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The asymmetric responses of the system between the external force of the right and left directions are called
“nonreciprocal.” There are many examples of nonreciprocal responses, such as the rectification by the p-n
junction. However, the quantum-mechanical wave does not distinguish between the right and the left directions
as long as the time-reversal symmetry is intact, and it is a highly nontrivial issue how the nonreciprocal nature
originates in quantum systems. Here we demonstrate by the quantum ratchet model, i.e., a quantum particle in an
asymmetric periodic potential, that the dissipation characterized by a dimensionless coupling constant α plays
an essential role for nonlinear nonreciprocal response. The temperature (T ) dependence of the second-order
nonlinear mobility μ2 is found to be μ2 ∼ T (6/α)−4 for α < 1, and μ2 ∼ T 2(α−1) for α > 1, respectively, where
αc = 1 is the critical point of the localization-delocalization transition, i.e., Schmid transition. On the other hand,
μ2 shows the behavior μ2 ∼ T −11/4 in the high-temperature limit. Therefore, μ2 shows the nonmonotonous
temperature dependence corresponding to the classical-quantum crossover. The generic scaling form of the
velocity v as a function of the external field F and temperature T is also discussed. These findings are relevant to
the heavy atoms in metals, resistive superconductors with vortices and Josephson junction system and will pave
a way to control the nonreciprocal responses.
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I. INTRODUCTION

Chirality is one of the most basic subjects in whole sciences
including physics, chemistry, and biology [1,2]. Most of the
focus is on the symmetry of the static structures of molecules
and organs, etc. However, once the motion or flow of particles
is considered, the distinction between the right and the left
directions of the quantum dynamics is a highly nontrivial
issue even when the system lacks the inversion and mirror
symmetries, i.e., chiral. Classical dynamics of a particle under
an asymmetric potential has been a deeply studied topic in
wide fields of science since Feynman conceived the idea of
the Brownian ratchet [3]. Researches range from a molecu-
lar motor [4,5], colloid dynamics [6], and optically trapped
molecule [7] to a drop of mercury [8].

Quantum effects on the particle dynamics under the non-
reciprocal periodic potential V (x) is one of the most funda-
mental problems in condensed-matter physics. Without the
dissipation, the engenstates of this problem are given by the
Bloch wave functions characterized by the crystal momentum
k and the eigenenergy εn(k) with n being the band index.
Neglecting the spin degrees of freedom, εn(k) is symmetric
between k and −k, i.e., εn(k) = εn(−k) as far as V (x) is
real, i.e., Hermitian. Therefore, the transport phenomena are
symmetric between the right and the left directions as long
as the many-body interaction is neglected [9]. This is in
sharp contrast to the daily experience, which is governed by
classical mechanics that it is more difficult to climb up the
steeper slope compared with the gentle one. Especially, the
role of friction is important; even at the classical dynamics,
the time-reversal symmetry and energy conservation law pro-
hibit the difference between the motions to the right and

the left directions. Therefore, an important question is how
the dissipation brings about the nonreciprocal transport of a
quantum particle.

Dynamics of a quantum Brownian particle in the periodic
potential with dissipation has been the subject of intensive
studies for a long term [10]. The formulation of the quantum
dissipation in terms of the coupling to harmonic bath by
Caldeira-Leggett gives a way to handle this problem in the
path-integral formalism [11,12], and the real-time formalism
to calculate the influence integral is often used to calculated
the mobility [13]. Using these methods combined with the
renormalization-group (RG) analysis, the quantum phase tran-
sition is discovered at the critical value of the dimensionless
friction α, which separates the extended ground state at α <

αc = 1 and the localized one at α > αc = 1 [14–21]. As far
as the the linear mobility μ1 is concerned, it approaches a
finite value of μ1 ∝ 1/α when α < 1, whereas μ1 vanishes as
μ1 ∼ T 2(α−1) when α > 1 in the limit T → 0. This transition
can be regarded as that from quantum-to-classical dynamics
as the friction α increases. Therefore, it is interesting to see
how this transition affects the nonreciprocal dynamics of the
quantum particle in the asymmetric potential.

Experimentally, the quantum ratchet effects in semicon-
ductor heterostructure with artificial asymmetric gating [22],
Josephson junction array [23], and ϕ Josephson junction [24]
are reported.

Recently, the vortex flow resistance in a noncentrosym-
metric superconductor is shown to express a large direc-
tional dichroism at the low temperature [25]. The classi-
cal dissipative dynamics of a point particle in the pres-
ence the asymmetric pinning potential is investigating as a
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FIG. 1. Schematic of the present system. The particle wave
packet under the ratchet potential is driven by the external force F
resulting in a nonreciprocal velocity; |v(−F )| �= |v(F )|.

candidate model [26], however, the low-temperature behavior
is not addressed where the quantum tunneling plays a vital
role.

In this paper, we study the quantum dynamics of the
particle in an asymmetric periodic potential with Ohmic
dissipation (see Fig. 1). The form of the potential is, for ex-
ample, taken as V (x) = V1 cos (2π x

a ) + V2 sin (4π x
a ), which

breaks the inversion symmetry x → −x. This model describes
the quantum ratchet, and several earlier works addressed
this problem [27–35]. The instanton approach in the strong-
coupling limit has been employed in Refs. [28–30] where
the nonmonotonous temperature dependence of the nonlinear
mobility μ2 has been obtained due to the crossover from
temperature-assisted transition to quantum tunneling. Here,
the coherence between the tunneling events has been ne-
glected, which eventually becomes important in the low-
temperature limit. Scheidl-Vinokur [32] and Peguiron-Grifoni
[34,35] employed the weak-coupling perturbation theory
with respect to the potential V (x) and obtained the lowest-
order expression for the second-order mobility μ2 ∝ V 2

1 V2

and the rectified velocity v(F ) + v(−F ) ∝ V 2
1 V2, respec-

tively, in terms of the integral over the two time vari-
ables t1 and t2. However they have not carefully exam-
ined the detailed temperature dependence especially at low
temperatures.

II. CALCULATION OF STEADY-STATE VELOCITY

Here, we rederive the general expression of the steady-state
velocity as a function of external force F in the presence of
the dissipation and the general form of asymmetric corru-
gation V (x) in a perturbative way. This perturbation theory
is justified for α < 1 where the potential is irrelevant. We
will discuss the other case α > 1 later. The general formula
for steady velocity v(F ) enables us to investigate the de-
tailed temperature scaling for arbitrary order mobility μn.
The dissipation is handled in terms of the Feynman-Vernon’s
influence functional technique [13] where the infinite set
of harmonic oscillators with Ohmic spectral density J (ω) =
ηω is coupled bilinearly to the quantum-mechanical point
particle and integrated out. The lowest-order perturbative
expansion with respect to V (x) allows us to compute the
velocity and the mobility in the long-time limit in the real-
time expression for the general strength of the dissipation,
temperature T , and the external force F . Since the derivation
is tedious and just a straightforward generalization of earlier

works [17,32–35], the details are given in the Supplemental
Material (SM) [36], and we here show only the final ex-
pression. Another approach to derive the same expression
is also given in SM [36]. Throughout this paper, we set
h̄ = kB = 1.

The zeroth order in V gives v(0) = F/η, and the first-order
correction is zero. In the order of V 2, the modification to
velocity is [17,32–35]

v(2) = −2

η

∫ ∞

0
dt

∑
k

k|Vk|2 sin

[
F

η
kt

]

× sin

[
1

πη
k2Q1(t )

]
exp

[
− 1

πη
k2Q2(t )

]
. (1)

Here Vk is the Fourier component of the periodic potential
V (x) with k being the integer multiple of 2π/a. Q1 and Q2

are [12]

Q1(t ) =
∫ ∞

0
dω

J (ω)

ηω2
sin(ωt ) f (ω/γ ), (2)

Q2(t ) =
∫ ∞

0
dω

J (ω)

ηω2
[1 − cos(ωt )] coth

(
ω

2T

)
f (ω/γ ).

(3)

γ , being η divided by the particle mass M, is the characteristic
frequency scale in the present system. f is the appropriate soft
cutoff function. Here we take f (ω/γ ) = e−ω/γ . This result
is the same as the one from Peguiron-Grifoni [34,35] and
reduces to the result of Scheidl-Vinokur [32] in the small F
limit and to the result of Fisher-Zwerger [17] if we take only
k = ± 2π

a . Note here that, as the effect of the asymmetry of
the potential V (x) is missing in this formula, this results in
nothing to do with the ratchet effect, therefore, v(2) is the
odd function of F . To clarify the low-temperature behavior
of v(2), the asymptotic forms of Q1 and Q2 for t, T −1 � γ −1

are important,

Q1(t ) = tan−1(γ t ) → const., (4)

Q2(t ) = log

⎛
⎝[1 + (γ t )2]1/2

∣∣∣∣∣
	

(
1 + T

γ

)
	

(
1 + T

γ
+ iT t

)
∣∣∣∣∣
2
⎞
⎠

→ log(γ t ) + log

(
sinh(πT t )

πT t

)
(5)

with 	(·) being the 	 function. From these asymptotic behav-
iors, when expanded in F , the nth order term of v(2) scales in
the leading order as

v(2) ∼ T (2/α)−1−nF n, (6)

in the order of F n with n being odd integers. Here the widely
used dimensionless dissipation strength is

α = ηa2

2π
. (7)
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In the third order of V ’s where the quantum ratchet effect appears, we similarly have [17,32–35]

v(3) = 4

η

∫ ∞

0
dt1

∫ ∞

0
dt2

∑
k1, k2, k3

k1 + k2 + k3 = 0

k1

{
Re[Vk1Vk2Vk3 ] sin

[
F

η
(k1t1 − k3t2)

]
+ Im[Vk1Vk2Vk3 ]

[
cos

(
F

η
(k1t1 − k3t2)

)
− 1

]}

× exp

[
1

πη
[k1k2Q2(t1) + k2k3Q2(t2) + k3k1Q2(t1 + t2)]

]
sin

[
1

πη
k1k2Q1(t1)

]
sin

[
1

πη
[k2k3Q1(t2) + k3k1Q1(t1 + t2)]

]
.

(8)

This result reduces to the result of Scheidl-Vinokur [32] in
the order of F 2 and reproduces the result of Peguiron-Grifoni
for the rectified velocity v(F ) + v(−F ) in the presence of
up to the second-harmonic potential; k = ± 2π

a ,± 4π
a [34,35].

Although the expression is rather complex, we can see the
behavior in the low-temperature limit by the power counting
of the integrand using the asymptotic forms as follows. We
see from Eq. (5) that the exponential of −Q2(t ) function gives
us a power of t and the large-t cutoff of the form exp[−πT t]
at finite temperature. Thus we are allowed to count the power
at zero temperature and cutoff the integral domain [0, T −1] to
see the T dependence at low temperatures.

The dominant contribution to the integral originates from
(k1, k2, k3) = ± 2π

a (1, 1,−2) and its permutations. By means
of the polar coordinate (r, θ ), the integral is

F n
∫

r dr rn−(6/α) ∼ T (6/α)−2−nF n. On the other hand, if
we fix one of the variables, say t1, the integral behaves as
F n

∫
dt2t n−(2/α)

2 ∼ T (2/α)−1−nF n (see Fig. 2). Although the
latter contribution seems to dominate the former one at low
temperatures for α < 4, the closer inspection shows that the
summation over k1, k2, and k3 causes an exact cancellation
of these leading-order contributions. The proof of this can-
cellation is given in the SM [36], and numerical calculations
support this cancellation up to 12 digits in double-precision
calculations. Thus, the low-temperature exponent is governed
by the subleading contributions,

v(3) ∼ T (6/α)−2−nF n, (9)

in the order of F n with n being a positive integer.
The numerical evaluation of second-order mobility μ

(3)
2

which is given by the expansion of Eq. (8) with respect to
F depicted in Figs. 3(a) and 3(b) clearly show temperature
dependence as described by Eq. (9) at low temperatures. For
0 < α < 3/2, μ2 turn to decrease as decreasing temperature
around T = T ∗ ∼ γ . This is a peculiar behavior of the present

FIG. 2. Asymptotic behavior of the integrand. Asymptotic be-
havior of the integrand of nth order expansion with respect to F
of Eq. (8) in each region on the t1-t2 plane. As the leading-order
contributions from the orange regions cancel out among the terms,
the blue region determines the temperature behaviors.

system which can be captured in real experiments. For α >

1, the potential is a relevant operator, and therefore, the
perturbative expansion with respect to the potential diverges
towards the low temperatures. In this case, the system is in the
localized phase, and therefore, μ

(3)
2 must vanish at the zero

temperature. This indicates the existence of another crossover
temperature T ∗∗, which can be lower than T ∗ when the
potential is weak enough. In the view point of the RG analysis,
the potential V scales as V (�) = V (�0)(�/�0)(1/α)−1 for the
high-energy cutoff � [17]. The cutoff is truncated at � ∼ T

FIG. 3. Temperature dependence of the second-order mobility
μ

(3)
2 . (a) The second-order mobility μ

(3)
2 is evaluated from Eq. (8)

for the asymmetric potential V (x) = V1 cos(2πx/a) + V2 sin(4πx/a)
with V2 = V1/4 for each value of α. There are two power-law
regions with different exponents; (6/α) − 4 for the low-temperature
region and −11/4 for the high-temperature region. The quantum-
to-classical crossover region with sign changes (cusps) in between
is also seen. For α > 1, as the perturbative expansion with respect
to the potential fails and the system goes to the localized phase,
μ

(3)
2 vanishes at zero temperature. Therefore, there must be another

crossover point T ∗∗ at low temperatures where the perturbative treat-
ment breaks down. (b) The low-temperature power-law exponent of
μ

(3)
2 which clearly follows the asymptotic form μ

(3)
2 ∝ T (6/α)−4. (c)

The crossover temperature T ∗ defined by peak positions in (a). The
green line is that for μ

(2)
1 evaluated from Eq. (1).
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at finite temperature, therefore, we can estimate the crossover
temperature as V (�0)(T ∗∗/�0)(1/α)−1 ∼ T ∗∗.

The higher crossover temperature deduced from the peaks
of Fig. 3(a) is shown in Fig. 3(c) together with that for the
linear mobility μ

(2)
1 evaluated from Eq. (1). The crossover

temperature for μ
(3)
2 is always larger than that for μ

(2)
1 but

is comparable. Thus we can conclude that the crossover ob-
served in μ

(3)
2 is the quantum-to-classical crossover as known

for μ
(2)
1 . Note that the peaks in μ

(3)
2 for small α are not clear

due to many sign changes in the crossover region.
This low-temperature dependence is in contrast to the

saturating behavior discussed in Ref. [32] where a nontrivial
approximation is made in the evaluation of Q2, which fails
to capture the quantitative behavior of μ

(3)
2 . For the higher

temperature, μ(3)
2 decreases equally irrespective of α as μ

(3)
2 ∼

T −11/4 whose derivation is given in the SM [36]. This value
is slightly different from T −17/6 obtained in Ref. [32]. This
discrepancy is due to the difference of the choice of cutoff
function f (ω/γ ) as discussed in the SM [36]. In the interme-
diate temperature, the crossoverlike behavior and some sign
changes are observed as pointed out by Ref. [32].

III. SCALING FORMS

For α < 1, the perturbative treatment of the potential V ’s
is appropriate. And the leading-order terms lead to the scaling
form in the low-temperature limit as

v = F

η
− F (2/α)−1 f <

o (F/T ) − F (6/α)−2 f <
e (F/T )

= F

η
− T (2/α)−1g<

o (F/T ) − T (6/α)−2g<
e (F/T ), (10)

where f <
o , g<

o are odd functions whereas f <
e , g<

e are even.
The basis of this scaling is that the velocity vanished in the
limit F → 0, which is given by the integral region of the
large time variable t � 1/F . Note that only the asymptotic
behavior of the integrand at the large time variable determines
the scaling behavior for the velocity v itself, whereas the
expression for the coefficient of Fn for the velocity v does
not appear so. Therefore, the divergence of the nonlinear
mobility as T → 0 does not mean the divergence of v, but the
functional form becomes nonanalytic at the zero-temperature
T = 0. In Eq. (10), the functions g<

o , g<
e are an analytic func-

tions of their argument F/T since the perturbative expansion
is always possible when F 	 T whereas f <

o , f <
e are not.

Trivially, they are related by f <
i (η) = η1−(2/α)g<

i (η) with i ∈
{e, o}. The role of the nonreciprocal potential, i.e., V2 is to
introduce the even component g<

e . One can easily see that the
second-order nonlinear mobility μ2 scales as μ2 ∼ T (6/α)−4.
Furthermore, the generic odd (even) nonlinear mobility of
the nth order scales as μn ∼ T (2/α)−n−1 (μn ∼ T (6/α)−2−n) for
α < 1, and it diverges when 2/(n + 1) < α < 1 [6/(n + 2) <

α < 1], whereas it vanished otherwise in the limit T → 0.
Note here that the I-V relation of the Tomonaga-Luttinger
liquid (TLL) system under the weak asymmetric potential
I ∼ V 6g−2 with g being the Tomonaga-Luttinger’s interaction
parameter is shown in Ref. [37] which is analogous to the
f <
e term in Eq. (10). There are many well-known similarities

between the present system and the TLL system [19,20], and
some of them are exemplified in the SM [36].

From the viewpoint of the RG, V1 is irrelevant for α <

1, whereas it becomes relevant for α > 1. Similarly, V2 is
irrelevant for α < 4 and becomes relevant for α > 4. Naively,
this might lead to the critical α being 4 for the nonreciprocal
mobility. However, the RG procedure generates the composite
operator V1V2, which includes sin (2π x

a ), which has the same
scaling dimension as V1. This fact is reflected in each term
of the double-time integral where the dominant contribution
comes from the region where one of t1 and t2 is finite, and the
asymptotic behavior is basically given by the one-dimensional
integral over time. However, the combination of cos(2πx/a)
and sin(2πx/a) simply shifts the potential leaving the inver-
sion symmetry intact. This is the reason why the cancellation
occurs among the leading-order terms ∝T (2/α)−1−n in v(3).

Now we turn to the case of α > 1, where V ’s are relevant
and scale to larger values [14]. In this case, the tunneling t
between the potential barrier is the irrelevant operator, and
the perturbation theory in t should be employed [19,20]. The
question is how the asymmetry of the potential enters the
problem. For this purpose, let us consider the tilting of the
potential under the external field F . Due to the asymmetry
of the potential, the change in the potential barrier linear
in F exists, which results in the F dependence of t , i.e.,
t (F ) = t + γ F . This t (F ) is used for the calculation of v in
the lowest perturbation, which results in

v = t (F )2F 2α−1 f >
o (F/T ) = t (F )2T 2α−1g>

o (F/T ), (11)

where g>
o (F/T ) is the odd function of its argument, i.e., it

contains only the odd order term in the Tailor expansion.
Therefore, the second-order nonlinear mobility μ2 scales with
T 2(α−1) similar to the linear mobility μ1 and goes to 0 as
T → 0.

For the check of the scaling form Eq. (11) also in the
strong-coupling regime where potential terms are relevant
operators, we calculated a temperature dependence of the
linear and the third-order mobility in the perturbation in t .
As shown in detail in the SM [36], by the perturbation with
respect to the tunneling amplitude, they precisely follow the
expected power law as Eq. (11).

IV. DISCUSSION

Lastly, we comment on the array of the resistively shunted
Josephson junction model, which is a direct generalization of
the present system to higher dimensions. This model, com-
posed of the superconducting islands connected by Josephson
couplings with the symmetric cosine potential and the shunt-
ing Ohmic dissipation, is a promising candidate to explain
the low-temperature behavior of the thin film of granular
superconductors [38,39]. It is shown that the model shows a
quantum phase transition between coherent (superconducting)
and disordered (normal) states at α = h/(4e2R) = 1/z0 where
R is the shunting resistance and z0 is the half of the coordi-
nation number of the lattice of islands [38]. If we introduce
a asymmetric potential to the Josephson phase, the nonlin-
ear transport coefficients of the system should follow the
present scaling form. One difference is that the current in the
Josephson array acts as a tilting to the potential whereas
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the resulting time derivative of the Josephson phase is the
voltage drop, therefore nonlinear resistivity, instead of mo-
bility, follows the scaling given in the present paper. An-
other difference is the absence of the voltage drop for
z0α > 1 due to the superconductivity. Thus we can conclude
that nth order resistivity with odd (even) n scales as Rn ∼
T 2/(z0α)−n−1 (Rn ∼ T 6/(z0α)−n−2) and diverges when 2/(n +
1) < z0α < 1 [6/(n + 2) < z0α < 1] at zero temperature.

To summarize, we have studied the role of dissipation
in the nonreciprocal transport of the quantum particle in
the asymmetric periodic potential, i.e., the quantum Ratchet
model. We have derived the general expression of the steady-
state velocity v for the general value of the dissipation α, force
F , temperature T , and shape of the periodic potential V (x)
and found different scalings behavior at low temperatures
depending on the even and odd powers of F . These results
can be applied to various situations, such as the asymmetric

Josephson junction array, motion of heavy atoms in the non-
centrosymmetric crystal, and vortex motion in noncentrosym-
metric superconductors.
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