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Nonlinear power-dependent effects in exchange-coupled magnetic bilayers
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We investigate the dynamics of exchange-coupled ferromagnetic films in the nonlinear limit and find a
number of interesting features. The introduction of asymmetries in the magnetic driving field can produce a
power-dependent localization of the magnetization oscillations, in one film or the other, by way of the optic
mode frequency shifting in the large field limit. A nonlinear mixing of the acoustic and optic modes in the
antiferromagnetically coupled system leads to quasiperiodic and multiperiodic composite modes. Numerical
ferromagnetic resonance experiments will show additional absorption peaks (in the 20–50 GHz range) which
have a rapid increase in strength with input power. The results are calculated through linearization techniques and
numerical solutions of the Landau-Lifshitz-Gilbert equation. The nonlinear (and linear) behavior is illustrated
through Poincaré section bifurcation diagrams.
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I. INTRODUCTION

Our research is motivated, in part, by the quantum double-
well problem. In the typical linear and nonlinear double-
well problem the wells are symmetric with a finite barrier.
Solutions of the symmetric system can be found via Wentzel-
Kramers-Brillouin approximation or numerically and result
in an even ground state wave function and odd first ex-
cited state wave function. The probability (modulus squared)
that the particle is contained in either well is the same for
the symmetric double-well problem. In contrast, when an
amplitude dependent (nonlinear) potential is added to the
Schrödinger equation, the symmetry is broken and one can
localize a particle to be primarily contained in one well or the
other [1,2].

The nonlinear double-well problem raises the question of
whether a similar phenomenon could occur in a nonlinear
magnetic bilayer system. If the phenomena can be observed
in a magnetic bilayer system it may be possible to use the
system as a power limiter or filter [3–5], where one film can
absorb a large fraction of electromagnetic energy during a
power spike but otherwise behave as intended under nominal
conditions. For example, a novel nanoscale device would
be of interest in military systems where much attention is
focused on electronic systems performance under a variety of
abnormal or hostile scenarios.

Magnetic thin-film structures have been a primary interest
since the development of molecular beam epitaxy. The ability
of material scientists to grow high quality magnetic layered
samples has accelerated developments in nanoscale magnetic
structures [6]. There are many possible magnetic structures
and configurations [7–14], but in this paper we constrain
our discussion to ferromagnetic (F) and antiferromagnetic
(AF) resonances of two coupled magnetic layers separated
by a nonmagnetic spacer. These systems have been studied in
detail by many different authors [6,7,12,15,16], but the work
presented here is primarily focused on magnetic bilayer be-
havior in the nonlinear regime, whereas much of the previous

analyses focused on linear responses. Investigations of the
nonlinear behavior have only recently begun. In particular,
there are a series of papers [17–19] which investigate, both
theoretically and experimentally, the nonlinear frequency shift
of the eigenmodes for coupled films driven by spin currents,
however they do not address localization, resonance absorp-
tion, or the possibility of new modes at different frequencies,
the topics in the current paper.

The Landau-Lifshitz-Gilbert (LLG) equation is an inher-
ently nonlinear equation describing magnetization dynamics.
This has led researchers to investigate nonlinear magnetiza-
tion phenomena in many different systems [20–32]. The anal-
ysis we present here on nonlinear effects in exchange-coupled
bilayers has been guided by these previous researchers in the
field of magnetization dynamics.

We find a number of interesting results in our study of
nonlinear dynamics of exchange-coupled films:

(1) For ferromagnetic coupling the spin excitation can be
localized in one film or the other by changing the input power
level. As the input power is increased near the acoustic or
optic mode frequency of the structure, the energy becomes
localized in one of the films.

(2) The antiferromagnetically exchange-coupled system is
found to have a strong tunable high-frequency (20–50 GHz)
mode comprised of both the acoustic and optic mode fre-
quencies. Resonance absorption measurements show that this
mode has a critical driving field strength where there is a rapid
onset of microwave absorption as the power is increased.

The acoustic modes of magnetic thin-film systems have
received a lot of attention due to their large susceptibility
compared with that of the optic mode [7], but the strong
response of the acoustic mode generally only occurs at lower
frequencies (1–10 GHz). Because the electronics industry is
continually pushing for faster response times, this has led
researchers to search for ways to increase the operational
frequency of the acoustic mode. In contrast, we find that
the acoustic mode can be coupled to the higher frequency
optic mode to generate large susceptibilities at the acoustic
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FIG. 1. Ferromagnetic (left) and antiferromagnetic (right) bilayer coupling configurations.

plus optic mode frequency. The strong resonance of this
nonlinear composite mode is shown to occur under a variety
of different magnetization configurations and is highly tunable
by various control parameters. These modes may be of interest
to researchers who are exploring microwave magnetic devices
[12,33].

In Sec. II we present the magnetic bilayer configurations
under investigation along with the equations of motion and
numerical methods. Section III discusses two different lin-
earization methods depending on the magnetic configuration,
as well as the dispersion relations. In Sec. IV we show that
magnetization oscillations of one of the exchange-coupled
films can become localized under time-harmonic excitation
of a microwave field. Sections V and VI explore a fascinating
composite mode composed of both the acoustic and optic fre-
quencies in the antiferromagnetic system. Finally, in Sec. VII
we summarize our significant results and conclusions.

II. EQUATIONS OF MOTION AND NUMERICAL
ANALYSIS

In the analysis presented here we use the macrospin
approximation, where we have assumed the magnetization
is uniform within each film. This approach is valid in the
ultrathin film limit where the strong exchange forces hold
the spins in adjacent atomic layers in line with one another
[13]. The macrospin approach has been well established by
researchers connecting experimental results with the theory
[11,15,34] and allows a more analytic approach compared to
micromagnetics [35].

The magnetic bilayer configurations considered in this pa-
per are shown in Fig. 1. The macrospins MA and MB represent
the magnetization in film A and film B, respectively. For
ferromagnetic coupling (left side of Fig. 1) the magnetizations
tend to be tightly coupled to one another and oscillate about
the static field direction. As the external radio-frequency or
microwave field (HRF ) increases the amplitude of the magne-
tization oscillations will increase. The torque introduced from
the perpendicular radio or microwave frequency field HRF

will counteract the LLG damping torque that wants to align
the magnetizations with the static field. In magnetic resonance
experiments, one generally applies the oscillating (driving)
field perpendicular to the static field because this counteracts

the damping torque that wants to align the magnetization with
the static field. In a typical ferromagnetic resonance (FR)
experiment, resonance is observed when the energy taken
from the driving field compensates for the damping energy of
the magnetic specimen. In the antiferromagnetic case, when
there is canting of the magnetizations, resonance can occur
with the microwave field either parallel or perpendicular to the
static field. We will examine both cases, but in Fig. 1 we have
illustrated the case where the driving field is perpendicular to
the applied field.

For the case of antiferromagnetic coupling (right side of
Fig. 1), the magnetizations find their equilibrium positions
when they are oriented opposite to one another, assuming
the externally applied static field is weak compared to the
coupling strength (this is the case illustrated in Fig. 1). As the
static field strength increases, the magnetizations will become
more aligned with the static field Hstatic. Just as the case for
ferromagnetic coupling, the application of an external driving
field, HRF , will increase the amplitude of the magnetization
oscillations. These descriptions represent the general features
of the systems considered, but the true behavior of the magne-
tization dynamics is governed by the LLG equation [36] and
corresponding energy density which we now discuss.

The energy density we consider in this paper is given by the
sum of the Zeeman, demagnetization, and exchange coupling
energies. There are other terms one may incorporate into the
magnetic systems energy, for instance, uniaxial anisotropy or
even higher order crystalline anisotropy terms, but our choices
provide the simplest nontrivial results for the bilayer system.
Such a situation could occur, for permalloy/Cu multilayers
[37] or indeed many other multilayer combinations, for ex-
ample Fe/Cu [38], which are grown by sputtering and where
the coercive field is less than 15 Oe.

The Zeeman field is the sum of an external static field and
oscillatory microwave field. The demagnetization field of both
films provides anisotropy in the ŷ direction, which is represen-
tative of an easy-plane configuration. Exchange coupling of
two magnetic layers through a nonmagnetic spacer has been
observed for a large number of spacer materials [6,7,12,15]
where the exchange interaction is propagated by itinerant
electrons. This results in an oscillatory exchange coupling
constant, Jex, as the thickness of the spacer material is varied,
thus allowing the sign and strength of the coupling to be tuned.
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The energy density of the system is given by

E (MA, MB, t ) = −μ0(MAdA + MBdB) · H

+ μ0

2

[
dA

(
MA

y

)2 + dB
(
MB

y

)2]
− Jex

MA

MA
s

· MB

MB
s

, (1)

where μ0 is the permeability of free space, dA,B are the film
thicknesses, H = Hstatic + HRF (t ), and MA,B

s are the satura-
tion magnetizations. The form of the exchange coupling term
is such that ferromagnetic coupling occurs for Jex > 0 and
antiferromagnetic coupling for Jex < 0. Dimensional analysis
on Eq. (1) shows that the energy density is given in energy
per unit area (J/m2 = 1000 erg/cm2). In the hope that future
experiments can be performed based on the results presented
in this paper, we have used parameters typical of experimental
investigations [6,7]. The exchange constant, Jex, has been
shown to vary from roughly −1 to 1 erg/cm2. The thicknesses
we’ve explored are on the order of 1 nm and the saturation
magnetization is on the order of 1.0 × 106 A/m (4πMs ≈
12.57 kG) for both films. (Our analytic and numerical routines
are formulated in the SI unit system, but we often show
the field strengths and other parameters in CGS units when
appropriate.)

The energy density leads to two coupled LLG equations
through the effective field HA,B

eff = −∇A,B
M E , namely

dMA,B

dt
= − |γ A,B|

1 + (αA,B)2

(
MA,B × HA,B

eff

)

− |γ A,B|αA,B

MA,B
s [1 + (αA,B)2]

× [
MA,B × (

MA,B × HA,B
eff

)]
, (2)

where ∇A,B
M = [1/(μ0dA,BMA,B

s )]∇M , |γ A,B| is the gyromag-
netic ratio, and αA,B is the damping constant. Even though we
have written the equations of motion for differing magnetic
films (i.e., using labels A and B for the different magnetic
properties), much of our analysis is focused on coupled
identical films. We have done this for two reasons: (1) It

is important for the reader to understand the more general
configuration, such that one can possibly expand on the re-
sults presented here, and (2) the nonlinear phenomenon we
have observed is best understood by starting from a system
with fewer parameter variations. With this said, we typically
set |γ A| = |γ B| ≈ 2.31 × 105 1

(A/m) s (≈1.84 × 107 1
Oe s ) and

αA = αB = 0.01. The primary parameter variations we focus
on in the current work are the drive amplitude (Hd ) of the
oscillatory microwave field, the exchange coupling constant
Jex, and the frequency of the microwave field ωd .

We have solved Eqs. (1) and (2) numerically using a variety
of integration schemes: standard fourth-order Runge-Kutta,
explicit Runge-Kutta [39] of order (4)5, LSODA [40], and the
midpoint method with second-order Adams-Bashforth extrap-
olation [41]. When the appropriate step size is chosen each
numerical routine showed equivalent results. The magnitude
of the magnetizations deviated the least using the midpoint
method as described in Refs. [32,41].

III. LINEARIZATION AND DISPERSION RELATIONS

For small driving fields, the response of the magnetic
bilayer system is found by linearizing the equations of motion
[Eq. (2)] about the fixed points and solving for the resonant
frequencies. The coupling between the two films results in
two eigenmodes, an acoustic mode where the magnetizations
oscillate in phase with one another and an optic mode where
the magnetizations oscillate 180◦ out of phase. The acoustic
and optic modes are not unique to the magnetic system and
are observed in many other coupled systems (e.g., harmonic
oscillators, pendula, phonons, etc.). What will be unique is
the nonlinear behavior as the LLG equation differs from other
systems.

When the films are ferromagnetically coupled (Jex > 0)
with an in-plane static field (as illustrated in Fig. 1), the
equations of motion can be easily linearized in the limit of no
damping, as the equilibrium configuration is oriented along
the z axis. Setting dMA

z /dt = dMB
z /dt = 0 and keeping only

first order terms in Eq. (2) results in the following matrix
of coefficients for the eigenvalue equation of the remaining
components (MA

x , MA
y , MB

x , MB
y )

X F =

⎡
⎢⎢⎢⎣

0 |γ A|( J
μ0dAMA

s
+ H + MA

s

)
0 −|γ A| J

μ0dAMB
s−|γ A|( J

μ0dAMA
s

+ H
)

0 |γ A| J
μ0dAMB

s
0

0 −|γ B| J
μ0dBMA

s
0 |γ B|( J

μ0dBMB
s

+ H + MB
s

)
|γ B| J

μ0dBMA
s

0 −|γ B|( J
μ0dBMB

s
+ H

)
0

⎤
⎥⎥⎥⎦ (3)

Assuming oscillatory solutions of the form eiωt and evaluating det(X F − iω) = 0 gives the eigenmodes of the ferromagnetically
coupled system. The characteristic equation is a fourth order polynomial in quadratic form

ω4 + bω2 + c = 0, (4)

where

b = −(γ A)2

[
H2 + 2HJ

μ0dAMA
s

+ HMA
s +

(
J

μ0dAMA
s

)2

− J

μ0dA

]

− (γ B)2

[
H2 + 2HJ

μ0dBMB
s

+ HMB
s +

(
J

μ0dBMB
s

)2

− J

μ0dB

]
− 2γ Aγ BJ2

μ2
0dAdBMA

s MB
s

(5)
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and

c = (γ Aγ B)2

{
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1
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s

+ 1
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s

)
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s
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s
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]
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(
MA
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μ2
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s

μ2
0(dA)2
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MA
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+ HJ2

(
1

μ2
0dAdBMA

s

+ 1

μ2
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s

)
+ HJ

(
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s

μ0dB
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s

μ0dA

)}
(6)

Solving for the eigenmodes of the antiferromagnetically cou-
pled system (Jex < 0) is more difficult because the equilibrium
orientation of the magnetizations is now canted away from the
principal axes. Fortunately, Smit and Beljers [13,42] derived
a general method for performing such calculations in 1955.
(Their method also works for the ferromagnetically coupled
systems, but above we introduced the typical approach to
linearization about a principal axis using Cartesian coordi-
nates.) Their method exploits the fact that the torque on the
magnetization can be written in terms of the gradient of the
free energy density E [Eq. (1)]. Ignoring damping we have

dMA,B

dt
= −|γ A,B|[MA,B × (−∇A,BE )]. (7)

Using the coordinate system defined in Fig. 2, where the
equilibrium orientation of the magnetization is along the r̂
direction and small deviations about the equilibrium are in
the local θ̂ and φ̂ directions, the system constraints are such

FIG. 2. Illustrative example of the equilibrium configuration in
film A and B using the spherical coordinate system and an arbitrary
orientation of the applied field H . Linearization is carried out by
considering small deviations about the fixed points MA

0 and MB
0 .

that the fixed points and eigenfrequencies can be found for ar-
bitrary magnetic energy configurations. Writing the deviation
of the magnetizations in these coordinates gives

δMA,B = MA,B
s r̂A,B + MA,B

s δθA,Bθ̂
A,B

+ MA,B
s sin θA,BδφA,Bφ̂

A,B
, (8)

where δθA,B and δφA,B are the small deviations about the
equilibrium directions. The fixed points in these coordinates
are given by (θA

0 , φA
0 , θB

0 , φB
0 ) and are found by setting Eq. (7)

equal to zero, thus solving

r̂A,B × ∇A,BE = 0

− 1

sin(θA,B)

∂E

∂φA,B
0

θ̂
A,B + ∂E

∂θA,B
0

φ̂
A,B = 0. (9)

Making the transformation of E → E(θA, φA, θB, φB) and
considering small deviations of the energy density

δE = ∂E

∂θA
0

δθA + ∂E

∂φA
0

δφA + ∂E

∂θB
0

δθB + ∂E

∂φB
0

δφB (10)

one can linearize Eq. (7) and derive the following matrix
of coefficients for ferromagnetic (X F ) or antiferromagnetic
(X AF) coupling

X F,AF =

⎡
⎢⎢⎢⎣

−γ A
0 εφA

0 θA
0

−γ A
0 εφA

0 φA
0

−γ A
0 εφA

0 θB
0

−γ A
0 εφA

0 φB
0

γ A
0 εθA

0 θA
0

γ A
0 εθA

0 φA
0

γ A
0 εθA

0 θB
0

γ A
0 εθA

0 φB
0

−γ B
0 εφB

0 θA
0

−γ B
0 εφB

0 φA
0

−γ B
0 εφB

0 θB
0

−γ B
0 εφB

0 φB
0

γ B
0 εθB

0 θA
0

γ B
0 εθB

0 φA
0

γ B
0 εθB

0 θB
0

γ B
0 εθB

0 φB
0

⎤
⎥⎥⎥⎦,

(11)

where

γ A
0 = |γ A|

μ0dAMA
s sin θA

0

γ B
0 = |γ B|

μ0dBMB
s sin θB

0

(12)

and

εφA
0 θA

0
= ∂2E

∂φA
0 ∂θA

0

, εφA
0 φA

0
= ...

εφB
0 θA

0
= ∂2E

∂φB
0 ∂θA

0

, εφB
0 φA

0
= ....

(13)

Again, the dispersion relation is found by evaluating
det(X F,AF − iω) = 0 and solving for the eigenmode frequen-
cies ω. The characteristic equation for ω reduces to

ω4 + bω2 + c = 0, (14)
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where

b = (
γ A

0

)2(
ε2
φA

0 θA
0

− εφA
0 φA

0
εθA

0 θA
0

) + (
γ B

0

)2(
ε2
φB

0 θB
0

− εφB
0 φB

0
εθB

0 θB
0

) + 2γ A
0 γ B

0

(
εφA

0 θB
0
εφB

0 θA
0

− εφA
0 φB

0
εθB

0 θA
0

)
(15)

and

c = (
γ A

0 γ B
0

)2(
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φA

0 θA
0
ε2
φB

0 θB
0

− ε2
φA

0 θA
0
εφB

0 φB
0
εθB
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− εφA
0 θA

0
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0
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0
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0
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0
εθA

0 θB
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0
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0
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0
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0
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0
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0
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0
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0
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0 φA
0
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0
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0
ε2
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0
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0
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0
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0 φB
0
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0 θB
0
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0
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0
εφB

0 φB
0
εθB

0 θA
0
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0
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0
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0
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0
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0
εθA
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0
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0 φA
0
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0
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0
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0
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0
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0
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0
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0
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0
εθB
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0
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0
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0
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0
εθB
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0
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0 φB
0
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0
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0 φA
0
+ εφA

0 φB
0
εθA
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0
εφB

0 φA
0
εθB

0 θA
0

)
(16)

In this coordinate system, a singularity occurs when the
magnetization is along the z axis (θA,B = 0), and that is an-
other reason why earlier we introduced an alternative method
for linearization using Cartesian coordinates. As the antifer-
romagnetic systems becomes saturated by the external static
field along the ẑ direction one may use Eqs. (4), (5), and
(6) instead of Eqs. (14), (15), and (16) when evaluating the
eigenmodes of the system.

Assuming the static field is along the ẑ direction in the
antiferromagnetic system, and using the energy density given
by Eq. (1), one can derive an analytic expression for the
canting angles (i.e., fixed points) of MA and MB. The canting
angles with respect to the z axis are given by:

cos
(
θA

0

)
=

(
JexMB

s dB
)2 − (

JexMA
s dA

)2 − (
μ0HMB

s dBMA
s dA

)2

2Jexμ0HMB
s dB

(
MA

s dA
)2

(17)

sin
(
θB

0

) = MA
s dA

MB
s dB

sin
(
θA

0

)
. (18)

In the top panel of Fig. 3 we have plotted the canting angle as a
function of the static field in the antiferromagnetic system for
two different exchange constants. (We have assumed identical
films and therefore the canting angle of both films with respect
to the static field is the same θA

0 = θB
0 = canting angle.) The

dependency of the canting angle with respect to the static
field reveals the balance between the exchange and Zeeman
energies. Once the static field becomes strong enough, the
magnetizations become saturated and the canting angle of
the antiferromagnetic system goes to zero. As Jex → 0− the
magnetizations become easier to align with the external static
field, and as the exchange coupling becomes stronger the mag-
netizations find their equilibrium orientations further away
from one another. Under strong exchange coupling a larger
static field is needed to saturate the magnetizations along the
static field direction.

In the middle and bottom panel of Fig. 3 we have plotted
the resonant frequencies as a function of the static field
for four different exchange coupling values. Two resonant
frequencies are obtained for each field value due to the bilayer
structure. In the ferromagnetic system (bottom panel) the optic

mode is located at higher frequencies than the acoustic mode
due to the additional torque added to the system when the
magnetizations are not aligned [16]. A similar effect occurs
in the antiferromagnetic system as well (middle panel), but
when the static field becomes strong relative to the exchange
coupling, the magnetization become more aligned with the
static field and the optic mode frequency is located at a lower
frequency than the acoustic mode. This crossover of the optic
and acoustic modes occurs in the antiferromagnetic system
when the canting angle is near 45◦.

The optic mode varies less than the acoustic as the canting
angle decreases from 90◦ to 45◦ because the magnetizations
are oscillating nearly 180◦ out of phase, and therefore the
in-plane or longitudinal components add while the transverse
components tend to cancel. The optic mode appears at higher
frequencies due to the additional torque added to the system
when the magnetizations are not aligned [16].

The optic mode is of interest in the magnetism community
[12] as one can possibly engineer an antiferromagnetic system
at higher frequencies (compared to the acoustic mode) for
use in electronic or signal processing [3] applications. In the
following three sections we explore a number of interesting
phenomena that arise from the nonlinear interactions in these
coupled magnetic systems. In Sec. IV, we focus on the optic
mode of a ferromagnetically coupled (Jex > 0) system with
a slight asymmetry in the drive amplitude, and in Sec. V,
we show that the acoustic and optic mode can combine in
the nonlinear limit to produce strong resonance responses at
frequencies greater than the optic mode alone.

IV. NONLINEAR POWER-DEPENDENT LOCALIZATION
FOR Jex > 0

Approaching the nonlinear limit in the Schrödinger equa-
tion involves increasing the amplitude of the wave function.
Similarly in the magnetic system, one can increase the pre-
cession angle. This can be accomplished by setting an initial
direction for the spins, or by increasing the drive ampli-
tude (Hd ) of the external driving microwave field HRF (t ) =
Hd cos(ωdt )x̂. In this paper we take the driving field to be
linearly polarized along the x̂ direction (excluding the case
described later for Fig. 16), as experimentally, one could con-
struct such a configuration in a microstrip waveguide to drive
the films with large amplitude magnetic fields. As one reduces
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FIG. 3. Top panel: Canting angle as a function of the static field
for two different AF exchange coupling constants. Middle panel:
Acoustic and optic mode resonant frequencies as a function of
the static field for two different AF exchange coupling constants.
Bottom panel: Acoustic and optic mode resonant frequencies as a
function of the static field for two different F exchange coupling
constants. The exchange constants (Jex) are in units of erg/cm2.
The saturation (Sat.) field values for the two AF exchange values
(Jex < 0) are shown by the vertical dashed-black lines in the top
panel. The remaining parameters used are dA = dB = 1 nm, |γ A| =
|γ B| ≈ 2.31 × 105 1

(A/m) s (≈1.84 × 107 1
Oe s ), and MA

s = MB
s =

1.0 × 106 A/m (4πMs ≈ 12.57 kG).

the size of a microstrip waveguide, while keeping the input
power constant, one can achieve large amplitude microwave
fields (over 200 Oe) in a magnetic film sample [24,25]. Using
the Poynting vector, one can show that the strength of the
magnetic field in the microstrip configuration is proportional
to the

√
power/area, thus, reducing the dimensions of the

waveguide leads to larger microwave fields. This has been
reported in Ref. [24] where the authors used a high frequency
structure simulator to calculate the strength of the oscillating
magnetic field along the x̂ direction. Large gradients in the
simulations reveal that a magnetic bilayer sample may have
different drive amplitudes in each film, and we explore some
consequences of this in what follows.

When Jex > 0 (ferromagnetic coupling) the equilibrium
directions of the magnetization in each film are parallel to
the applied static field. The addition of slightly differing drive
amplitudes across the two identical films breaks the symmetry

FIG. 4. mx components of the magnetizations for different
drive amplitudes. Top panel: In the linear limit the magnetiza-
tions are nearly 180◦ out of phase. Middle panel: In the nonlin-
ear limit the magnetizations become phase shifted and mB

x ampli-
tude is reduced. Bottom panel: Further increasing the drive ampli-
tude leads to a strong localization in film A. The parameters of
the simulations are fd ≈ 27.14 GHz, Jex ≈ 0.78 erg/cm2, |γ A| =
|γ B| ≈ 2.31 × 105 1

(A/m) s (≈1.84 × 107 1
Oe s ), MA

s = MB
s = 1.0 ×

106 A/m (4πMs ≈ 12.57 kG), dA = dB = 4 nm, αA = αB = 0.01,
Hstatic ≈ 7.96 × 104 A/m (1000 Oe).

and different behaviors can be observed. In the examples we
present here, we have let HB

d = 0.8HA
d (for the ferromagnetic

coupling only) and show that localized magnetization oscilla-
tions can occur at either acoustic or optic mode frequencies.
The asymmetry in the drive amplitudes across the films leads
to a power-dependent localization of the magnetization oscil-
lations in one film or the other depending on the exchange
coupling, drive amplitude, and driving frequency.

In the first example shown in Fig. 4, we have plotted the
mx (mx is the normalized magnetization in the x̂ direction
mx = Mx/Ms) component of both films for different drive
amplitudes when driven at the optic mode frequency ( fd ≈
27.14 GHz). (The my and mz components are not provided
for simplicity, and because the system is being driven along
the x̂ direction, the mx component provides an adequate
interpretation of the magnetization precession in response
to the driving field.) The top panel of Fig. 4 shows both
magnetizations of equal magnitude oscillating nearly 180◦ out
of phase in the linear low field limit (Hd = 10 Oe). The lower
two panels of Fig. 4 show that as the microwave field increases
in magnitude, the oscillations become primarily localized in
film A, while the amplitude of oscillations in film B are
reduced. In addition, there is a slight change in the phase
difference between the magnetizations.

The power-dependent localization is further illustrated over
a broad range of drive amplitudes for different exchange
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FIG. 5. One hundred Poincaré sections at each value of HA
d at the

maximum of the component oscillations 10 ns after the simulation
has initialized (i.e., bifurcation diagram). The asymmetry introduced
in the drive amplitudes (HB

d = 0.8HA
d ) allows the component oscilla-

tions to become localized as the driving field is increased. Jex and
f are in units of erg/cm2 and GHz, respectively. The parameters
of the simulations are |γ A| = |γ B| ≈ 2.31 × 105 1

(A/m) s (≈1.84 ×
107 1

Oe s ), MA
s = MB

s = 1.0 × 106 A/m (4πMs ≈ 12.57 kG), dA =
dB = 4 nm, αA = αB = 0.01, Hstatic ≈ 7.96 × 104 A/m (1000 Oe).

coupling and two different drive frequencies in the bifurcation
diagram of Fig. 5. In this form of a bifurcation diagram we
have taken 100 Poincaré sections at each value of the drive
amplitude (HA

d ) at the maximum of the component oscillations
10 ns after the simulation has initialized. This ensures we
are not picking up the initial transient behavior and mA,B

x
represents the peak amplitude of magnetization oscillations
for the films. When there appears to be only one point for
a given value of the drive amplitude and film label (A or
B), the magnetization is under period-one motion. If there
is a continuum of points for a particular drive amplitude the
motion may, in principle, be quasiperiodic or chaotic.

The top panel (first panel) of Fig. 5 shows the peak am-
plitude of oscillation as a function of the drive amplitude in
the limit of no exchange coupling at the resonant frequency

(acoustic mode) of the system ( f = 10.77 GHz). Here, each
film undergoes period-one motion, and mA,B

x increases with
increasing HA

d from 0 → 0.6 kOe. There is little difference
between mA

x and mB
x until the systems starts showing signs of

chaotic behavior near 0.6 kOe. In the second panel, where
we have turned on the ferromagnetic exchange coupling
(Jex = 0.03 erg/cm2), the peak components of mA

x and mB
x

begin to diverge from one another near Hd = 30 Oe. From
Hd = 30 → 81 Oe the oscillations are primarily localized
in film B. Somewhere between 81 and 82 Oe the system
reverses its behavior and the localization occurs in film A.
Further increasing Hd causes the localization to disappear.
(The second panel shows period-one motion of each film from
approximately 0 → 650 Oe). The third panel shows that by
increasing the exchange coupling to Jex = 0.10 erg/cm2 the
system can lead to a more dramatic localization behavior, but
the reversal or switching behavior between the films is not
present. Finally, the fourth (bottom) panel shows that when the
system is driven at the optic mode frequency the localization
occurs only in film A, and the system’s response to the driving
field is reduced compared to that of the acoustic frequency.
(The fourth panel uses the same parameters as that shown for
Fig. 4). As HA

d is increased above 1 kOe in the top three panels
the behavior is primarily chaotic. In the bottom panel with
stronger coupling and higher driving frequency, the motion is
chaotic from roughly Hd = 1.57 → 1.93 kOe, then transitions
back to period one motion above 1.93 kOe. Similar behaviors
are observed for different drive amplitude asymmetries (e.g.,
HB

d = 0.9HA
d and HB

d = 0.7HA
d ) as well as different exchange

coupling (e.g., Jex = 0.05, 0.07, and 0.40 erg/cm2). We have
not characterized the localization behavior over the entirety of
the parameter space, but we have shown that its occurrence is
connected with the drive amplitude asymmetry and occurs for
a number of parameter variations.

We note that values of oscillating fields in the 100–200
Oe range have been experimentally realized in microstrip
structures where the characteristic lengths (signal line width
and dielectric thickness) are on the order of microns. However,
based on the calculations indicated in Ref. [25], smaller
microstrip structures, with dimensions on the order of a few
hundred nanometers, could produce substantially larger mi-
crowave fields, in the 1000–3000 Oe range.

It turns out this power-dependent localization is easy to
understand. Localization, for example, is also observed in
the linear limit when the films are driven slightly (a few
GHz) off the optic mode frequency. In the linear limit (Hd ≈
10 Oe), increasing or decreasing the driving frequency from
that of the optic mode leads to localization in one film or the
other and a phase shift. For example, with Hd ≈ 10 Oe and
using the parameters in the caption of Fig. 4 ( fd = foptic ≈
27.14 GHz) no localization is observed (see top panel of
Fig. 4), but increasing the drive frequency to fd ≈ 29.14 GHz
leads to a localization in film A, while decreasing the drive
frequency to fd ≈ 25.14 GHz leads to localization in film
B. It is well known that in most nonlinear dynamic systems
the resonant frequencies shift when strongly driven. In this
case, the localization observed in Fig. 4 and the bottom panel
(fourth panel) of Fig. 5 is a result of the nonlinear optic mode
frequency shifting to a lower value when strongly driven,
and therefore, leading to a localization in film A (i.e., having
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fd > foptic in the nonlinear regime leads to a localization in
film A).

Localization is also observed near the acoustic mode fre-
quency as we highlighted in Fig. 5 but only for weaker
exchange coupling. In addition, the localization behavior in
the linear limit is opposite from that of the optic mode
when driven at frequencies near the acoustic mode (i.e., fd >

facoustic leads to localization in film B, while fd < facoustic

leads to localization in film A). Therefore in the case of the
acoustic mode, having fd > facoustic in the nonlinear regime
leads to localization in film B. This is clearly observed in the
third panel of Fig. 5.

We comment on the unique behavior seen in the second
panel of Fig. 5 (Jex = 0.03 erg/cm2), where the localization
reverses as the driving amplitude is increased. For the small
exchange coupling considered here the optic mode is within
1 GHz of the acoustic mode ( facoustic ≈ 10.77 GHz, foptic ≈
11.62 GHz). As the drive amplitude is increased, there is a
critical value at which the films switch their behaviors. The
critical drive amplitude occurs when the nonlinear optic mode
frequency shifts below fd .

We present a second example of localization that is more
closely related to the quantum system we referred to in the
introduction. We consider a magnetic coupled system with
no damping or driving field, thereby strictly focusing on
the interplay between the exchange coupling and static field
strength. In Fig. 6 we examine this case in the linear (top
panel) and nonlinear (bottom panel) limits. The linear limit
of this system is given by considering a small deviation of
the magnetizations about the static field direction (Hstatic =
1000 Oe ẑ), where we have let θA

0 = 0.1 and θB
0 = 0.0. This

linear limit configuration results in the back and forth switch-
ing of oscillatory behavior from one film to the other (i.e.,
the energy is sloshing from one film to the other). Note that
if the magnetizations were precisely aligned with the static
field (θA

0 = θB
0 = 0.0), no oscillation would occur at all, as

there is no torque introduced to set the system in motion. In
the nonlinear limit, where we have let θA

0 = 1.2 and θB
0 = 0.0,

the energy is not fully transferred from one film to the other,
and therefore localized magnetization oscillations can occur.
The threshold for when localization occurs in this system is a
function of the initial conditions (θA

0 , φA
0 , θB

0 , φB
0 ), exchange

coupling, and the strength of the static field. For example,
using the parameters provided in the caption of Fig. 6, local-
ization is not observed until θA

0 � 0.9 radians.

V. NONLINEAR COUPLING OF THE ACOUSTIC AND
OPTIC MODE IN THE ANTIFERROMAGNETIC SYSTEM

Nanoscale magnetic devices with high operational fre-
quencies are of interest to many researchers [12,15,34,43].
Here we discuss an interesting high-frequency nonlinear mode
that arises in the antiferromagnetic exchange-coupled bilayer
system. Over the parameter space we’ve investigated the mode
appears to be tunable from 20 to 50 GHz, depending on the
exchange coupling and static field strength.

Using the antiferromagnetic bilayer configuration shown
in Fig. 1 and the energy density given by Eq. (1), but simply
changing the sign of the exchange coupling constant (Jex <

0), leads to dramatically different behavior compared to that

FIG. 6. mx components of the magnetizations with no damp-
ing and driving field for different initial conditions. The units of
the initial conditions are radians. Top panel: Exchange coupling
between the films in the linear limit leads to the back and forth
transfer of energy from one film to the other. Bottom panel: In
the nonlinear limit the exchange coupling is not strong enough for
the complete transfer of energy from one film to the other, and
therefore, the oscillations become localized in film A. The simula-
tion parameters are Jex ≈ 0.01 erg/cm2, dA = dB = 4 nm, |γ A| =
|γ B| ≈ 2.31 × 105 1

(A/m) s (≈1.84 × 107 1
Oe s ), MA

s = MB
s = 1.0 ×

106 A/m (4πMs ≈ 12.57 kG), αA = αB = 0, and Hstatic ≈ 7.96 ×
104 A/m (1000 Oe).

discussed in Sec. IV. The energy landscape now favors the
magnetization in the layers to be canted away from each
other, with the canting angles governed by the strength of the
exchange coupling and the static field for identical films. [The
more general configuration angles are given by Eqs. (17) and
(18) in Sec. III.]

In this section we focus on antiferromagnetic resonance
(AFR) calculations to guide our inquires into the AF bilayer
system. The numerical AFR calculations start by specifying
the material parameters (|γ A|, |γ B|, MA

s , MB
s , Jex, αA, αB, dA,

dB, film area), a fixed static field along the ẑ direction, then
applying a transverse oscillatory microwave field HRF (t ) =
Hd cos(2π fdt ) x̂ and sweeping over a range of frequencies
( fd ). For each frequency, we run our LLG dynamics calcula-
tions from time zero to 100 or more drive periods past a 10 ns
simulation time. (This ensures we are not picking up the initial
transient behavior.) We then calculate the power absorbed per
unit volume from the microwave field at each time step, in-
dexed by i, from 10 ns to 100 drive periods later for each layer
PA

i = 0.5μ0(Hdi · dMA
i /dt ) (similarly for PB

i ). Sum the two
quantities Ptoti = PA

i + PB
i for each time step and then calcu-

late the time-averaged power 〈P〉 = �Ptoti dti/�t over the 100
drive period time interval (�t). This result is then normalized
to the time-averaged input power 0.5μ0(Hd )2ωd over the same
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time interval. This numerical procedure leads to the normal-
ized (Norm.) power absorbed as a function of the frequency
as shown in Fig. 7. Figure 7 reveals the strength of the FR and
AFR response to an oscillatory driving field, where the peaks
indicate the resonant frequencies of the magnetic system.

In the linear limit, the normalized power absorbed can be
derived analytically from the LLG equation [Eq. (2)], and
one finds that coefficients of the dynamic magnetization are

directly proportional to the drive field amplitude through the
dynamic or AC susceptibility χ = χ ′ + iχ ′′ [14,44,45]. The
imaginary part of the susceptibility is related to microwave
absorption, and this allows us to test our numerical scheme for
calculating the normalized power absorbed with an analytic
formula for the susceptibility. Using the LLG equation for
a single magnetic film with Heff = Hd (t )x̂ − Myŷ + Hẑ, one
can show that

χ ′′ = Mαω|γ |(1 + α2)[|γ |2(1 + α2)(H + M )2 + ω2(1 + α2)2]

H2|γ |4(H + M )2(1 + α2)2 − |γ |2ω2(1 + α2)2[2H (H + M ) − α2(2H2 + 2HM + M2)] + ω4(1 + α2)4
(19)

where H is the static field and M is the saturation magne-
tization. Using Eq. (19) with |γ | ≈ 2.31 × 105 1

(A/m) s , M =
1.0 × 106 A/m, H ≈ 7.96 × 104 A/m, and α = 0.01 results
in a peak susceptibility of 317.79 at a frequency of 10.77 GHz.
Numerically, using the procedure outlined above for the nor-
malized absorbed power, and with a 1 Oe (≈79.58 A/m) drive
amplitude, we arrive at χ ′′ ≈ 317.79. These results provide
some confidence in our numerical routines for calculating χ ′′
or normalized power absorbed in the nonlinear regimes.

As mentioned earlier, we are primarily focused on identical
films where there are no thickness imbalances (dA = dB),
saturation differences (MA

s = MB
s ), gyromagnetic ratio differ-

ences (|γ A| = |γ B|), or damping differences (αA = αB). We
will briefly discuss excursions from the identical film limit

FIG. 7. Numerical AFR and FR responses for identical films
in the linear and nonlinear regimes. The ferromagnetic (F) bilayer
resonances are shown by the solid-red and dashed-cyan curves
for Jex = 0.30 erg/cm2, while the antiferromagnetic (AF) bilayer
resonances are shown by the solid-blue and dashed-magenta curves
for Jex = −0.30 erg/cm2. The remaining simulation parameters are
|γ A| = |γ B| ≈ 2.31 × 105 1

(A/m) s (≈1.84 × 107 1
Oe s ), MA

s = MB
s =

1.0 × 106 A/m (4πMs ≈ 12.57 kG), dA = dB = 1 nm, αA = αB =
0.01, Hstatic ≈ 7.96 × 104 A/m (1000 Oe).

when appropriate, as in the real world perfectly identical films
are not likely.

In Fig. 7 we present the AFR response when Jex =
−0.30 erg/cm2 and Hstatic = 1000 Oe for two different drive
amplitudes, Hd = 10 Oe (linear regime) and Hd = 200 Oe
(nonlinear regime). We have also included the FR response
(labeled with F in the figure) when Jex = 0.30 erg/cm2 as
an added comparison between the systems. The four black
arrows along the frequency axis are the linear eigenfrequen-
cies derived from solving for ω in Eqs. (4), (5), and (6)
and Eqs. (14), (15), and (16). In the linear limit only the
two acoustic modes ( f AF

acoustic and f F
acoustic) absorb energy. The

optic mode resonances are not observable in this limit due to

FIG. 8. Numerical AFR and FR responses for different
saturation magnetizations and unequal film thicknesses in the
linear and nonlinear regimes. The ferromagnetic (F) bilayer
resonances are shown by the solid-red and dashed-cyan
curves for Jex = 0.30 erg/cm2, while the antiferromagnetic
(AF) bilayer resonances are shown by the solid-blue and
dashed-magenta curves for Jex = −0.30 erg/cm2. The simulation
parameters are |γ A| = |γ B| ≈ 2.31 × 105 1

(A/m) s (≈1.84 ×
107 1

Oe s ), MA
s = 1.0 × 106 A/m (4πMA

s ≈ 12.57 kG), MB
s = 5.0

× 105 A/m (4πMB
s ≈ 6.28 kG), dA = 1 nm, dB = 2 nm,

αA = αB = 0.01, Hstatic ≈ 7.96 × 104 A/m (1000 Oe).
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FIG. 9. Bifurcation diagram (top 3 panels) and the nor-
malized power absorbed (AFR response) at the acoustic plus
optic mode frequency ( facoustic + foptic). The bifurcation dia-
gram has four distinct regions. 0–105 Oe: period-one mo-
tion. 105–300 Oe: quasiperiodic motion. 300–370 Oe: multi-
periodic motion. 370–500 Oe: primarily chaotic motion. Bottom
panel: the transition from period-one to quasiperiodic behavior
leads to a large increase in the AFR response. The simula-
tion parameters are Jex = −0.30 erg/cm2, fd ≈ 30.2 GHz, |γ A| =
|γ B| ≈ 2.31 × 105 1

(A/m) s (≈1.84 × 107 1
Oe s ), MA

s = MB
s = 1.0 ×

106 A/m (4πMs ≈ 12.57 kG), dA = dB = 1 nm, αA = αB = 0.01,
Hstatic ≈ 7.96 × 104 A/m (1000 Oe).

the films having identical magnetic properties. As the drive
amplitude further increases from 10 Oe, the acoustic mode
resonances decrease in amplitude and start to shift toward
lower frequencies due to the increased precession angle. In the
nonlinear limit (Hd = 200 Oe), there are no new absorption
peaks that appear in the F system, while in the AF system two
new peaks arise: one relatively weak mode at 0.5 f AF

optic and a
strong high-frequency mode centered around the acoustic plus
optic mode frequency ( f AF

acoustic + f AF
optic).

There are a number of unique features in connection with
the spontaneous appearance of this high-frequency absorption
peak. First, it is surprising that a high-frequency composite
mode (acoustic plus optic) can have a response as large as or
larger than the low frequency acoustic mode. Second, it is sur-
prising that the new absorption peak has a frequency involving
the f AF

optic when there is no absorption at the frequency of the

FIG. 10. Quasiperiodic and period-six attractors that illustrate
the antiferromagnetic magnetization dynamics within certain regions
of the bifurcation diagram of Fig. 9. (a) Quasiperiodic attractors from
9.0 to 11.0 ns (60 drive periods) when Hd = 150 Oe. Period-six at-
tractors from 9.0 to 9.2 ns (6 drive periods) when Hd = 300 Oe. The
simulation parameters are Jex = −0.30 erg/cm2, fd ≈ 30.2 GHz,
|γ A| = |γ B| ≈ 2.31 × 105 1

(A/m) s (≈1.84 × 107 1
Oe s ), MA

s = MB
s =

1.0 × 106 A/m (4πMs ≈ 12.57 kG), dA = dB = 1 nm, αA = αB =
0.01, Hstatic ≈ 7.96 × 104 A/m (1000 Oe).

optic mode. It may be possible to observe this behavior in an
experiment and possibly exploit the behavior in a device, such
as a power limiter.

The composite mode that arises in this magnetic bilayer
system is not restricted to the system of identical films and
continues to appear for many different parameter variations of
the AF system. The composite mode does appear to be unique
to the AF system, as we have yet to observe it in the F system
over the parameter space we have investigated. Figure 8
illustrates the resonant modes when the films have differing
magnetic properties (namely the saturation magnetization)
and film thicknesses. One should notice that Fig. 8 has many
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FIG. 11. Late-time magnetization trajectories (attractors) at the
fundamental acoustic ( f AF

acoustic = 5.15 GHz) and optic ( f AF
optic =

25.04 GHz) mode for two different drive amplitudes. (a) Acoustic
mode. (b) Optic mode (to visualize the optic mode on the unit sphere
the drive amplitude was increased significantly over the acoustic
mode). The color gradients indicate the time evolution, while the
arrows indicate the direction of dmA,B/dt at a few points along
the trajectory. The simulation parameters are Jex = −0.30 erg/cm2,
|γ A| = |γ B| ≈ 2.31 × 105 1

(A/m) s (≈1.84 × 107 1
Oe s ), MA

s = MB
s =

1.0 × 106 A/m (4πMs ≈ 12.57 kG), dA = dB = 1 nm, αA = αB =
0.01, Hstatic ≈ 7.96 × 104 A/m (1000 Oe).

of the same features as Fig. 7, but the optic modes of both the
AF and F system now appear and the resonant frequencies
have shifted to slightly lower values. The composite mode
is still present in Fig. 8 when the saturation magnetizations
differ and would be present even if there was only a thickness
imbalance.

The AF system is highly sensitive to thickness imbalances
as the fixed points of the system change according to Eqs. (17)

FIG. 12. Emergence and shape of the AFR response at the
( facoustic + foptic) mode for increasing drive amplitudes. The simu-
lation parameters are Jex = −0.30 erg/cm2, fd ≈ 30.2 GHz, |γ A| =
|γ B| ≈ 2.31 × 105 1

(A/m) s (≈1.84 × 107 1
Oe s ), MA

s = MB
s = 1.0 ×

106 A/m (4πMs ≈ 12.57 kG), dA = dB = 1 nm, αA = αB = 0.01,
Hstatic ≈ 7.96 × 104 A/m (1000 Oe).

and (18), and this results in new equilibrium orientations of
the magnetizations. For example, a small difference in film
thicknesses (0.1–1 nm) in the numerical simulations will lead
to the appearance of a small optic peak in the AF system. We
note that some of these values lie outside the region where
the macrospin approximation is appropriate, however it does
indicate the sensitivity of the measurement to small variations
in thickness. In contrast, the F system is relatively insensitive
to the film thicknesses. In fact, the optic mode is only present
in the F system when the magnetic properties (γ , Ms, α) of
the films differ from one another. This is in contrast to the
AF system where the optic mode can appear when the films
have identical magnetic properties and there is only a slight
difference in film thickness. (This is well known for canted
systems.)

The abrupt changes in the state space configuration of a
dynamic system as a parameter of the system is varied points
to a bifurcation event. Probing the detailed magnetization
behavior through plots of the limit cycles (attractors) and
Poincaré sections near the ( f AF

acoustic + f AF
optic) of Fig. 7 reveals

a dramatic transition near Hd ≈ 105 Oe from period-one
motion to quasiperiodic behavior with a strong tendency to
repeat its evolution every six drive periods (period-six behav-
ior). This transition from period-one motion to quasiperiodic
behavior is illustrated in Fig. 9, where we have created a
bifurcation plot at the frequency of the composite mode,
( f AF

acoustic + f AF
optic) ≈ 30.2 GHz. The bottom panel of Fig. 9

shows the sharp rise in AFR response at the transition from
period one to quasiperiodic behavior. The quasiperiodicity
occurs at drive amplitudes from roughly 105 to 300 Oe, then
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FIG. 13. Drive amplitude thresholds and composite mode fre-
quencies as a function of both the exchange coupling and static field.
|γ A| = |γ B| ≈ 2.31 × 105 1

(A/m) s (≈1.84 × 107 1
Oe s ), MA

s = MB
s =

1.0 × 106 A/m (4πMs ≈ 12.57 kG), dA = dB = 1 nm, αA = αB =
0.01.

the system locks on (or finds) multiperiodic attractors from
300 to 370 Oe and then begins to transition into chaotic
behavior for Hd > 370 Oe. It is important to note here that
similar bifurcation landscapes exist at the composite mode
frequency for a wide variety of bilayer parameter variations,
and the example presented here is illustrative of the general
behavior for many other parameters (we don’t show bifur-
cations plots of the many other configurations), though the
drive amplitude of where the transitions occur for period-
one→quasiperiodicity, quasiperiodicity→multiperiodic, and
multiperiodic→chaos may differ.

The detailed dynamics of the magnetizations in the
quasiperiodic and period-six regions of Fig. 9 are illustrated
in Fig. 10. In Fig. 10(a) we plot the quasiperiodic attractor at
a drive amplitude of 150 Oe, from 9.0 to 11.0 ns (60 drive
periods). The motion is quasiperiodic in that the magneti-
zation trajectories are almost repeating themselves every six
drive periods. In Fig. 10(b), at Hd = 300 Oe the magnetization
motion repeats itself every six drive periods and therefore we
only plotted the trajectories over precisely six drive periods
(0.2 ns) from 9.0 to 9.2 ns. It is amazing that these large
amplitude complex trajectories abruptly arise from the simple
small amplitude period-one motion at Hd < 105 Oe.

FIG. 14. Numerical AFR responses in identical films for dif-
ferent static field conditions. Increasing the static field shifts the
acoustic mode to larger frequencies as well as the nonlinear
composite mode ( facoustic + foptic). The simulation parameters are
Jex = −0.30 erg/cm2, |γ A| = |γ B| ≈ 2.31 × 105 1

(A/m) s (≈1.84 ×
107 1

Oe s ), MA
s = MB

s = 1.0 × 106 A/m (4πMs ≈ 12.57 kG), dA =
dB = 1 nm, αA = αB = 0.01.

The complex behavior seen in Fig. 10 can probably be best
understood by looking at the fundamental modes that com-
prise the composite mode behavior. The acoustic and optic
mode behavior of the AF system is probably more difficult to
visualize than the F system, and therefore in Fig. 11 we have
plotted the late-time 3D trajectories of the fundamental modes
over one drive period (the attractors of the system), so one can
visually grasp the fundamental magnetization motions. When
the AF coupling is strong compared to the static field strength
(i.e., canting angle �45◦), and for a particular value of Hd , the
acoustic mode has a larger amplitude motion than the optic
mode and the magnetizations precess in elongated orbits like
that shown in Fig. 11(a). When the system is driven at the
optic mode frequency, and using the same 200 Oe value for
Hd in Fig. 11(a), the optic mode magnetization amplitudes are
on the order of 0.001–0.01. Due to the high-frequency small
amplitude motion of the optic mode, we increased the drive
amplitude in Fig. 11(b) significantly over that used for the
acoustic mode, just to make it easier to visualize. (At Hd =
200 Oe instead of 1200 Oe, the optic mode will have a similar
trajectory but with much smaller amplitude.) Now, comparing
Figs. 11 and 10, one can see that the composite mode (Fig. 10)
has large amplitude motion like that of the acoustic mode, and
the magnetization is precessing at a frequency greater than the
optic mode.

VI. TUNABILITY OF THE COMPOSITE MODE

The behavior of the strong high-frequency composite mode
( f AF

acoustic + f AF
optic) introduced in the previous section can be

tuned by a range of control parameters. In this section we
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FIG. 15. Normalized power absorbed (AFR response) as a function of the drive amplitude at the acoustic plus optic mode frequency ( fa+o)
for select exchange coupling and static field values. Jex and fa+o are in units of erg/cm2 and GHz, respectively. The canting angle θ0 is in
units of degrees. |γ A| = |γ B| ≈ 2.31 × 105 1

(A/m) s (≈1.84 × 107 1
Oe s ), MA

s = MB
s = 1.0 × 106 A/m (4πMs ≈ 12.57 kG), dA = dB = 1 nm,

αA = αB = 0.01.

present: (1) how the shape of the resonance changes with
increasing drive amplitude; (2) how the frequency of the mode
can be varied with different exchange coupling and static field
values; (3) the effect of applying the driving microwave field
along the ẑ direction instead of the x̂ direction.

We have already shown how the peak AFR response
changes as a function of the drive amplitude for a fixed
frequency in the bottom panel of Fig. 9, but equally important
for characterization of this interesting nonlinear mode is how
the width of the absorption peak changes with the drive
amplitude. Figure 12 displays the emergence of the AFR
response near Hd = 106 Oe and that it increases a few or-
ders in magnitude from Hd = 106 → 129 Oe. The maximum
absorption occurs near Hd = 150 Oe, and the resonance band
widens from a few tenths of a GHz to roughly 5 GHz over
the drive amplitudes shown. It is quite interesting that the
general shape of the power absorption curve remains the same
even into the chaotic region at Hd = 500 Oe. In the analy-
ses presented in this paper we did not calculate Lyapunov
exponents to quantify the strength of the chaos. Chaos was
verified by plotting Poincaré sections on unit spheres (similar
to those shown in Figs. 10 and 11) over a large time interval
(100 → 1000 drive periods) after 10 ns of initialization and
determining if the points were randomly distributed over the
sphere by visual inspection.

The drive amplitude threshold for when the composite
mode begins to appear is a function of both the static field
and exchange coupling. This behavior is illustrated in Fig. 13
where we have plotted the Hd threshold (the onset of ab-
sorption by the composite mode) and the composite mode
frequency as a function of the exchange coupling for different
static fields. In general, a larger drive amplitude is needed to
excite the composite mode as the static field is increased and
as the strength of the exchange coupling is increased. As the
exchange coupling is reduced and the magnetizations begin to
align with the static field the composite mode disappears.

The frequency of the composite mode also depends on
the strength of the static field and different exchange cou-
pling values. Increasing the strength of the exchange cou-
pling increases the torque applied to the magnetizations due
to the effective exchange field HA,B

ex = Jex

μ0dA,BMA,B
s

MB,A

MB,A
s

. The
additional torque pushes the optic mode to higher frequencies
and therefore the composite mode as well.

The antiferromagnetic resonance behavior is further illus-
trated in Fig. 14 as the static field is increased from 600
to 3000 Oe. In this figure, one notices that increasing the
static field pushes the composite mode to larger frequencies,
while reducing its frequency band and peak response. (At
Hstatic = 600 Oe the nonlinearities also excited the optic mode
frequency near 25.27 GHz.) Additionally, the figure tells us
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FIG. 16. Numerical AFR responses in identical films when the
driving field is oriented inline with the static field. (Both fields are in
the ẑ direction.) The opticlike mode is enhanced relative to having
the drive field perpendicular to the static field. In the nonlinear
regime an acousticlike mode appears near that of a ferromagneti-
cally (F) coupled system (Jex > 0). The simulation parameters are
Jex = −0.30 erg/cm2, |γ A| = |γ B| ≈ 2.31 × 105 1

(A/m) s (≈1.84 ×
107 1

Oe s ), MA
s = MB

s = 1.0 × 106 A/m (4πMs ≈ 12.57 kG), dA =
1 nm, dB = 0.99 nm, αA = αB = 0.01, Hstatic ≈ 7.96 × 104 A/m
(1000 Oe).

that as the canting angles (fixed points) of the system are
reduced toward the static field direction (ẑ), it takes larger
drive amplitudes to excite the composite mode, in other words,
the mode is easier to excite when the magnetizations of each
film are further away from one another.

While the composite mode drive amplitude thresholds vary
smoothly (Fig. 13) as a function of the exchange coupling
and static field, the detailed characteristics of the suscepti-
bilities as a function of the drive amplitude have a relatively
complex behavior. The power absorbed as a function of the
drive amplitude is presented in Fig. 15 for various exchange
coupling and static fields values. Figure 15 shows a number
of interesting features: (1) the peak power absorbed has a
complex relationship with the exchange coupling and the
drive amplitude, (2) once the power absorbed reaches a peak
value it generally decreases with increasing drive amplitude,

(3) as the static field is reduced the power absorbed becomes
larger (with a few exceptions), and (4) the noisy regions of the
curves most likely indicate regions of chaotic behavior.

Orienting the driving field along the ẑ direction makes the
optic mode easier to excite, because the mode is associated
with in-phase motion in the ẑ direction. This causes the AFR
response at the optic mode frequency to be much larger than
that of the acoustic mode, and therefore in Fig. 16 we see
the magnitude of the responses change roles between the
acoustic and optic modes compared to when the driving field
is oriented perpendicular to the static field. (We added a slight
asymmetry (1%) in the thicknesses of this system, so one can
observe the f AF

acoustic). Surprisingly, as the drive amplitude is
increased in this AF system an acousticlike mode appears near
the same frequency as that of the F system. This acousticlike
mode centered about f F

acoustic looks very much like that shown
in Fig. 11(a) but undergoes period-two motion and not the
period-one shown in the figure. The appearance of this non-
linear mode occurs near a driving field Hd = 150 Oe. Though
not shown, as the static field is varied in this system, this
nonlinear mode does indeed shift to the acoustic frequency
of the F coupled system for the new static field value. Thus,
when applying the driving field along the ẑ direction of the AF
system, a nonlinear mode can appear near the acoustic mode
frequency of F coupled system.

VII. CONCLUSIONS

We have examined a variety of power-dependent nonlinear
effects in exchange-coupled magnetic bilayers. The ferromag-
netic exchange-coupled thin-film structure showed a power-
dependent localization of the magnetization oscillations in
one of the two films when introducing a small asymmetry
in the driving field across the films. The antiferromagnetic
coupled bilayer system possesses a tunable high-frequency
nonlinear composite mode comprised of both the fundamental
acoustic and optic modes. The absorption of this mode is
strongly power dependent, with a width in absorption frequen-
cies that is also strongly power dependent. The magnetic en-
ergy densities we explored are arguably the simplest nontrivial
examples of interactions between ultrathin magnetic films
which led to these interesting nonlinear phenomena. Other
terms such as the surface anisotropies may be explored in
future analyses. While the work presented here is theoretical
and driven by a numerical analysis, it is our expectation that
these effects could be measured and exploited in real devices.
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