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The N-flavor interacting Su-Schrieffer-Heeger (i-SSH) model realizable in cold atoms in an optical lattice
is studied. We clarify the relationship between the i-SSH model and the Chiral-Gross-Neveu-Wilson (CGNW)
model. Following the previous study of the CGNW model in the high-energy physics community, the ground-
state phases of the i-SSH model are investigated and interpreted from the viewpoint of the phases of the CGNW
model. The interaction effect on the i-SSH model, belonging to the topological BDI class, is grasped by following
the view of the dynamical breakdown of chiral symmetry in the CGNW model. Furthermore, we compare the
large-N ground-state phase diagram with that of the N = 1 case obtained by exact diagonalization, and then we
propose a tabletop cold-atom quantum simulator to test the model.
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I. INTRODUCTION

The topological condensed-matter model is deeply related
to the high-energy physics model in a lattice. In particu-
lar, topological insulators are known to be related to Dirac
fermions in a lattice [1,2], which is a major component in
high-energy physics in a lattice [3–5]. Investigation of the
relationship between the topological condensed-matter model
and the high-energy physics model on a lattice leads to a
deep understanding of the phases of matter in the topological
condensed-matter model. With the help of a high-energy
physics study, there is a new possibility to understand the
strongly correlated topological model and its novel phase
structure. Such interdisciplinary research can give us im-
portant insights into strongly correlated topological systems.
For example, recently a relationship between a cold-atom
condensed-matter model with a nontrivial topological phase
and a high-energy physics model has been discussed [6–9].
Such an approach also gives us a deep understanding of the
topological condensed-matter model, which is realizable in
cold-atom systems. However, an interdisciplinary study of
strongly correlated topological systems is still lacking. Thus,
in this work, motivated by previous studies [6,10,11], we
study a fundamental topological model with interactions, the
interacting Su-Schrieffer-Heeger (i-SSH) model [12,13], and
we show that the i-SSH model has a clear relationship with
the Chiral-Gross-Neveu-Wilson (CGNW) model, which has
been extensively studied in the high-energy physics commu-
nity [10,14,15] because the model has common features of
lattice quantum chromodynamics (QCD) [4]. In high-energy
physics, the N-flavor CGNW model has been analyzed using
the large-N expansion and turned out to possess a rich phase
diagram [10]. Following the study, the N-flavor (component)
i-SSH model is studied using the large-N expansion. In partic-
ular, we study how topological phases are affected by interac-
tion. The i-SSH model exhibits a rich phase diagram induced
by interactions. The ground-state phase diagram has a clear
correspondence to that of the CGNW model. Furthermore, we

investigate the N-flavor dependence of the model, and then we
propose implementation schemes to realize the i-SSH model
in cold atoms in an optical lattice.

The paper is organized as follows. In Sec. II, our target
model is introduced. In Sec. III, we show the relationship
between the i-SSH model and the CGNW model. In Sec. IV,
we explain the large-N calculation and show the large-N
ground-state phase diagram of the i-SSH model. In Sec. V, we
carry out an exact diagonalization for the i-SSH model, and
we obtain global phase diagrams of the single flavor case of
the i-SSH model, and then we compare the result to the large-
N result. In Sec. VI, we discuss the implementation scheme
of the i-SSH model by using recent cold-atom experimental
techniques. Finally, the conclusion is given in Sec. VII.

II. N-FLAVOR SSH MODEL AND CGNW MODEL

We start with the N-flavor Su-Schrieffer-Heeger (SSH)
model [12,13],

HN
S = −

∑
i

N∑
α=1

(J1a†
α,ibα,i + J2a†

α,i+1bα,i + H.c.), (1)

where a(†)
α,i and b(†)

α,i are annihilation (creation) operators for the
left and right inner site in a unit cell i, α is the flavor index, and
J1(2) is the inner (inter) site hopping amplitude. In this work,
we consider two types of SU(N ) symmetric interactions VI(II),

VI = − U

2N

∑
i

[
N∑

α=1

(
na

α,i − nb
α,i

)]2

,

VII = VI − U

2N

∑
i

[
N∑

α=1

(
na

α,i+1 − nb
α,i

)]2

,

where na(b)
α,i = a†

α,iaα,i(b
†
α,ibα,i ) is the particle number operator

and U is the interaction strength. The above interactions may
be realized in a cold-atom experimental system [16–18]. For
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the N > 1 case, though attractive on-site interactions between
different flavors and repulsive nearest-neighbor (NN) interac-
tions appear, there is a possibility to tune these interactions by
combining recent experimental techniques, e.g., Feshbach and
orbital-Feshbach resonance [19,20] and dipole-dipole inter-
action (DDI) [21,22]. For the case N = 1 (single-component
case), the situation is quite simple. VI reduces to a repulsive
interaction between NN sites in the same unit cell i and VII

reduces to a repulsive interaction appearing in all pairs of NN
sites. Here, the i-SSH model is defined as HN

S + VI(II). In what
follows, we call the Hamiltonian HN

S + VI(II) the type-I (II)
i-SSH model. In the context of condensed system physics, the
type-II interaction is related to the z-component Hund’s rule
coupling in a spin-N/2 system [23].

The bulk-momentum Hamiltonian of Eq. (1) for a
certain flavor α is given by hS

α (k) = [−J1 − J2 cos k]σ̂x +
[−J2 sin k]σ̂y. Then, using a spinor field fα (k) =
(aα (k), bα (k))t , the second quantization form is written
as

∑N
α=1

∫
dk
2π

f †
α (k)hS

α (k) fα (k). This form is used in the
large-N expansion.

Next, we consider the N-flavor CGNW model [6,10,15].
The model is written using Wilson fermions [3,4]. Then, the
model includes an additional NN hopping term, called the
Wilson term, parametrized by r, called the Wilson parameter
[3,4,6,10]. The model is given by

HN
G =

∑
i

N∑
α=1

[
1

2
[ψ̄α,i(−iγ 1)ψα,i+1 + H.c.]

+ m0ψ̄α,iψα,i − r

2
(ψ̄αψα,i+1 + H.c.)

]

− g2

4N

∑
i

⎡
⎣

(
N∑

α=1

ψ̄α,iψα,i

)2

−
(

N∑
α=1

ψ̄α,iγ
5ψα,i

)2
⎤
⎦,

(2)

where ψα,i is the spinor field with a flavor α on lattice site
i, and the gamma matrices are set as γ 0 = σ̂z, γ 1 = −iσ̂y,
γ 5 = σ̂x, and ψ̄α,i = ψ

†
α,iγ

0. m0 is the effective mass, defined
as m0 ≡ m + r

2 , where m is the Wilson mass. g2 is the coupling
constant of the interaction that is invariant for continuous
chiral symmetry transformation [24].

In this study, we set the lattice spacing to unity and set
r = 1. Then, the bulk-momentum Hamiltonian of the non-
interacting part of HN

G for a flavor α is given by hG
α (k) =

[m + 1 − cos k]σ̂x + [sin k]σ̂y. The dispersion of hG
α (k) with

r �= 0 avoids having zero energy at k = ±π ; thus, the fermion
doubler is eliminated [3,4].

III. RELATIONSHIP

There is a clear relationship between the type-I i-SSH
model and the CGNW model. The left and right inner sites
in a unit cell in the type-I i-SSH model correspond to the
color degrees of freedom of the Wilson fermion in the CGNW
model. There exists a clear correspondence between the
gamma matrices in hG

α (k) and the Pauli matrices in hS
α (k):

γ 0 ←→ σ̂x, γ 1 ←→ −iσ̂z, and γ 5 ←→ σ̂y. Furthermore, by
imitating the form of the interaction in Eq. (2), we can deform

VI in the type-I i-SSH model into

VI = − U

4N

∑
i

⎡
⎣(

N∑
α=1

f †
α,iσ̂x fα,i

)2

−
(

N∑
α=1

f †
α,iiσ̂z fα,i

)2
⎤
⎦,

(3)

where fα,i is a spinor field, fα,i = (aα,i, bα,i )t . By comparing
Eq. (3) with the form of the interaction in Eq. (2), there are
operator relations between the type-I i-SSH model and the
CGNW model:

f †
α,iσ̂x fα,i ←→ ψ̄α,iψα,i, (4)

f †
α,iiσ̂z fα,i ←→ ψ̄α,iγ

5ψα,i. (5)

These relations indicate that the inner-bond operator in the
i-SSH model corresponds to the particle-antiparticle pairing
operator in the CGNW model, and the density-difference
operator between the left and right inner site in a unit cell cor-
responds to the pseudoscalar operator, which corresponds to
a pion field and whose expectation value characterizes a pion
condensation in the high-energy physics context [4,10,15].

In a high-energy physics study, the CGNW model with
m = 0 and r = 0 has been expected to have a nonzero ex-
pectation value of ψ̄α,iψα,i due to the interaction g2, which
is known as the spontaneous dynamic breakdown of chiral
symmetry [5,15]. Here, because our CGNW model is assumed
to have a finite mass m0 �= 0, the model does not exhibit
such a spontaneous chiral symmetry breaking. However, the
dynamical effect induced by the interaction g2 affects the
value of the mass term m0. Then, from the relation of Eq. (4)
and by comparing hG

α (k) with hS
α (k), we expect that in the

i-SSH model, the same mechanism leads to a modification of
the parameter J1, that is, interaction acts as a correction for the
parameter J1, which determines the strength of the inner-bond
order in the i-SSH model.

Some previous studies [10,14] have expected that the
CGNW model has a novel state with a nonzero expectation
value of ψ̄α,iγ

5ψα,i in a large-g2 regime. This state is known
as the Aoki phase, which is a parity-broken phase [5,10,14].
Then, from the relation of Eq. (5), we expect that the Aoki
phase corresponds to the density-wave phase in the i-SSH
model. In what follows, from a unified perspective, we also
call the density-wave order in the i-SSH model the Aoki
phase.

The type-II i-SSH model can also be related to the lattice
version of an extended Gross-Neveu model, which has non-
local interactions and has been discussed in a high-energy
physics context [25,26]. The VII term can also be deformed
in the same way as Eq. (3). The details are explained in the
supplemental material [27].

IV. LARGE-N EXPANSION

The large-N expansion has succeeded in capturing the
ground-state phase diagram of the CGNW model in high-
energy physics [10,14,15]. Motivated by this fact, we apply
the large-N expansion to both the type-I and II i-SSH models.
According to the classification of the noninteracting topolog-
ical Hamiltonian [31–33], the SSH model is classified in the
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FIG. 1. Large-N phase diagram: (a) type-I i-SSH model, (b)
type-II i-SSH model. For both cases, J2 = 1 and three phases appear:
the BI phase, the BDI-SPT phase (for odd N case), and the Aoki
phase.

BDI class. The Hamiltonian hS
α (k) has chiral (S), time-reversal

(T ), and charge-conjugation symmetry (C) [34]. In addition, if
an odd N-flavor SSH model is assumed, the model possesses
a symmetry-protected topological (SPT) phase [6,35,36].

We investigate how interactions change the topological
phase structure of the i-SSH model and break the BDI symme-
try. Let us focus on the application of the large-N expansion
to the type-I i-SSH model (a detailed treatment is given in
the supplemental material [27]). In the large-N expansion,
the VI term in the type-I i-SSH model can be decoupled
by introducing an auxiliary mean fields �1(2). These mean
fields are introduced in employing the Hubbard-Stratonovich
transformation for VI in the process of the large-N calculation
when assuming the translational symmetry of the system.
�1 and �2 correspond to the expectation values 〈 f †

α,iσ̂x fα,i〉
and 〈 f †

α,iiσ̂z fα,i〉, respectively. Then, �1 and �2 can be in-
corporated into the Hamiltonian hS

α (k). The effective bulk-
momentum Hamiltonian is given by hI

α (k) = [−(J1 + �1) −
J2 cos k]σ̂x + [−J2 sin k]σ̂y + �2σ̂z. Practically, the value of
�1(2) is determined by solving a saddle point equation
parametrized by J1/J2 and U/J2 [27]. Here, it is clear that �1

modifies the coupling J1 as J̃1 = J1 + �1. If �1 > 0, �1 acts
as an enhancing effect for J1. Conversely, �2 contributes to the
breakdown of BDI symmetry and leads to the Aoki phase. For
the Hamiltonian hI

α (k), if �2 �= 0, hI
α (k) is no longer in the

BDI class because the σ̂z term in hI
α (k) breaks S symmetry.

Therefore, if there exists a mean-field solution with �2 �= 0,
the type-I i-SSH model is not BDI class. This leads the system
to not possess a nontrivial topological phase simultaneously
with the appearance of the Aoki phase.

By solving numerically the saddle point equation derived
from the large-N expansion, we obtain the ground-state phase
diagrams for both type-I and type-II i-SSH models, as shown
in Fig. 1. For both cases, three phases appear: the band-
insulator (BI), the BDI-SPT phase, and the Aoki phase. Here,
the phase boundary between the BI and the BDI-SPT phase
is determined by sgn(J̃1 − J2), i.e., if J̃1 > J2 (J̃1 < J2), the BI
(the BDI-SPT) phase appears. The Aoki phase is characterized
by |2�2/U | > 0. The type-I i-SSH phase structure in Fig. 1(a)
perfectly corresponds to the phase structure of the previous
study for the CGNW model [6]. The BDI-SPT phase is robust
up to some extent of interaction strength U . Furthermore,
through the value of �1, the VI acts as an enhancing effect for

TABLE I. Phase correspondence between the i-SSH model and
the CGNW model.

i-SSH model CGNW model

Band-insulator phase
(inner-bond order)

Chirally broken phase
(particle-antiparticle
pair condensation)BDI-SPT phase

(inter-bond order)

Density wave phase
Parity-broken Aoki phase

(pseudoscalar condensation)

J1, i.e., the inner-bond order (the BI phase) is enhanced. This
appears in the result in Fig. 1(a): The phase boundary line
between the BI and the BDI-SPT phase in Fig. 1(a) is not on
the line J1 = J2 with increasing U , but is tilted to the left. For
the weak-J1 regime, the BDI-SPT phase directly transitions to
the Aoki phase with increasing U because the Aoki phase is
energetically favorable compared with creating the BI phase.
Conversely, for the type-II i-SSH model, Fig. 1(b) indicates
the enlargement of the Aoki phase compared with the type-I
results in Fig. 1(a) and that there is a direct phase transition
from the BI to the Aoki phase with increasing U . Also, the
BDI-SPT phase is robust up to U/J2 ∼ 3. Although the VII

acts as a correction effect for both J1 and J2 as in the type-I
interaction VI, this does not change the phase boundary line
J1 = J2 between the BI and the BDI-SPT phase.

The correspondence of the phases between the i-SSH
model and the CGNW model is summarized in Table I. Next,
we investigate the N = 1 case to compare with the large-N
result obtained here.

V. N = 1 GROUND-STATE PHASE DIAGRAM

Using exact diagonalization, we investigate the ground-
state phase diagrams of the type-I and type-II i-SSH models
with N = 1, where the number of lattice sites is L = 12, 16,
and 20 with periodic boundary conditions at half-filling, and
we employed the Lanczos algorithm [37,38] and finite-size
scaling. The obtained phase structures are shown in Fig. 2.
Compared with Fig. 1(a), in Fig. 2(a) the phase boundary
between the BDI-SPT phase and the Aoki phase rises for the
small-J1 regime. The same behavior has been reported in the
CGNW model [6]. In particular, our numerics indicate that
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FIG. 2. N = 1 phase structures obtained by exact diagonaliza-
tion: (a) the type-I i-SSH model and (b) the type-II i-SSH model. For
both cases, J2 = 1.
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the rise at J1 = 0 is smaller than that of the CGNW model
case [6]. For Fig. 2(b), the phase boundary of the Aoki phase
is lifted as a whole compared with Fig. 1(b). In particular, the
tricritical point is lifted compared with Fig. 1(b). We expect
that this may be caused by quantum fluctuation effects. How-
ever, the details will be studied in future work. The tricritical
point in Fig. 2(b) is in agreement with a previous study [36].
After all, we conclude that the N = 1 results for the type-I
and type-II i-SSH model are in qualitative agreement with
the large-N results in Fig. 1. In addition, for Figs. 1(a) and
1(b), the critical behavior toward the Aoki phase is estimated
by calculating the order parameter of the Aoki phase ODW

and using finite-size scaling [39]. Our numerical calculation
indicates that the universality class belongs to the d = 2 Ising
type, and the critical exponents of ODW take β = 1/8 and ν =
1; the critical behavior in both type-I and type-II i-SSH models
corresponds to the result of the phase transition between the
Aoki phase and the BDI-SPT phase in the CGNW model [6].
The details are shown in the supplemental material [27].

VI. IMPLEMENTATION SCHEME FOR COLD-ATOM
EXPERIMENTS

There are two types of implementation schemes for the
type-I and type-II i-SSH model. In this section, we propose an
implementation for the single flavor case N = 1. Actually, a
recent cold-atom experiment realized the standard SSH model
(noninteracting) by using an optical superlattice setup [40],
and the SSH model defined on a momentum-space lattice
was realized in a cold-atom experiment [41]. Also, Ref. [42]
reported the realization of another topological model related
to the i-SSH model on a spin-dependent one-dimensional
optical lattice.

To realize the type-I i-SSH model in experiments, we
employ two different internal states of fermionic atoms, and
we prepare two kinds of double-well optical lattice, shown
as the blue and green colored lattice potentials in Fig. 3(a).
Each double-well optical lattice is fixed on the same one-
dimensional spatial axis. Each double-well optical lattice is
misaligned by one site with respect to each other, as shown in
Fig. 3(a). This system can be feasible using a spin-dependent
optical lattice technique [43]. Here, each fermion can be
independently trapped for each double-well optical lattice.
For this lattice geometry, we add the Rabi coupling 
 by

i i+1

(a) (b)

i i+1

FIG. 3. Implementation scheme using cold atoms in an optical
lattice: (a) the type-I i-SSH model, (b) the type-II i-SSH model. In
the type-I case, the interaction VI appears as on-site s-wave scattering
interaction Ueg between the different internal states of fermionic
atoms. In the type-II case, the interaction VII is implemented as
long-range DDI Ud using a dipolar fermionic atom.

adding an external laser light. The Rabi coupling exchanges
the two different internal states of fermions on the same place
[44]. The 
 can be regarded as the hopping J1 in the SSH
model. Then, we establish a deep double-well situation for
both optical lattices. This situation suppresses the hopping
between NN unit cells denoted by Jout in Fig. 3(a). The system
only remains hopping in a double well, denoted by Jin in
Fig. 3(a). Then, Jin can be regarded as J2 in the SSH model.
Furthermore, in this system, an on-site interaction between
the two different internal states of atoms denoted by Ueg can
be implemented because the two different internal states of
fermionic atoms are spatially trapped at the same position. Ueg

can be regarded as U in the type-I SSH model. Thus, the VI

term is realized and we obtain the type-I i-SSH model in this
system. Because the type-I i-SSH model is directly connected
to the CGNW model, the tabletop experimental simulator of
the type-I SSH model has the possibility to become a quantum
simulator of the CGNW model.

Conversely, to realize the type-II i-SSH model, a single
fermionic atom with a large magnetic dipole moment is
suitable. We prepare a one-dimensional double-well optical
lattice to trap the atoms. The schematic figure is shown in
Fig. 3(b). Here, the lattice geometry directly generates J1 and
J2 hopping terms in the SSH model. Then, the large magnetic
dipole moment of the atom can generate the DDI between NN
sites denoted by Ud in Fig. 3(b), corresponding to U in VII if all
dipole moments are polarized using external magnetic fields.
In real experiments, 167Er [21] and 161Dy [45] degenerate
Fermi gasses are candidates to realize the above setup because
they have large magnetic dipole moments. A concrete param-
eter estimation for the two implementation schemes is given
in the supplemental material [27]. Our proposed experimental
setups cover our target parameter regime for J1/J2 and U/J2,
as shown in Figs. 1 and 2.

VII. CONCLUSION

We studied an N-flavor i-SSH model and clarified the
relationship with the CGNW model. For the i-SSH model,
the large-N expansion was carried out. We showed how
interaction changes the phase boundary of the BDI-SPT phase
and the Aoki phase. The interaction effect appears as a
correction for the hopping amplitudes in the SSH model.
This mechanism is analogous to the dynamical breakdown
of chiral symmetry in the Gross-Neveu model. Furthermore,
interactions lead to the breakdown of the S symmetry in the
i-SSH Hamiltonian. This makes the i-SSH model out of the
BDI class at a certain threshold value U and leads to the Aoki
phase. This indicates that the S symmetry breaking is related
to the appearance of the Aoki phase. The phase diagram of
the i-SSH model with N = 1 was also calculated and was
compared with the large-N result. The phase diagrams show
qualitative agreement with the large-N result. Furthermore,
we proposed an implementation scheme to realize the i-SSH
model in future experiments.
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