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The characterization of entanglement is a central problem for the study of quantum many-body dynamics.
Here, we propose the quantum Fisher information (QFI) as a useful tool for the study of multipartite-
entanglement dynamics in many-body systems. We illustrate this by considering the regular-to-ergodic transition
in the Dicke model—a fully connected spin model showing quantum thermalization above a critical interaction
strength. We show that the QFI has a rich dynamical behavior which drastically changes across the transition.
In particular, the asymptotic value of the QFI as well as its characteristic timescales witness the transition both
through their dependence on the interaction strength and through the scaling with the system size. Since the QFI
also sets the ultimate bound for the precision of parameter estimation, it provides a metrological perspective
on the characterization of entanglement dynamics in many-body systems. Here, we show that quantum ergodic
dynamics allows for a much faster production of metrologically useful states.
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I. INTRODUCTION

A thorough understanding of quantum many-body dynam-
ics necessarily requires the study of the time evolution of the
entanglement between the particles. In recent years, several
studies have been performed especially in the context of ther-
malization in closed quantum many-body systems [1–6]. The
computation of entanglement in strongly correlated systems
is a challenging task, and a few general results are available
for given system subclasses, such as for the time evolution
of entanglement entropy in one-dimensional systems [7] and
ergodic systems [8,9], or the boundary laws for asymptotic
states of local Hamiltonians [10]. The logarithmic growth
in the time of entanglement entropy has provided a clear
distinction between Anderson and many-body localization
[11–15]. Whereas throughout these studies the entanglement
is mostly characterized using bipartite entanglement entropies
(which can be applied only to closed systems in pure quan-
tum states), the interest in alternative measures has recently
emerged [16–19].

In this paper, we propose the quantum Fisher informa-
tion (QFI) [20,21] as a useful quantity for the study of
the time evolution of entanglement in many-body systems.
The QFI is a measure of genuine multipartite entanglement
[22–26]. With respect to entanglement entropies, it has the
important advantage of being directly applicable to mixed
states and, thus, to open-system dynamics. It is widely
studied in the context of quantum metrology—as it sets a
lower bound for the uncertainty in parameter estimation—
but much less for the characterization of the dynamics of
quantum many-body systems. So far, the QFI has been
used to detect phase transitions in ground or thermal states
[27–29], whereas its dynamical behavior across phase tran-
sitions remains largely unexplored, in particular, in ergodic
systems.

Here, we show that the QFI provides a very rich character-
ization of quantum many-body dynamics across a regular to
ergodic transition. We consider the Dicke model (DM) where
interactions between N spin-(1/2) particles are mediated by a
bosonic mode coupled at a rate g [30,31] (see also Fig. 1).
As shown by Altland and Haake [32,33], the Dicke model
offers a paradigm for quantum thermalization dynamics with
underlying classical chaos in a fully connected system. In
particular, the semiclassical dynamics in phase space shows
a transition between regular and ergodic at a critical coupling
strength gc, consistent with the behavior of the Hamiltonian
spectrum turning from Poissonian to Wigner-Dyson level
statistics [34].

We find that the QFI in the DM has a dynamical behavior
which drastically changes across the transition between the
regular and the ergodic phases. Its asymptotic value as well
as the characteristic timescales witness the transition both
through their dependence on the control parameter g and
through their scaling with system’s size N .

II. SUMMARY OF THE MAIN RESULTS

Starting from a state which is not an eigenstate of the
DM Hamiltonian [see Eq. (13)] and fixing the initial energy
with respect to the ground state (see Fig. 2), we compute
the time evolution of the QFI optimized over all possible
atomic single-particle operations. In the regular phase g < gc

(see Fig. 3 bottom row), the QFI shows oscillations around
an envelope which grows continuously in time as erf (t2/t2

asy)
and asymptotically at t � tasy saturates to a value scaling at
the Heisenberg limit (HL) ∝N2. The latter is the strongest
possible scaling for a system of N qubits. On the other hand,
in the ergodic phase g > gc (see Fig. 3, upper row), the QFI
envelope first reaches an intermediate plateau with shot-noise
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FIG. 1. Graphical illustration of the Dicke model [see Eq. (13)]
studied in this paper. N spins of length 1/2 are all coupled to a single
bosonic mode.

(SN) scaling ∝N within a time tpla < tasy, and only after tasy

reaches its final asymptotic value, the latter again showing
Heisenberg scaling. This double-step growth in the ergodic
phase disappears at high enough initial energies (see Fig. 4)
where the QFI envelope grows like erf (t2/t2

asy) for all values
of g.

Although the asymptotic value of the QFI scales at the HL
both in the ergodic and in the regular phase (see Fig. 5), its
actual value shows a sharp behavior at the critical coupling
strength gc after which it rapidly grows (see the blue points in
Fig. 6). Its behavior for g = gc, however, becomes less sharp
as energy is increased (see the red triangles in Fig. 6).

Also, the timescale tasy witnesses the transition as it
abruptly drops by increasing g down until gc after which it
saturates to a constant value (see Fig. 7). Remarkably, the
behavior of tasy as a function of g is almost independent of
the initial energy (compare the red triangles and blue points
in Fig. 7). Therefore, different from the asymptotic value, the
saturation time tasy remains a good witness of the regular-to-
ergodic transition at all energies.

The system-size dependence of the timescales is also
clearly distinct in the two phases: in the regular phase tasy ∝√

N , whereas in the ergodic phase the scaling of tasy is

FIG. 2. Density of states as a function of (E − Egs )/Egs for the
Hamiltonian (13) for N = 100 and g = 0.3 (red, right peak) or g =
0.9 (blue, left peak). Arrows indicate the two different initial energies
which are compared throughout the following analysis. The density
of states on the right of the peak converges slowly with the cutoff
in the bosonic Fock space. In our case, we choose it such that the
density of states converged in the whole region on the left of the
peak. This guarantees that our numerical results are independent of
the cutoff.

consistent with ln(N ), at least, at high-enough initial energies
(see Fig. 8). The fact that tasy ∝ ln(N ) suggest its interpreta-
tion as the Ehrenfest time, which is proportional to the volume
of the accessible phase space, the latter being proportional to
N in the DM [33].

This interpretation is confirmed by an analysis of the
Wigner distribution function, according to which tpla is con-
nected to the formation of weakly squeezed nonclassical states
whereas tasy corresponds to the distribution fully covering the
available region of phase space and forming small-scale struc-
tures of angular size 1/N . The size of the region covered by
the Wigner distribution quickly grows by increasing the initial
energy until the whole phase space is taken, consistent with
the prediction of Altland and Haake for the Husimi function
[32] and the underlying classical chaos (see Fig. 9 and 10).
As discussed above, at such initial energies, the double-step
growth of the QFI is absent. Such a double-plateau formation
can thus be related to the mixed character of the underlying
classical phase space.

Upon a QFI-based characterization of many-body dynam-
ics, one obtains a quantification of the usefulness of the
given many-body state for quantum metrology since the lower
bound to the uncertainty of parameter estimation is set by
the inverse square root of the QFI [35]. For instance, re-
cent studies have demonstrated the metrological usefulness
of quantum states generated during chaotic dynamics in the
kicked top [36]. Our results here show that, compared to regu-
lar dynamics, quantum ergodic dynamics allows for a much
faster production of entangled many-body states providing
Heisenberg scaling of the metrological precision.

III. QUANTUM FISHER INFORMATION AND
MULTIPARTITE ENTANGLEMENT

In this section, we will summarize the properties of the QFI
which are relevant for the following analysis and discussion.

For a quantum state given by a density-matrix �̂, the QFI
is defined in relation to a chosen Hermitian operator Ô, called
the generator of the transformation as

IQ[�̂; Ô] = 2
∑
l,l ′

(λl − λl ′ )2

λl + λl ′
|〈l|Ô|l ′〉|2 , (1)

with the spectral decomposition of the density matrix given by
�̂ = ∑

l λl |l〉〈l|, where λl > 0 and
∑

l λl = 1. For pure states,
the QFI reduces to IQ = 4(�Ô)2 = 4(Tr[�̂Ô2] − Tr[�̂Ô]2),
i.e., four times the variance of the operator. The QFI can
be interpreted as a square of a “statistical speed” [20,21],
defined as the rate of change in the absolute statistical distance
between two quantum states along a single-parameter path
generated by the operator Ô through

�̂(θ ) = e−iθÔ�̂eiθÔ. (2)

For thermal states, the QFI coincides with the dynamic sus-
ceptibility related to the operator Ô [27].

In our paper, the QFI is used as a mean to characterize
multipartite entanglement. In the particular case of the DM
considered here [see Eq. (13)], we have a composite Hilbert
space made of a bosonic degree of freedom (L) and a spin
subsystem (S) made of N spins of length 1/2. The total Hilbert
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FIG. 3. Dynamics of the QFI in the ergodic (top row) vs regular phase (bottom row). To render the different scaling regimes apparent,
the QFI IQ/Nα is shown for different system sizes N (ranging from 50 to 100 with �N = 10) for α = 1 (left column) and α = 2 (right
column). Hereinafter, the parameters are expressed in units of ω, and the energy of the initial state is fixed with respect to the ground state, i.e.,
(E − Egs )/Egs = 0.53 (see also Fig. 2). Here, ω0 = 1, g = 0.9 (top row), and g = 0.4 (bottom row).

space is a tensor product of the two subspaces,

H = HL ⊗ HS. (3)

We focus on pure states of the composite system, i.e., |�〉 ∈ H
and concentrate on the multipartite entanglement in the spin
subspace. We consider the following linear (in a sense that no
products of �̂σ (l ) and �̂σ (l ′ ) appear) operators,

Ôlin = ÎL ⊗ 1

2

N∑
l=1

�n(l ) · �̂σ (l ), (4)

with the Pauli operators �̂σ (l ) = (σ̂ (l )
x , σ̂ (l )

y , σ̂ (l )
z ) and the vec-

tors �n(l ) = (n(l )
x , n(l )

y , n(l )
z ) that define the rotation of the Bloch

sphere such that (n(l )
x )2 + (n(l )

y )2 + (n(l )
z )2 = 1. The only

possible pure state |�〉 in which the spins and bosons are
nonentangled is of the form

|�〉 = |ψ〉L ⊗ |φ1〉 ⊗ |φ2〉 · · · ⊗ |φN 〉, (5)

where |ψ〉L is a state of the bosonic subsystem and |φi〉 is a
state of the ith single spin. If all the spins are in the same state,
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FIG. 4. The same as in Fig. 3, this time for a higher initial energy (E − Egs )/Egs = 1.11 (see also Fig. 2).
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FIG. 5. Asymptotic value IQ
∞ of the QFI as a function of N in

double-logarithmic scale for g = 0.9 (blue curve) and g = 0.4 (red
curve). The black dashed curve is the HL, i.e., IQ

∞ = N2. Here, the
initial energy is (E − Egs )/Egs = 0.53.

the N-body state |φ〉⊗N is called the coherent spin state (CSS).
For nonentangled states and the transformation (4), the QFI is
bounded by

IQ[|�〉; Ôlin] = 4(�Ôlin )2 � N, (6)

i.e., the shot-noise limit (SNL) [22]. This bound can be
overcome when the spins are entangled. To see this, consider
an exemplary state,

|�〉 = 1√
2

(|0〉 ⊗ |↑〉⊗N + |1〉 ⊗ |↓〉⊗N ), (7)

where |0〉 and |1〉 are a bosonic vacuum and a one-particle
state, respectively, and |↑〉/|↓〉 are the eigenstates of σ̂z with
eigenvalues ±1. Taking now

Ôlin = ÎL ⊗ Ĵz, (8)

with the collective angular momentum operators of N spins
defined as

Ĵ�n = 1

2
�n ·

(
N∑

l=1

�̂σ (l )

)
(9)
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FIG. 6. Asymptotic value IQ
∞ of the QFI across the regular-

to-ergodic transition. Here, N = 100, and the initial energy (E −
Egs )/Egs = 0.53 (blue dots) or (E − Egs )/Egs = 1.11 (red triangles).
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FIG. 7. Behavior of the saturation time tasy across the regular-
to-ergodic transition. Here, N = 100, and the initial energy (E −
Egs )/Egs = 0.53 (blue dots) or (E − Egs )/Egs = 1.11 (red triangles).

we obtain

IQ[|�〉; Ôlin] = N2, (10)

which is the HL and is the maximal value of the QFI for
the family of linear transformations (4). The example (7) can
also be used to illustrate one additional property of the QFI
for transformations (4). Taking the reduced density matrix of
spins, obtained after tracing out the bosonic degree of freedom
from the state (7), we obtain

�̂S = Tr[|�〉〈�|]L = 1
2 [(|↑〉〈↑|)⊗N + (|↓〉〈↓|)⊗N ]. (11)

This is a separable (nonentangled) state for which the QFI
calculated from Eq. (1) gives IQ � N for any Ĵ�n, thus, the
SNL [22].

To summarize, the QFI calculated with the operators (4)
is more than just a criterion for the entanglement between
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FIG. 8. Behavior of the timescales as a function of system size
in the regular (g = 0.3, left column, double-logarithmic scale) vs
ergodic phase (here g = 0.9, right column, semilogarithmic scale)
for initial energies (E − Egs )/Egs = 0.53 (upper row) and (E −
Egs )/Egs = 1.11 (bottom row). Dashed lines are guides to the eye.
In the regular phase the asymptotic time tasy is well fitted by

√
N .

In the the ergodic phase the scaling is consistent with ln(N ) for
(E − Egs )/Egs = 1.11. This is less clear at (E − Egs )/Egs = 0.53,
where we also show the scaling of the intermediate-plateau time tpla.
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FIG. 9. Time evolution of the Wigner phase-space distribution in
the ergodic phase at large energies. Points on the IQ curve are the
points at which we calculate the Wigner function of the state. Here,
N = 100 and the remaining parameters are the same as in Fig. 5, i.e.,
(E − Egs )/Egs = 1.11, g = 0.9.

spins. It rather detects the entanglement within the spin
subspace of the full many-body state |�〉 ∈ H, that is, ei-
ther we have entangled spins classically correlated with the
bosons or nonentangled spins non-classically correlated with
bosons.

We stress that the QFI is an experimentally accessible
quantity even in systems of many qubits as recently demon-
strated with ultracold atoms [37,38]. Also, in view of the
recent proposals for an efficient QFI witnessing [39–41],
the extensions to more complex and larger systems seems a
concrete possibility in the near future.

For the following analysis of multipartite-entanglement dy-
namics, we will compute the QFI for the momentary quantum
state and maximize it at every instant in time with respect to
all possible operators of the class (4).

As the DM Hamiltonian (13) is fully connected and, thus,
contains only collective angular momentum operators of the
type (9), it is sufficient to consider the following optimized
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FIG. 10. The same as in Fig. 9, except that now there parameters
are as follows: (E − Egs )/Egs = 0.53 and g = 0.9 (cf. Fig. 3).

QFI:

IQ(t ) = max
�n

IQ[�̂(t ); ÎL ⊗ J�n], (12)

which reduces the maximization problem to finding the
optimal vector �n defining the rotation axis. Here, �̂(t ) =
Û (t )�̂0Û †(t ), �̂0 being the initial state and Û (t ) the unitary
evolution operator generated by the Hamiltonian.

We note that IQ(t ) is not related to an echo fidelity [42]—
an important quantity in the context of thermalization and
irreversibility which has been studied also for the Dicke model
[43]—since in our case the path in density-matrix space is not
generated by the time-evolution operator Û (t ) but rather by
Ôlin at every instant in time.

Finally, we point out that the QFI also provides ultimate
bounds for the precision of estimation of a metrological
parameter θ under the transformation (2). Accordingly, the
bound for the uncertainty of the parameter estimation is
�θ � IQ[�̂; Ôlin]−1/2. Separable states at most achieve the
SNL sensitivity whereas maximally entangled states can, in
principle, yield the HL precision [20,22,35].
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IV. MODEL AND APPROACH

A paradigmatic feature of generic many-body systems is
ergodicity, that is, the ability to relax to an asymptotic state
which can be effectively described by thermal equilibrium.
For closed quantum systems, the issue of thermalization—and
its absence, for instance, due to integrability or disorder—
is still an object of intensive study [1–6]. With the aim of
putting forward the QFI for the characterization of many-body
dynamics, we consider here the Dicke model [30,31], which is
one of the simplest instances of a quantum many-body system
showing thermalization. Its Hamiltonian is given by (setting
h̄ = 1),

Ĥ = ω0Ĵz + ωâ†â + 2g√
N

(â + â†)Ĵx. (13)

The simplicity of the DM resides in it being a fully con-
nected model—only the collective spin operators Ĵ�n appear
in Eq. (13)—with interactions between the N spin-(1/2)
particles mediated by a single bosonic degree of freedom â
satisfying [â, â†] = 1.

The DM features a second-order phase transition in the
ground state at the critical coupling gc = 0.5, above which
the average value of the total magnetization 〈Ĵx〉 as well as
the coherent contribution to the bosonic field 〈â〉 become
finite thereby spontaneously breaking the Z2 symmetry of
the Hamiltonian (13): â → −â, Ĵx → −Ĵx. What is more
relevant for the present paper is that at g = gc also the whole
spectrum of eigenstates changes: The level statistics, namely,
shows a transition from Poissonian below gc to Wigner-Dyson
above [34]. This indicates that the DM should behave ergodi-
cally above gc. Indeed, this is confirmed by the semiclassical
analysis of [32,33], showing that in this case a state initially
localized in phase space eventually covers homogeneously
the whole phase space available at the initially fixed energy,
that is, the system relaxes to a microcanonical distribution. A
semiclassical study of the DM is justified as a perturbative
expansion in 1/N since the fully connected nature makes it
such that the DM possesses a classical limit for N → ∞. The
classical dynamics shows a crossover from regular to chaotic
which can be connected to the thermalizing behavior of the
full quantum model.

Our aim is to study the entanglement dynamics in the
DM at finite N using the QFI, with particular attention to
the characterization of the transition from regular to ergodic
behavior as a function of g.

V. RESULTS

We compute the time evolution of the optimized QFI IQ(t )
defined in Eq. (12) by starting from an initial pure state |�0〉
with an initial energy E = 〈�0|Ĥ |�0〉. While changing the
coupling strength g and the number of spins N , we keep the
ratio of the initial energy to the ground-state energy Egs fixed.
In the following, we present results for two different energy
ratios corresponding to the arrows shown in Fig. 2. We pick
the initial state to be |�0〉 = |α〉 ⊗ |φ〉⊗N , i.e., the product of
a coherent state of the bosons â|α〉 = α|α〉 and a CSS for the
spins (in the Appendix, we also present results for a weakly
correlated spin-squeezed state). This is not an eigenstate of

the DM-Hamiltonian (13), and we fix its average energy by
choosing the CSS of spins and adjusting the value of α.

A. QFI dynamics

The time evolution of the optimized QFI is shown in Figs. 3
and 4 for the two different initial energies. In each figure, we
compare the typical dynamics below and above gc. Based on
the behavior of the level statistics [34] discussed in Sec. IV,
we will refer to the parameter region g < gc as the regular
phase and to the region g > gc as the ergodic phase. In all
cases, the QFI shows oscillations around an envelope, the
latter growing in time until it reaches a stationary asymptotic
value IQ

∞ within a timescale tasy. In the regular phase (bottom
row of Figs. 3 and 4), the QFI envelope grows steadily and is
well fitted by

IQ
env(t ) = IQ

0 + (
IQ
∞ − IQ

0

)
erf

(
t2

t2
asy

)
, (14)

where erf is the error function. On the other hand, in the
ergodic phase the QFI shows a two-step growth, first reaching
an intermediate plateau within a time tpla and then suddenly
abandoning it to reach its asymptotic value for t > tasy. This
two-step growth, however, disappears at high enough energies
as shown in Fig. 4 where the intermediate plateau is absent,
and the QFI envelope is always well fitted by the functional
form (14).

B. Asymptotic value

In Figs. 3 and 4, we present two different rescalings of the
QFI: The left panels show IQ/N whereas the right panels show
IQ/N2. First, we observe that the asymptotic value IQ

∞ always
scales, such as N2 as indicated by the overlapping curves for
t > tasy in all the right panels, independent of the coupling
strength and the initial energy. This is shown more directly
in Fig. 5, where IQ

∞ is plotted as a function of N both in the
regular and in the ergodic phase. We note that IQ

∞ scales with
N , such as the HL but lies below the ultimate bound by a
numerical prefactor ∼1/2. On the other hand, the upper-left
panel of Fig. 3 shows that the QFI in the intermediate plateau
appearing for tpla < t < tasy scales, such as N , i.e., such as the
SNL.

The scaling of the asymptotic value IQ
∞ with the system’s

size N does not allow to distinguish the regular from the
ergodic phase. However, the behavior of IQ

∞ as a function of
the coupling strength g can much better distinguish the two
phases. As shown in Fig. 6, for (E − Egs)/Egs = 0.53 the
asymptotic value shows a sharp transition at g = gc = 0.5ω.
IQ
∞ is, namely, almost constant below gc and suddenly grows

above. This behavior however becomes less and less sharp
as the initial energy grows as testified by the red triangles
in Fig. 6 at (E − Egs)/Egs = 1.11. By increasing the initial
energy, not only the value of IQ

∞ increases in the regular phase,
but it also decreases in the ergodic phase. Moreover, the value
of g at which IQ

∞ starts appreciably growing is slightly moved
to lower g [44].
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C. Characteristic timescales

The timescales characterizing the dynamics of the QFI
constitute an even better witness of the regular-to-ergodic
transition. As shown in Fig. 7, the time tasy required for
the QFI to reach its asymptotic value quickly decreases by
increasing the coupling strength g until the latter reaches
gc [45]. Upon entering the ergodic phase for g > gc, tasy

settles to an essentially constant value. Remarkably, this sharp
behavior across gc is present independent of the initial energy,
as apparent from comparing the red triangles and the blue
circles in Fig. 7. In particular, the fact that the time required for
the multipartite entanglement measured by the QFI to saturate
does not depend on the interaction strength seems a good
indicator for the ergodic character of the system.

The regular and the ergodic phase can also be distinguished
by the scaling of the saturation time tasy with the system’s size
N as shown in Fig. 8. In the regular phase, the dependence of
tasy on N is very well fitted by

√
N . This holds independently

of the initial energy as one can see in the left panels of Fig. 8.
In the ergodic phase instead the scaling of tasy is consistent
with ln(N ) (see lower right panel of Fig. 8). On a qualitative
level, this implies that in approaching the thermodynamic
limit with our fully connected model, the time required to
reach the asymptotic, HL-scaling value of the entanglement
diverges much slower with system size in the ergodic phase.

On the other hand, in the ergodic phase but at low enough
energies we have seen that an intermediate plateau appears
between tpla and tasy. In the upper right panel of Fig. 8 we see
that in this case the scaling of tasy and tpla with the system’s
size is not as well fitted by ln(N ), at least, for the sizes we
explore here. This might be due to the mixed nature of the
underlying classical phase space as we discuss in the next
section.

D. Wigner distribution

The logarithmic-scaling with the system size of the satura-
tion time tasy in the ergodic phase suggests an interpretation
as an Ehrenfest time. The latter is related to the breakdown
of the semiclassical description of the dynamics, and the time
at which this happens is known to scale as the logarithm of
the volume of the available phase space. This, in turn, for the
DM depends linearly on N , and so the Ehrenfest timescales as
ln N [33].

We validate this hypothesis by analyzing the dynamics of
the SU (2) Wigner distribution, defined by [46]

W (θ, φ) =
2 j∑

k=0

k∑
q=−k

Ykq(θ, φ)Gkq, (15)

where Ykq are the spherical harmonics and Gkq are expansion
coefficients in the basis of multipole operators T̂kq [47] of
the reduced density matrix for the spin subsystem �̂S(t ) ≡
Tr[�〉〈�|]L:

�̂S =
2 j∑

k=0

k∑
q=−k

GkqT̂kq. (16)

The above Wigner function is defined on the phase space of
the spin degrees of freedom spanned by two angles θ, φ.

The asymptotic plateau reached after tasy is characterized
by the QFI scaling, such as the HL ∝ N2, i.e., maximal
entanglement (reduced by a prefactor ∼1/2, see Fig. 4).
Correspondingly, the Wigner function shown in Fig. 10 (in
azimuthal equidistant projection) quickly spreads over a larger
portion of the phase space, ultimately covering it fully for
high-enough initial energy. While spreading over phase space,
the Wigner function forms small-scale structures of character-
istic size 1/N as expected from ergodic quantum systems [48].
This small-scale structures in phase space are responsible for
the scaling with N2 of the QFI [22].

On the other hand, we have seen that at lower initial ener-
gies that the QFI reaches first an intermediate plateau within
the time tpla. Here, the value of IQ(t ) is larger than the SNL but
still scales, such as N (see upper row of Fig. 3 and recall that
the initial state is not entangled). As the Wigner function in
Fig. 9 shows, the intermediate plateau corresponds indeed to
the creation of a slightly squeezed state which rotates without
spreading until the time tasy is reached. Around t = tasy, the
Wigner function suddenly spreads into a bimodal distribution.
The latter does not isotropically cover the available region of
phase space, which can be related to the mixed character of
the underlying classical dynamics [33]. One might suppose
that this is also the reason why the characteristic timescales
here do not seem to be scaling as the logarithm of the system
size, see upper right panel of Fig. 8.

VI. CONCLUSIONS

Using the QFI, we studied the dynamics of multipartite
entanglement in a fully connected quantum many-body sys-
tem across a regular-to-ergodic transition. The QFI allows
to sharply distinguish the ergodic from the regular phase, as
its asymptotic value, as well as the characteristic timescales,
witness the transition both through their dependence on the
control parameter g and through their scaling with system’s
size N .

The next set of investigations should involve the extension
of the present analysis to many-body systems with finite-range
interactions and in the presence of disorder (where some
results for QFI dynamics in such systems have recently been
discussed in the context of disordered ion chains [49]) and in
contact with external baths.
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FIG. 11. The comparison between a coherent spin state (solid
blue line) and a weakly correlated spin-squeezed state (dashed red
line). Here, N = 90 and σ 2 = 0.25.
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FIG. 12. Regular QFI dynamics normalized to N2 for the initially
classical state (solid blue curve) and the initially weakly spin-
squeezed state (dashed red curve). Here, N = 90, (E − Egs )/Egs =
1.11, and g = 0.4.
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APPENDIX: INITIALLY CORRELATED SPINS

To check the how initial correlations between the spins
change the behavior of the entanglement dynamics, we use
the initial state in the form

|ψ (σ )〉 = N
N∑

n=0

e−(n−N/2)2/(Nσ 2 )|n − N/2〉. (A1)

Here, N is the normalization constant, and |n − N/2〉 is
the Dicke state. The width σ controls the population imbal-
ance fluctuations according to σ 2 � 4(�Ĵ2

z )2/N . When these
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40

I
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FIG. 13. Ergodic QFI dynamics normalized to N for the initially
classical state σ 2 = 1 (solid blue curve) and the initially weakly spin-
squeezed state σ 2 = 0.25 (dashed red curve). Here, N = 90, (E −
Egs )/Egs = 1.11, and g = 0.9.

fluctuations drop below the shot-noise level, i.e., σ 2 < 1, the
parameter ξ 2 = N (�Ĵz )2/〈Ĵx〉2 drops below unity, and the
spins are spin squeezed [25,52]. In turn, ξ 2 < 1 implies that
the spins are entangled [53].

To picture the impact of the initial entanglement between
the spins, we run a simulation for a state with σ 2 = 1 (nonen-
tangled) and σ 2 = 0.25 (spin squeezed and entangled) for
the regular and the ergodic dynamics. Figure 11 shows the
probabilities |Cn|2 for finding the spins in a given Dicke state
|n − N/2〉 for these two cases. The dynamics of the QFI for
σ 2 = 1 and σ 2 = 0.25 is compared in Figs. 12 and 13.

From the presented figures, we observe that initiating the
simulation with a weakly correlated state gives rise only to
small quantitative changes at short-time scales. We expect
that a highly correlated initial state, for example, the op-
timally spin-squeezed state should reduce the characteristic
timescales. However, taking into account the types of possible
correlations—classical, quantum, or both—and the carrier of
correlations–spins, field, or both—we cannot simply infer on
any further quantitative or qualitative changes in the dynam-
ics. We defer this issue to future work.
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of Loschmidt echoes and fidelity decay, Phys. Rep. 435, 33
(2006).

[43] T. Prosen, T. H. Seligman, and M. Žnidarič, Evolution of
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