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Effect of anharmonicity on the hcp to bcc transition in beryllium
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We investigate the hcp to bcc phase transition in beryllium (Be) at high-pressure and -temperature (PT )
conditions. A recently developed hybrid approach that combines first-principles molecular dynamics and lattice
dynamics is used to account for anharmonic contributions to the free energy. Anharmonic effects are shown to
be strong at high T in both hcp and bcc Be. They are stronger in hcp Be than in bcc Be, as evidenced by the
larger anharmonic vibrational entropy of hcp Be. We find that anharmonicity has a significant influence on the
hcp to bcc transition at high-PT conditions. It substantially enlarges the stability domain of hcp Be at high T
compared with that calculated under the quasiharmonic approximation (QHA), as a result bringing theoretical
predictions into good consistency with recent experimental observations. After considering anharmonic effects,
the calculated pressure and temperature of the hcp/bcc/liquid triple point increase from about 85 to 165 GPa, and
from about 3300 to 4200 K, respectively, and the predicted Clapeyron slope at the triple point takes a value of
−7.4 ± 0.7 K/GPa, noticeably larger in magnitude than previous QHA results in the range of −3 to 2 K/GPa.
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I. INTRODUCTION

Although beryllium (Be) has a simple electronic structure
with only four electrons, it possesses unique properties that
distinguish itself from all other metals. For example, at ambi-
ent conditions beryllium is the metal with the lowest c/a ratio
(1.568) of the hexagonal close-packed (hcp) phase, the lowest
Poisson’s ratio (0.05), and the highest Debye temperature
(1471 K) [1,2]. The rich physical properties of beryllium
have enabled a broad range of technological applications in
areas such as aeronautics, communications, and nuclear power
industry. A lot of recent attention has been paid to the potential
application as an ablator material for fuel capsule in inertial
confinement fusion, where in these experiments beryllium
can subject to pressure and temperature on the order of P ∼
200 GPa and T ∼ 4000 K, respectively [3–5].

Beryllium has the hcp structure at ambient conditions.
As temperature rises, the hcp phase was found to transform
into the body-centered-cubic (bcc) phase at T = 1523 K, just
before melting at Tm = 1551 K [6]. The hcp/bcc phase line
has been observed up to a few GPa, with inconsistent values
reported for the Clapeyron slope, a negative value of −52 ±
8 K/GPa for 0 < P < 6 GPa by Francois and Contre [7], and
a positive value of 43 ± 7 K/GPa for 0 < P < 0.6 GPa by
Abey [8]. According to the phase diagram, hcp to bcc transi-
tion should also occur at much higher pressures. Considerable
efforts have been made to locate this high-pressure transi-
tion. In a recent static diamond-anvil-cell (DAC) experiment,
Lazicki et al. explored in a wide PT range, but detected no
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sign of the bcc phase up to P = 205 GPa and T = 4000 K
[9]. In addition, the bcc phase was never observed in other
static experiments at ambient temperature up to 200 GPa
[10–14]. First-principles calculations predicted a large span
of values for the transition pressure at T = 0 K, from about
180 to 420 GPa [15–23]. Among these results, the most recent
ones are highly consistent with each other, all pointing to a
value between 380 and 390 GPa [20–23]. The full hcp/bcc
phase line as a function of P and T at high pressures has
been obtained by three calculations based on the quasihar-
monic approximation (QHA) [19–21]. At T > 3300 K, the
stability domains of the hcp phase obtained by two latest
QHA calculations [20,21] are too small compared with those
observed in the static experiment of Lazicki et al. [9]. The
earlier QHA calculation of Benedict et al. [19] predicted
significantly larger hcp/bcc transition pressures at high T .
This originates from the large value obtained at T = 0 K,
about 420 GPa, which is apparently larger than that given by
the other two QHA calculations, about 390 GPa. Despite that
the calculated transition pressures can be very different, the
variation tendency of the transition pressure with temperature,
or equivalently the Clapeyron slope, is very similar in all
three QHA calculations. The values of the Clapeyron slope
at the hcp/bcc/liquid triple point predicted by three QHA
calculations are all close to zero, lying in the range of −3 to
2 K/GPa [19–21].

To help resolve the controversies on the hcp/bcc transi-
tion in beryllium, it is important to go beyond QHA and
consider anharmonicity in theoretical calculations. Anhar-
monicity is not only crucial for the high-temperature stabi-
lization of crystal structures that are dynamically unstable at
zero temperature, e.g., bcc Be [20], but may also contribute
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significantly to the free energy and thus has a great influence
on the high-temperature phase boundary. There has been
much recent progress in the theoretical treatment of anhar-
monic effects. Several effective computational methods were
developed, such as self-consistent ab initio lattice dynamics
(SCAILD) [24,25], self-consistent harmonic approximation
(SCHA) [26,27], and temperature-dependent effective poten-
tial (TDEP) [28,29]. These include a vibrational normal mode
analysis method developed by Zhang et al. [30,31], which
is a hybrid approach that combines first-principles molecular
dynamics (MD) and lattice dynamics (LD). In this method, an-
harmonic phonon frequencies and the corresponding phonon
lifetimes can be obtained accurately at the same time. The
resulting frequencies can be used to compute the free energy
with anharmonic contributions [30–32], while the associated
lifetimes can be used in thermal conductivity calculations
[33–35].

Using vibrational normal mode analysis to account for
anharmonic effects, Lu et al. recently resolved the dynamic
stability of bcc Be at low-P–high-T conditions, and obtained
an hcp/bcc phase boundary close to the melting line up
to P = 11 GPa [32]. The predicted Clapeyron slope has a
positive value of 41 ± 4 K/GPa, in good agreement with
Abey’s measurement of 43 ± 7 K/GPa [8]. Considering that
anharmonicity becomes stronger as temperature rises, and that
the hcp/bcc transition temperature at high pressures (e.g., at
P > 100 GPa) can be much larger than that at low pressures
(e.g., at P < 10 GPa) [9,19–21], anharmonic effects should
continue to play an important role on the hcp/bcc transition in
beryllium at high-PT conditions. However, to date an explicit
treatment of anharmonic effects at these conditions is still
missing.

To fill this gap, in this work we investigate the hcp/bcc
transition in beryllium at high-PT conditions, where vibra-
tional normal mode analysis [30,31] is performed to account
for anharmonic contributions to the free energy of hcp and
bcc Be. We show that at high T anharmonic effects are strong
in both hcp and bcc Be. They are more pronounced in hcp
Be than in bcc Be, as manifested by the larger anharmonic
vibrational entropy of hcp Be. We find that anharmonicity
significantly influences the hcp/bcc transition in beryllium
at high-PT conditions. The consideration of it substantially
enlarges the calculated stability domain of hcp Be at high T ,
leading to good agreement with experimental observations.
As a result of anharmonic effects, the calculated pressure
and temperature of the hcp/bcc/liquid triple point increase
from about 85 to 165 GPa, and from about 3300 to 4200 K,
respectively, and the predicted Clapeyron slope at the triple
point of −7.4 ± 0.7 K/GPa is observably larger in magnitude
than previous QHA values in the range of −3 to 2 K/GPa.

This paper is organized as follows: Section II outlines the
basic theories of QHA and vibrational normal mode anal-
ysis; the computational details are summarized in Sec. III;
Sec. IV contains our computed results, where anharmonic
effects on the vibrational properties of hcp and bcc Be,
and on the hcp/bcc phase transition at high-PT conditions,
are elaborated, and an important technical detail concerning
the convergence of free energy and phase boundary with
respect to k-mesh sampling is discussed; Sec. V concludes this
paper.

II. THEORY

A standard method for the theoretical determination of
phase boundary is to conduct free-energy comparison. The
central task is to compute the Gibbs free energy G of different
phases, and identify the phase boundary as PT conditions with
equal G. The Gibbs free energy is defined as

G = F + PV, (1)

where F stands for the Helmholtz free energy, V is the
volume, and the pressure P is related to F as

P = −
(

∂F

∂V

)
T

. (2)

The Helmholtz free energy is defined to be

F = E − T S, (3)

where E denotes the internal energy, and S represents the
entropy, which for metal systems includes contributions from
lattice vibrations and electronic excitations Svib and Sel. Ac-
cording to Eqs. (1) and (2), once F as a function of V and T
is known, G as a function of P and T can be straightforwardly
evaluated.

QHA is routinely employed to compute the free energy of
solid phases at relatively low temperatures, when anharmonic
effects are small. Within QHA, the harmonic vibrational prop-
erties as a function of temperature can be evaluated using the
phonon-gas model (PGM) [36] as

Eh
vib(T ) =

∑
qs

[
h̄ωqs

2
+ h̄ωqs

exp(h̄ωqs/kBT ) − 1

]
(4)

and

Sh
vib(T ) = kB

∑
qs

{
h̄ωqs/kBT

exp(h̄ωqs/kBT ) − 1

− ln

[
1 − exp

(
− h̄ωqs

kBT

)]}
, (5)

where the superscript “h” stands for “harmonic,” the subscript
“vib” denotes “vibrational,” h̄ is the Planck constant divided
by 2π , kB is the Boltzmann constant, and ωqs represents the
harmonic phonon frequency for a normal mode (q, s), q being
a wave vector in the Brillouin zone and s denoting a phonon
branch. ωqs can be computed using the density-functional
perturbation theory (DFPT) [37]. Consistently with Eq. (3),
in QHA the Helmholtz free energy can be expressed as

FQHA(T ) = [
E0 + Eh

vib(T )
] − T

[
Sh

vib(T ) + Sel
]
, (6)

where E0 represents the static ground-state energy. The elec-
tronic entropy can be calculated using the Mermin functional
[38,39] as

Sel = −kB

∫
n(ε)[ f ln f + (1 − f ) ln (1 − f )]dε, (7)

where n(ε) is the electronic density of states, and f is the
corresponding electronic occupancy described by the Fermi-
Dirac distribution. In order to achieve a rigorous evaluation
of FQHA(T ), E0, ωqs, and Sel should all be calculated at the
same electronic temperature Tel = T , as we do in this work.
As a result, the harmonic phonon frequencies of metal systems
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FIG. 1. (a) VACF of an optical phonon mode (q, s) at q =
� with a harmonic frequency ω/2π = 22.8 THz, for hcp Be at

V = 4.6 Å
3
/atom and T = 4000 K. (b) The corresponding power

spectrum, obtained by Fourier transforming the VACF to the fre-
quency domain using the maximum entropy method (MEM) [42].
The vertical dashed line indicates the anharmonic frequency ω̃/2π =
19.7 THz.

would exhibit some dependence on Tel, usually very weak
(see, e.g., Supplemental Material of Ref. [32]).

Anharmonicity becomes more prominent as temperature
rises, and at high temperatures it may be strong enough to
significantly influence thermodynamic properties as well as
phase stability. In this work, a recently developed vibrational
normal mode analysis method [30,31] is employed to account
for anharmonic contributions to lattice vibrations. This is a
hybrid approach which extracts knowledge of lattice anhar-
monicity from first-principles MD with the assistance of LD,
through characterization of phonon quasiparticles [40,41].
Such characterization simplifies the original sophisticated
problem of fully interacting anharmonic phonons to an effec-
tive system of noninteracting phonon quasiparticles, such that
to a large extent the PGM can still be applied. The existence
of well-defined phonon quasiparticle can be verified by an-
alyzing the mode-projected velocity autocorrelation function
(VACF), which for a system of N atoms is defined as

〈V (0)V (t )〉qs = lim
τ→∞

1

τ

∫ τ

0
V ∗

qs(t
′)Vqs(t

′ + t )dt ′, (8)

where Vqs(t ) = ∑N
i=1 [

√
mi exp (iq · Ri )vi(t ) · ei

qs] is the
mass-weighted and mode-projected velocity for a normal
mode (q, s), q being commensurate with the supercell size.
i denotes the atom index, mi and Ri represent the mass and
the equilibrium coordinate of the atom, respectively, vi is the
atomic velocity produced by MD, and ei

qs is the polarization
vector obtained from LD. The Fourier transform of the VACF
gives the corresponding power spectrum as

Gqs(ω) =
∫ ∞

0
〈V (0)V (t )〉qs exp (iωt )dt . (9)

As an example, Fig. 1 illustrates the VACF and the power
spectrum of an optical mode (q, s) at the � point in the Bril-
louin zone with a harmonic frequency ω/2π = 22.8 THz, for

hcp Be at the thermodynamic state V = 4.6 Å
3
/atom and T =

4000 K. The VACF displays a nicely decaying oscillatory
behavior and the corresponding power spectrum possesses
a single Lorentzian-type line shape, indicating that phonon
quasiparticle is well defined for this mode [30,31]. For a well-
defined phonon quasiparticle, the anharmonic phonon fre-
quency is given by the peak position, in this case as ω̃/2π =
19.7 THz, and the corresponding phonon lifetime is inversely

proportional to the linewidth (width at half height of the peak).
Here, we can see that as a result of anharmonic effects, the
phonon frequency acquires a temperature dependence, and the
corresponding lifetime is no longer infinite as that of harmonic
phonons.

The small supercell employed in first-principles MD may
lead to anharmonic frequencies on a q grid that is not dense
enough for converged calculations of vibrational properties.
To make evaluations corresponding to the thermodynamic
limit N → ∞, anharmonic frequencies at any q point in
the Brillouin zone can be obtained via Fourier interpolation
[30,31], in a way similarly to that routinely done for harmonic
phonons. When using anharmonic frequencies ω̃qs to evalu-
ate vibrational properties with anharmonic contributions, the
PGM formula for entropy is still valid:

Svib(T ) = kB

∑
qs

{
h̄ω̃qs(T )/kBT

exp[h̄ω̃qs(T )/kBT ] − 1

− ln

[
1 − exp

(
− h̄ω̃qs(T )

kBT

)]}
, (10)

while that for internal energy is not [36,41]. The internal
energy with anharmonic vibrational contribution, however,
can be readily obtained from direct MD output. Theoretical
derivations proved that Eq. (10) is accurate to second order in
anharmonic perturbation theory [36,43,44], and perhaps even
beyond [45]. Meanwhile, calculations demonstrated that the
vibrational entropy computed in this approximated approach
agrees excellently with that obtained using the formally exact
(but computationally demanding) thermodynamic integration
technique, even at very high temperatures, for simple [41] as
well as complex systems [30,31]. With anharmonic effects
considered in MD, the Helmholtz free energy as a function
of temperate can be evaluated via a numerical integration of
entropy [30]

F (T ) = E0 + 1

2

∑
qs

h̄ωqs −
∫ T

0
[Sel(T

′) + Svib(T ′)]dT ′,

(11)

where the second term on the right-hand side is the zero-point
correction to the static energy E0 [given by Eq. (4) with
T = 0], and Sel(T ) can be obtained from direct MD output,
as the average over values calculated at each instantaneous
time step using Eq. (7). Application of this equation is not
always convenient since small errors from Sel and Svib can
accumulate along the integration path, leading to large errors
in the calculated F at high T . According to the definition
F = E − T S, F can be evaluated alternatively as

F (T ) = E (T ) − T [Sel(T ) + Svib(T )], (12)

where like Sel(T ), the internal energy E (T ) can also be
obtained from direct MD output. Since ionic motions are
always treated classically in MD, quantum effects, which
might be important at low T , are automatically neglected in
the vibrational contributions to E (T ). To fully account for
quantum effects, an approximate correction can be applied to
E (T ) following Lin et al. [46]:

�Eqc(T ) = Êvib(T ) − 3(N − 1)kBT, (13)
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where the effective quantum vibrational energy Êvib is calcu-
lated with Eq. (4) by replacing ωqs with ω̃qs, and the second
term on the right-hand side represents the classical vibrational
energy of harmonic oscillators. �Eqc has the correct asymp-
totic behavior in temperature, that at T = 0 K it equals the
zero-point vibrational energy, and at T → ∞ it approaches
zero.

Wherein a thermodynamic property has been determined
from both QHA and MD, the anharmonic contributions to it
can be evaluated as the total value obtained from MD minus
the harmonic counterpart obtained from QHA, e.g., Sah

vib(T ) =
Svib(T ) − Sh

vib(T ), where the superscript “ah” means “anhar-
monic.”

III. COMPUTATIONAL DETAILS

First-principles simulations were carried out using the
projected-augmented-wave (PAW) method [47,48], as imple-
mented in the Vienna ab initio simulation package (VASP)
[49–51] and the in-house ab initio plane-wave code CESSP

[52–54] developed on the infrastructure JASMIN [55]. The
exchange-correlation (XC) interaction was described by the
generalized gradient approximation of Perdew, Burke, and
Ernzerhof (PBE) [56]. The basis set included plane waves
up to a kinetic energy cutoff of 350 eV. Calculations with
two valence electrons were performed, which yield a static
hcp/bcc transition pressure (without zero-point correction) of
about 408 GPa, only slightly lower than that calculated with
four valence electrons (less than 3% difference). Electronic
excitations were taken into account by the Mermin functional
formalism [38,39] and electronic smearing at T = 0 K was
handled by a first-order Methfessel-Paxton method [57] with
a smearing width of 0.2 eV.

Harmonic phonon frequencies were computed with DFPT
[37], and anharmonic ones were extracted from MD by per-
forming vibrational normal mode analysis [30,31]. 4 × 4 × 4
supercells containing 128 atoms were employed for hcp and
bcc Be. To account for size effects, the vibrational properties
computed from PGM were evaluated with phonon frequen-
cies interpolated to a 64 × 64 × 64 q mesh, corresponding
to calculations performed in a 64 × 64 × 64 supercell. The
interpolation has non-negligible effects on the MD results at
high temperatures, where it is found to lower the stability of

hcp Be relative to bcc Be. For example, at V = 4.6 Å
3
/atom

and T = 4000 K, after interpolation the vibrational entropic
contribution to the free energy, −T Svib, of hcp and bcc Be
decreases by 11.9 and 13.4 meV/atom, respectively, leading
to a net increase of 1.5 meV/atom in the free energy of
hcp Be relative to bcc Be. By comparing with simulations
performed in larger supercells, size effects on the vibrational
contributions to the internal energy were found to be trivial
in MD, and therefore would not be considered. The Brillouin
zone of the supercell was sampled with a dense �-centered
k-mesh setting 5 × 5 × 3 for hcp Be and 4 × 4 × 4 for bcc
Be, unless otherwise explicitly stated. We will demonstrate in
Sec. IV D that such dense sampling is essential to achieve de-
sirable accuracy in the calculated free energy, for the accurate
determination of the high-pressure hcp/bcc phase boundary.
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FIG. 2. V -T (a) and P-T (b) conditions covered in our MD
simulations for hcp and bcc Be. The melting line in (b) is adopted
from Robert et al. [20].

Born-Oppenheimer MD simulations were conducted under
the NVT (constant particle number, constant volume, and con-
stant temperature) ensemble with ionic temperature controlled
by the Nosé thermostat [58]. The time step was chosen to be
1 fs. Each simulation first ran for at least 2 ps to reach thermal
equilibrium, and then continued for another 10 ps to collect
statistics. As shown in Fig. 2, our MD simulations cover a
wide range of thermodynamic conditions: nine volumes from

2.8 to 7.0 Å
3
/atom and six temperatures from 500 to 5000 K,

with the corresponding pressure extending from about 20 to
770 GPa.

For a given volume, the variation of the c/a ratio of hcp
Be with temperature is found to be very small, less than 1%
at the highest temperatures considered. For convenience, in
our calculations the c/a ratio at T = 0 K is considered to be
invariant along the isochore. Such a treatment has marginal
effect on the calculated free energy of hcp Be, which results
in a maximum overestimation below 1 meV/atom.

IV. RESULTS AND DISCUSSIONS

A. Phonon dispersion

In this work, the reliable determination of phase boundary
depends on the accurate calculation of vibrational properties,
more specifically, the vibrational frequencies. We computed
harmonic phonon frequencies at zero temperature with DFPT
[37], and extracted anharmonic ones at nonzero temperatures
from MD by performing vibrational normal mode analysis
[30,31] as described in Sec. II. In Fig. 3, excellent agreement
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FIG. 3. Calculated harmonic phonon dispersion of hcp Be at

the static equilibrium volume V0 = 8.08 Å
3
/atom (with zero-point

energy considered in determining V0), in comparison with neutron
scattering data measured at T = 80 K [59].

is found between the calculated harmonic phonon dispersion
of hcp Be with neutron scattering data measured at T =
80 K [59]. Typical examples for the evolution of the phonon
dispersion of hcp and bcc Be with temperature and volume are
presented in Figs. 4 and 5. In accordance with the convergence
of free energy and phase boundary (see Sec. IV D), it is
more difficult to reach the convergence with respect to k-mesh
sampling for the harmonic dispersion at T = 0 K than for the
anharmonic ones at high T . Therefore, to ensure the conver-
gence, the harmonic phonon dispersions reported in Figs. 3, 4,
and 5 were all obtained with a dense 10 × 10 × 10 k mesh for
both hcp and bcc Be. For the phonon dispersion at a specific
V T condition, the corresponding pressure obtained from MD
can be found in Fig. 2.
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FIG. 4. Evolution of the phonon dispersion of hcp (a) and bcc

(b) Be with temperature for V = 4.6 Å
3
/atom, along high-symmetry

directions in the Brillouin zone.

In Fig. 4, the phonon dispersions are compared at three
temperatures, T = 0, 2000, and 4000 K, for a given volume

V = 4.6 Å
3
/atom. As T rises, the anharmonic dispersion

deviates more from the harmonic counterpart, and the differ-
ences become noticeable at a few thousand kelvin, showing
the importance of anharmonic effects at high T . We observe
that the frequency shift with T displays diversified trends,
where for a specific normal mode (q, s) at any q point in
the Brillouin zone it can be positive, negative, or almost
zero, indicating the complexity of lattice anharmonicity. This
observation is in consistency with previously reported by Lu
et al. for hcp and bcc Be at low pressures (P < 30 GPa) [32].

In Fig. 5, the phonon dispersions are compared at three

volumes, V = 3.4, 4.6, and 5.8 Å
3
/atom, for both the anhar-

monic dispersion at T = 3000 K and the harmonic counter-
part at T = 0 K. Both the harmonic and anharmonic frequen-
cies decrease with V ; and, moreover, the differences between
harmonic and anharmonic dispersions grow with V , suggest-
ing that anharmonic effects are stronger at larger volumes.
These behaviors are due to the weaker interatomic interactions
at larger volumes, which decrease vibrational frequencies and
enlarge lattice anharmonicity.

According to previous calculations, imaginary phonon fre-
quencies emerge in the harmonic dispersion of bcc Be at

large volumes, e.g., at V > 7.1 Å
3
/atom (corresponding to

P < 11 GPa at T = 0 K) as predicted by Robert et al. [20],
indicating dynamic instability of the bcc structure at zero
and also low temperatures [60]. Kádas et al. suggested that
the appearance of imaginary phonon frequencies in bcc Be
might be closely related to an electronic topological transition
driven by sp hybridization [16]. Based on vibrational normal
mode analysis, Lu et al. showed that bcc Be is dynamically
stabilized by anharmonic effects at low P-high T conditions
(0 < P < 11 GPa and 1000 < T < 2000 K) [32]. In contrast
to the cases at low pressures, we find that hcp and bcc
Be are dynamically stable for all the thermodynamic states
investigated by MD in this study (see Fig. 2), as well as for the
corresponding zero-temperature states, with no appearance of
imaginary phonon frequencies in the calculated harmonic and
anharmonic dispersions.

B. Vibrational entropy

The harmonic and total vibrational entropy Sh
vib and Svib can

be computed using Eqs. (5) and (10) from harmonic and an-
harmonic vibrational frequencies, respectively. As discussed
in Sec. II, the Svib computed using Eq. (10) can capture the
great majority of lattice anharmonicity, even at very high tem-
peratures, and therefore is expected to be sufficiently accurate
for the purpose of this work. Of course, the ideal case would
be to benchmark our calculated results against the formally
exact thermodynamic integration approach. However, such
benchmarks are computationally quite involved and beyond
this paper, as a result will be considered in our future work on
beryllium. In Fig. 6, we report the total vibrational entropy of
hcp and bcc Be as a function of temperature at three volumes

V = 3.4, 4.0, and 4.6 Å
3
/atom, as well as the corresponding

anharmonic vibrational entropy determined as Sah
vib = Svib −

Sh
vib. The lines which indicate trends of the calculated data
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FIG. 5. Evolution of the phonon dispersion of hcp (a) and bcc (b) Be with volume, along high-symmetry directions in the Brillouin zone.
Both the harmonic dispersion at T = 0 K and the anharmonic one at T = 3000 K are shown.

FIG. 6. (a) Total vibrational entropy of hcp and bcc Be as a
function of temperature at selected volumes. The inset of (a) il-
lustrates the vibrational heat capacity determined from the total
vibrational entropy. (b) The corresponding anharmonic vibrational
entropy. Results are not shown for bcc Be in the deep metastable
regime. In (a) and (b), symbols represent the calculated data, and
lines are results evaluated from model calculations (see text).

are results from model calculations, obtained by fitting the
frequency of each normal mode to a second-order polynomial
in T , for the subsequent evaluation of temperature-dependent
vibrational entropy [30,32]. For Sah

vib, the slight discrepancies
between the lines and the calculated data reflect small compu-
tational errors due to finite MD simulation time.

Figure 6(a) shows that the total vibrational entropy Svib

increases monotonously with V and T . The same is true for
the harmonic counterpart Sh

vib. At nonzero temperatures, the
vibrational entropy of bcc Be is larger than that of hcp Be,
for both Svib and Sh

vib. According to Eq. (11), this makes the
bcc phase energetically more and more favorable compared
with the hcp phase as T rises. In the inset of Fig. 6(a),
we report the vibrational heat capacity Cvib

V determined as
Cvib

V = (∂Svib/∂T )V , based on our model calculations for the
temperature dependence of Svib. Cvib

V is found to go beyond
the Dulong-Petit limit 3 kB/atom at high T , for both hcp and
bcc Be. This demonstrates that at high T anharmonic effects
are strong in both hcp and bcc Be. At high T , the Cvib

V of hcp
Be is larger than that of bcc Be, indicating more pronounced
lattice anharmonicity in hcp Be. Note that Cvib

V can reach
3.3 kB/atom before solid beryllium melts (see Fig. 2 for the
thermodynamic condition at melting).

The anharmonic vibrational entropy Sah
vib is a small fraction

of the harmonic and total ones. As shown in Fig. 6(b),
Sah

vib has a general tendency to increase with V and T . This
shows quantitatively that anharmonic effects are stronger at
larger volumes and higher temperatures, in accordance with
previous discussions associated with Figs. 4 and 5 for the
phonon dispersions. At high T , the Sah

vib’s of hcp and bcc
Be, and also the difference between them, can even become
comparable to the entropy change upon hcp/bcc transition at
low pressures (P < 11 GPa), Sbcc − Shcp = 0.0181 meV/(K
atom) [32]. This suggests that anharmonicity can have a sig-
nificant effect on the hcp/bcc transition at high-PT conditions.
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FIG. 7. θ0, θ1, and θ2 of hcp and bcc Be as a function of temper-

ature for V = 4.0 Å
3
/atom. θ0, θ1, and θ2 are frequency moments of

the PDOS (see text). Symbols represent the calculated data, and lines
are guides for the eye.

We will see in Sec. IV E that it is indeed the case. The
anharmonic vibrational entropy of hcp Be is larger than that
of bcc Be, which clearly shows that anharmonic effects are
more pronounced in hcp Be than in bcc Be. As a consequence,
lattice anharmonicity reduces the free energy of hcp Be more
than that of bcc Be according to Eq. (11), and therefore would
enlarge the stability domain of hcp Be while diminishing that
of bcc Be. Stronger anharmonic effects in hcp Be are also
visible in the mean-square displacement (MSD). Compared
with that of bcc Be, as T rises the MSD of hcp Be is
found to exhibit a larger deviation from the harmonic case,
where the MSD increases perfectly linearly with increasing
T [61].

To understand microscopically why the anharmonic vibra-
tional entropy is larger in hcp Be than in bcc Be, we compute
three phonon characteristic temperatures that correspond to
different frequency moments of the phonon density of states
(PDOS) [44]

ln (kBθ0) = 〈ln (h̄ω̃)〉BZ; kBθ1 = 4
3 〈h̄ω̃〉BZ;

kBθ2 = [
5
3 〈(h̄ω̃)2〉BZ

]1/2
, (14)

where ω̃ represents the temperature-dependent vibrational
frequency, and 〈. . . 〉BZ denotes average over the Brillouin
zone. θ0, θ1, and θ2 are measures of the vibrational frequencies
averaged in different ways, and are closely related to the vibra-
tional properties, including the vibrational entropy. In Fig. 7,
θ0, θ1, and θ2 are compared between hcp and bcc Be, as a

function of temperature for a given volume V = 4.0 Å
3
/atom.

The θ0, θ1, and θ2 of hcp and bcc Be all decrease with increas-
ing T . This means that although the frequency shift with T
can display diversified trends for a single mode, the average
effect of lattice anharmonicity is the decrease of vibrational
frequencies with increasing T . According to Eq. (10), for a
given temperature smaller vibrational frequencies would lead
to a larger total vibrational entropy, and thus equivalently to
a larger anharmonic vibrational entropy. For all of θ0, θ1,
and θ2, as T rises the value of hcp Be drops faster than that
of bcc Be, which explains the larger anharmonic vibrational
entropy of hcp Be. The stronger anharmonic effects on the

frequency shifts observed in hcp Be may be attributed to the
intrinsic anisotropy of the hcp structure. Moreover, it can
be noted that θ0, θ1, and θ2 all drop increasingly faster at
higher temperatures, which makes it clear why in Fig. 6(b)
the anharmonic vibrational entropy grows increasingly faster
at higher temperatures.

C. Free energy with anharmonic contributions

Through direct simulation of atomic motions at finite tem-
peratures, anharmonic contributions to thermodynamic prop-
erties are automatically taken into account in MD. According
to Eqs. (1) and (12), in addition to the vibrational entropy
Svib considered in the previous subsection, the calculation
of the Gibbs free energy G from MD, and the subsequent
determination of phase boundary as well, requires to know the
internal energy E , the pressure P, and the electronic entropy
Sel. Fortunately, E , P, and Sel can all be straightforwardly
obtained from direct MD output. Sel is generally quite small;
at the highest temperatures considered, it is determined to be
less than 2% of Svib, for both hcp and bcc Be. The anharmonic
contributions to Sel are much smaller compared with those to
Svib, nevertheless, they are explicitly accounted for in our MD
simulations.

In Fig. 8, we report the internal energy and pressure of
hcp and bcc Be obtained from our MD simulations, as a
function of volume at selected temperatures. As shown in the
figure, for a given temperature the volume dependence of E
and P can be well fitted to the fourth-order Birch-Murnaghan
equation of state (EOS) [62]. Each fitting parameter can be
properly described by a third-order polynomial in T to obtain
unified functional descriptions of E and P, i.e., E (V, T ) and
P(V, T ), which can be used to evaluate derived thermody-
namic properties. From the inset of Fig. 8(a), we see that

at small volumes, e.g., V � 4.6 Å
3
/atom (the corresponding

P > 160 GPa), the absolute energy difference between two
phases is considerably smaller than that at large volumes,

e.g., V � 7.0 Å
3
/atom (the corresponding P < 40 GPa). This

suggests the difficulty for the theoretical identification of
energetically more stable structure at high pressures.

According to Eq. (12), the Helmholtz free energy F is
calculated from MD using E , Svib, and Sel. In Fig. 9(a),
F as a function of volume is presented at selected tem-
peratures for hcp and bcc Be. Similarly to E and P, for
a given temperature the volume dependence of F can be
well described by the fourth-order Birch-Murnaghan EOS for
energy [62]. According to definition, the Gibbs free energy
is computed as G = F + PV . In Fig. 9(b), the Gibbs free-
energy difference �G = Gbcc − Ghcp is shown as a function
of pressure at selected temperatures. For a given temperature
�G decreases monotonously with pressure, and the point at
which �G = 0 gives the transition pressure Phcp/bcc at the
considered temperature. Phcp/bcc decreases with increasing T ,
which leads to smaller stability domain of the hcp phase or,
equivalently, larger stability domain of the bcc phase, at higher
temperatures. This is attributed to the fact that the entropy
associated with the more symmetric bcc structure is larger
than that of the hcp structure (see Fig. 6). The full hcp/bcc
phase line at high pressures will be presented in Sec. IV E.
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FIG. 8. Internal energy (a) and pressure (b) of hcp and bcc Be
obtained from MD, as a function of volume at selected temperatures.
Symbols represent the calculated data, and lines are fits to the fourth-
order Birch-Murnaghan EOS [62]. Inset in (a): the corresponding
internal energy difference between hcp and bcc Be.

D. Importance of free energy and phase boundary convergence
with respect to k-mesh sampling

Before presenting the final results for the phase diagram
of beryllium, we would like to discuss an important technical
detail that should be paid particular attention to, the k-mesh
setting. Through thorough tests, we find that the calculated
free energy depends sensitively on the k mesh, and therefore
it is necessary to employ a dense setting to achieve desirable
accuracy in the calculated phase boundary. In our calculations
with 128-atom supercells, the least requirement is 5 × 5 × 3
for hcp Be and 4 × 4 × 4 for bcc Be, which are the setting
employed to obtain all the MD results presented up to now.

In Fig. 10, we report the harmonic and total Helmholtz
free energy of hcp and bcc Be, computed with different k
meshes at a low temperature T = 500 K and a high tem-

perature T = 4000 K, for a given volume V = 4.6 Å
3
/atom.

The harmonic and total Helmholtz free energy are obtained
from QHA and MD, respectively. The k meshes considered
are all � centered, varying from as sparse as � point only
in both QHA and MD, up to as dense as 10 × 10 × 10 in
QHA, and 5 × 5 × 3 for hcp and 4 × 4 × 4 for bcc in MD. At
both temperatures, the k-mesh dependence of the Helmholtz
free energy calculated from MD displays a quite analogous
trend as that from QHA, for both hcp and bcc Be, indicating
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FIG. 9. (a) Helmholtz free energy of hcp and bcc Be obtained
from MD, as a function of volume at selected temperatures. Symbols
represent the calculated data, and lines are fits to the fourth-order
Birch-Murnaghan EOS [62]. (b) The corresponding Gibbs free-
energy difference between hcp and bcc Be.

that the convergence behavior is basically not influenced by
anharmonicity. As shown in the figure, the Helmholtz free
energy is easier to converge at higher temperatures: Using
the same 3 × 3 × 3 k mesh and taking the well-converged
10 × 10 × 10 k-mesh results as references, the QHA value
at T = 4000 K converges to within 2 and 1 meV/atom,
while that at T = 500 K is about 7 and 4 meV/atom from
convergence, for hcp and bcc Be, respectively. The better
convergence at T = 4000 K is because of the larger width of
electronic smearing corresponding to higher temperatures. For
the same reason, faster convergence at higher temperatures
is also expected for other thermodynamic properties. We find
that a 5 × 5 × 3 k mesh for hcp Be and a 4 × 4 × 4 k mesh for
bcc Be can yield good overall convergence of the calculated
Helmholtz free energy from QHA, for the volume considered
here an overestimation within 2 meV/atom at T = 500 K
and an underestimation within 0.5 meV at T = 4000 K, for
both hcp and bcc Be. This k-mesh setting should also lead
to satisfactory convergence of the calculated Helmholtz free
energy from MD, due to the similar convergence behavior
between QHA and MD.
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guides for the eye. In (a), the QHA values for bcc Be from the � only
and 2 × 2 × 2 k mesh are not shown since they are not well defined
due to emergence of imaginary frequencies in the corresponding
harmonic phonon dispersion at Tel = 500 K.

We check directly the convergence of the calculated
hcp/bcc phase boundary in Fig. 11, for results from both QHA
and MD. The previous subsection has already demonstrated
how the phase boundary is determined by comparing the free
energy of different phases. The convergence behavior of the
phase boundary is consistent with the case shown in Fig. 10
for the Helmholtz free energy: it is similar between QHA and
MD, and as T rises the convergence becomes faster due to
more converged free energy resulting from larger width of
electronic smearing. The discrepancy between the transition
pressure determined from a 3 × 3 × 3 k mesh and that from a
slightly denser k-mesh setting, 5 × 5 × 3 for hcp and 4 × 4 ×
4 for bcc, can be less than 15 GPa at the highest temperatures
considered, but increases to be larger than 60 GPa at very
low temperatures, for both QHA and MD. This indicates that
even a 3 × 3 × 3 k mesh is not sufficient to achieve good
overall convergence of the calculated phase boundary, where
results are satisfactory only at very high temperatures. (Note
that at a very high temperature T = 4000 K, even a sparse
2 × 2 × 2 k mesh works much better than a 3 × 3 × 3 k mesh
at T � 2000 K.) We find that a slightly denser k-mesh setting,
5 × 5 × 3 for hcp and 4 × 4 × 4 for bcc, already works well
in QHA at both low and high temperatures, the discrepancy

0
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bccliquid
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FIG. 11. hcp/bcc phase boundary of beryllium, computed from
QHA and MD with different k-mesh settings. “MDc” represents
“MD with quantum corrections.” When not explicitly specified in the
legend, the same k mesh is used for both hcp and bcc Be. Symbols
represent the calculated data, and lines between them are guides for
the eye. The melting line is adopted from Robert et al. [20].

from a very dense 10 × 10 × 10 k mesh being within 10 GPa
at T = 0 K and even smaller at higher temperatures. Since
a similar behavior is expected in MD, the same k-mesh
setting was chosen in our MD simulations to determine the
phase boundary with anharmonic contributions. This is clearly
much denser than the � only or 2 × 2 × 2 k mesh commonly
employed in first-principles MD to compute the EOS and
thermodynamic properties, but is nearly the most efficient
choice to ensure good overall convergence of the calculated
phase boundary.

Choosing appropriate k meshes is not only important in
this work for beryllium, but may also be crucial for the
accurate calculation of the free energy and phase boundary
of other materials. Performing convergence tests in MD can
be expensive indeed. However, as we have already seen, the
convergence behavior with respect to k-mesh sampling is very
similar between QHA and MD. Therefore, to save efforts,
convergence tests in QHA can serve as useful guides for the
selection of appropriate k meshes in MD.

It is worth noting that at T < 1000 K, as T declines
the MD transition pressure does not seem to approach the
QHA one, when compared at the same k-mesh setting. This
contradicts the common expectation that anharmonicity be-
comes weaker at lower temperatures. The problem here is
that in MD simulations ionic motions are treated classically
following Newton’s second law, and quantum corrections to
the internal energy are always disregarded. Quantum effects
are particularly important for beryllium due to its highest
Debye temperature among all metals [2], and should be
properly taken into account at relatively low temperatures.
An approximate quantum correction to the internal energy
given by Eq. (13) can be added to the MD free energy,
and the results obtained with the k-mesh setting 5 × 5 × 3
for hcp and 4 × 4 × 4 for bcc are presented in Fig. 11,
labeled with “MDc,” where a subscript “c” denotes “cor-
rected.” As shown in the figure, quantum corrections have
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FIG. 12. Phase diagram of beryllium. The hcp/bcc phase bound-
aries from our QHA and MDc calculations are compared with those
from previous QHA calculations [19–21], where “MDc” represents
“MD with quantum corrections.” The uncertainty of the calculated
MDc transition pressure is estimated to be ±6 GPa at most (see text).
The pentagons denote selected high-PT conditions where stable hcp
Be was observed to exist in the recent static DAC experiment of
Lazicki et al. [9]. The experimental uncertainty is about 5 GPa
and 100 K for pressure and temperature, respectively, and can be
approximately represented by the size of the pentagons. The melting
line is adopted from Robert et al. [20].

a greater influence at lower temperatures. After considering
them, the difference between the MDc phase boundary and
the corresponding QHA one decreases monotonously with
decreasing temperature, just as expected. At T = 500 K,
the MDc transition pressure is almost identical as the QHA
one, indicating that anharmonic effects are almost negligible
at T � 500 K.

E. Phase diagram

Figure 12 displays the phase diagram of beryllium, where
the hcp/bcc phase boundaries obtained from our QHA and
MD calculations are compared with those from previous
QHA studies [19–21], and also with recent experimental
observations [9]. Compared with the hcp/bcc phase boundary,
the melting curve of beryllium seems to be less controver-
sial since despite lack of high-pressure experimental data,
first-principles MD studies using different methods all yield
consistent results [19,20,63]. The melting curve computed
by Robert et al. [20] is adopted to constrain the stability
domain of solid beryllium. To highlight anharmonic effects,
we conduct a direct comparison between our QHA and MD
results at the same k-mesh setting, i.e., 5 × 5 × 3 for hcp and
4 × 4 × 4 for bcc, where our MD ones have been applied with
quantum corrections as discussed in the previous subsection,
labeled as “MDc” in the figure. By comparing with longer
MD simulations of 250 ps, we find that our 10-ps simulations
are sufficient to ensure desirable accuracy in the calculated
Helmholtz free energy F , to within 0.4 meV/atom at the
highest temperatures considered. Taking into account also the
small errors resulting from fitting F , we estimate a maximum
uncertainty of ±6 GPa in the calculated hcp/bcc transition

pressure from MD. The computational error in QHA is much
smaller than that in MD. The hcp/bcc phase boundary at P <

11 GPa obtained recently by Lu et al. [32], where anharmonic
effects were taken into account using the same method [30,31]
as for our MD results, lies very close to the melting line, and
therefore is not displayed in the figure.

As shown in Fig. 12, overall our QHA phase boundary
agrees well with the two latest QHA ones of Robert et al.
[20] and Luo et al. [21], but differs largely from the earlier
QHA one of Benedict et al. [19]. At T > 1000 K, our QHA
results agree closely with those of Robert et al. computed with
the same PBE XC, but display small systematic discrepancies
that grow with T from those of Luo et al., which can be
attributed to the local-density approximation (LDA) [64] XC
used by Luo et al. Some small discrepancies can also be
found at T < 1000 K between our QHA results and those of
Robert et al. and Luo et al. These originate from the fact that
our results here were obtained with a sparser k-mesh setting,
and the calculated transition pressure converges more slowly
with respect to k-mesh sampling at lower temperatures than
at higher temperatures (see the previous subsection). When
computed with a dense 10 × 10 × 10 k mesh for both hcp
and bcc Be, our QHA result at T = 0 K is highly consistent
with that of Robert et al. and Luo et al., all at about 390 GPa
(see also Fig. 11). In the PT phase diagram, the stability
domain of the hcp phase obtained by Benedict et al. using
PBE XC is significantly larger than that predicted by the other
three QHA calculations. The large discrepancies are attributed
to the different transition pressure at T = 0 K obtained by
Benedict et al., about 420 GPa, which is noticeably larger than
that predicted by more recent first-principles calculations,
including the other three QHA calculations, in the range
of about 380 to 390 GPa [20–23]. After considering lattice
vibrations and electronic excitations on top of the T = 0 K
results by Benedict et al., the discrepancy at T = 0 K prop-
agates to higher temperatures. Despite the different transition
pressures predicted by Benedict et al., the variation tendency
of the transition pressure with temperature, or equivalently
the Clapeyron slope, is very similar to the other three QHA
calculations. In Fig. 12, we also plot selected high-PT con-
ditions up to which stable hcp Be was observed to exist in
the recent static DAC experiment of Lazicki et al. [9]. The
experimental uncertainty was estimated to be about 5 GPa
and 100 K for pressure and temperature, respectively. At T >

3300 K, the stability domains of hcp Be predicted by Robert
et al., Luo et al., and our QHA calculations are clearly smaller
than that observed in experiment, which seems to indicate
the importance of anharmonic effects on the high-temperature
phase stability.

Figure 12 shows that with anharmonic effects considered,
our MDc phase boundary gives a larger stability domain of
hcp Be compared with our QHA one, especially much larger
at high T . In particular, the hcp/bcc transition pressure is
enlarged by more than 100 GPa at T ∼ 3500 K, the highest
temperature on our QHA phase boundary. The decrease of
transition pressure with increasing T in our MDc results is
slower than that in all four QHA calculations, which leads
to a Clapeyron slope obviously larger in magnitude at high
T predicted by MDc. Our MDc phase boundary is consistent
with Lazicki et al.’s experiment [9]. It incorporates most
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experimental points of hcp Be within the calculated stability
domain, with only one point lying outside by a distance
smaller than both the experimental and the theoretical un-
certainties. Note that if our MD simulations were performed
with two more valence electrons, and considered the variation
of the c/a ratio of hcp Be along the isochore as well, then
the calculated stability domain of hcp Be should be further
enlarged by at least a few GPa, but not too much more, at high
T (see Sec. III). We emphasize that although the position of
the calculated hcp/bcc boundary in the phase diagram might
differ more or less for different computational details, the
conclusion that at high T anharmonicity would significantly
enlarge the stability domain of hcp Be is perfectly robust.
It is worth noting that the same conclusion may also hold
for magnesium, where similarly to beryllium, in recent static
experiments [65] the hcp/bcc transition pressure of magne-
sium at high T was observed to be significantly higher than
previously predicted by QHA [66,67].

As a summary, our calculations show that anharmonicity
is important at high T . It enlarges the hcp/bcc transition
pressure of beryllium by less than 8 GPa (less than 2.5%) at
T < 1500 K, but by more than 45 GPa (more than 20%) at
T > 3000 K. Consequently, there is a significant increase in
the calculated pressure of the hcp/bcc/liquid triple point, from
about 85 to 165 GPa, with the corresponding temperature
increasing from about 3300 to 4200 K; and the resulting
Clapeyron slope at the triple point takes a value of −7.4 ±
0.7 K/GPa, noticeably larger in magnitude than previous
QHA predictions, which are all close to zero and lie in the
range of −3 to 2 K/GPa.

V. CONCLUSIONS

We investigated the hcp to bcc phase transition in beryl-
lium at high-PT conditions, where a hybrid approach was
employed to account for anharmonic contributions to the free
energy. At high T , lattice anharmonicity was shown to be pro-
nounced in both hcp and bcc Be, under the influence of which
the vibrational heat capacities can go beyond the Dulong-
Petit limit 3 kB/atom. Anharmonic effects are stronger in hcp

Be than in bcc Be, as evidenced by the larger anharmonic
vibrational entropy of hcp Be. We found that anharmonicity
substantially enlarges the stability domain of hcp Be at high
T , bringing calculated results into good consistency with
recent experimental observations. Due to anharmonic effects,
the calculated pressure and temperature of the hcp/bcc/liquid
triple point increase from about 85 to 165 GPa, and from about
3300 to 4200 K, respectively, and the resulting Clapeyron
slope at the triple point of −7.4 ± 0.7 K/GPa is noticeably
larger in magnitude than previous QHA values in the range of
−3 to 2 K/GPa.

An important technical detail was discussed. By perform-
ing careful tests we showed that it is necessary to employ
a dense k-mesh setting to achieve good overall convergence
of the calculated free energy and phase boundary. In our
calculations with 128-atom supercells, at least 5 × 5 × 3 for
hcp Be and 4 × 4 × 4 for bcc Be are required. This is clearly
much denser than the � only or 2 × 2 × 2 k mesh commonly
employed in first-principles MD to compute the EOS and ther-
modynamic properties, but is nearly the most efficient choice.

For future perspective, the thermodynamic data of hcp and
bcc Be obtained from our QHA and MD calculations are
valuable in constructing a multiphase EOS at wide thermody-
namic conditions, in both low- and high-temperature regimes
[19,20,68–70]. Furthermore, the computational scheme em-
ployed in this work can be used to study the high-temperature
solid-solid phase transition in other materials, on which an-
harmonicity may also have significant influences. And, if
combined with accurate computational approach for the liquid
free energy [46,71,72], this scheme can help to determine the
melting curve of solids as well.
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