E1)

where a(ω), bi(ω), and ci j (ω) are independent of k. We take
ci j (ω) to be symmetric, as any antisymmetric part is irrelevant
for the expansion. Let f (ω, k) be an analytic function of ω

(in a given domain) for any fixed k. We will prove that the
coefficients a(ω), bi(ω), and ci j (ω) are analytic.

By putting k = 0, we find that a(ω) = f (ω, 0) is analytic.
Considering

f (ω, k) − f (ω,−k) = 2bi(ω)ki, (E2)
it follows that bi(ω) is analytic. We now have that

ci j (ω)kik j = f (ω, k) − a(ω) − bi(ω)ki (E3)

is analytic. By letting k point in the x̂, ŷ, or ẑ direction, we
find that cii(ω) are analytic for any i. Finally we obtain, e.g.,
that c12 is analytic by letting k = k(x̂ + ŷ)/

√
2.

The argument can be extended to an infinite Taylor series,
or a series with a remainder term, by noting that the partial
derivatives ∂ f /∂ki and ∂2 f /∂ki∂k j are analytic. This follows
by using the Cauchy-Riemann equations, assuming symmetry
of second-order derivatives.

In particular, if the Landau-Lifshitz permittivity is ex-
pressed in the form

εi j (ω, k) − δi j = χi j + αik jkk/ε0 + βikl jkkklc
2/ω2, (E4)

then the analyticity of εi j (ω, k) means that the tensors χi j ,
αik j , and βikl j are analytic.

[1] L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Elec-
trodynamics of Continuous Media (Pergamon Press, Oxford,
1984).

[2] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart,
IEEE Trans. Microw. Theor. Tech. 47, 2075 (1999).

[3] A. P. Vinogradov and A. V. Aivazyan, Phys. Rev. E 60, 987
(1999).

[4] A. P. Vinogradov, Phys. Usp. 45, 331 (2002).
[5] M. G. Silveirinha, Phys. Rev. B 75, 115104 (2007).
[6] C. Simovski and S. Tretyakov, in Metamaterials Handbook:

Theory and Phenomena of Metamaterials, edited by F. Capolino
(CRC Press, London, 2009), chap. 2.

[7] A. Alù, Phys. Rev. B 84, 075153 (2011).
[8] A. D. Yaghjian, A. Alù, and M. G. Silveirinha, Photon.

Nanostruct.: Fundam. Appl. 11, 374 (2013).
[9] C. A. Dirdal, H. O. Hågenvik, H. A. Haave, and J. Skaar, IEEE

Trans. Antennas Propag. 66, 6403 (2018).
[10] G. Doetsch, Introduction to the Theory and Application of the

Laplace Transformation (Springer Verlag, Berlin, 1974).

[11] M. G. Silveirinha, in Metamaterials Handbook: Theory and
Phenomena of Metamaterials, edited by F. Capolino (CRC
Press, London, 2009), chap. 10 .

[12] V. M. Agranovich and V. L. Ginzburg, Crystal Optics with Spa-
tial Dispersion, and Excitons (Springer Verlag, Berlin, 1984).

[13] J. van Bladel, Electromagnetic Fields (IEEE Press, Hoboken,
NJ, 2007).

[14] C. A. Dirdal and J. Skaar, Eur. Phys. J. B 91, 131 (2018).
[15] E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals

(Oxford University Press, Oxford, 1948).
[16] R. E. Raab and O. L. de Lange, Multipole Theory in Electro-

magnetism (Oxford University Press, New York, 2005).
[17] J. T. Costa, M. G. Silveirinha, and S. I. Maslovski, Phys. Rev. B

80, 235124 (2009).
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