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Dynamical similarity and instabilities in high-Stokes-number oscillatory flows of superfluid helium
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We present a unified analysis of the drag forces acting on oscillating bodies submerged in superfluid helium
such as a vibrating wire resonator, tuning forks, a double-paddle oscillator, and a torsionally oscillating disk.
We find that for high-Stokes-number oscillatory flows, the drag force originating from the normal component of
superfluid helium exhibits a clearly defined universal scaling. Following classical fluid dynamics, we derive the
universal scaling law and define relevant dimensionless parameters such as the Donnelly number. We verify this
scaling experimentally using all of our oscillators in superfluid 4He and validate the results by direct comparison
with classical fluids. We use this approach to illustrate the transition from laminar to turbulent drag regime in
superfluid oscillatory flows and compare the critical velocities associated to the production of quantized vortices
in the superfluid component with the critical velocities for the classical instabilities occurring in the normal
component. We show that depending on the temperature and geometry of the flow, either type of instability may
occur first and we demonstrate their crossover due to the temperature dependence of the viscosity of the normal
fluid. Our results have direct bearing on present investigations of superfluids using nanomechanical devices
[Bradley et al., Sci. Rep. 7, 4876 (2017)].
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I. PREFACE

Historically, experiments on oscillatory flows of classical
viscous fluids have been studied since the days of Stokes [1],
with many notable developments made in the last century
[2–5]. Recently, oscillating flows have reemerged thanks to
developments in micromechanical and nanomechanical en-
gineering, where access to nano electromechanical systems
(NEMS) [6–10] has offered unprecedented sensitivity and res-
olution in fluid dynamical experiments, allowing the transition
from continuum to ballistic (molecular) regime to be probed
at easily attainable pressures, directly probe fluid boundary
layers [9], or formulate universality relations [6–8] for clas-
sical oscillatory flows. This work extends such universality
relations to superfluids, concentrating on the hydrodynamic
regime; the transitional and ballistic regimes will represent the
subject of a later publication.

An extremely broad range of working fluids of well-known
physical properties [11–13] may be obtained when traversing
the different phases of helium, even limiting ourselves to
the common isotope 4He. The normal liquid phase of 4He,
known as He I, is a highly interesting working fluid thanks
to its extremely low kinematic viscosity ν, which provides
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very high Reynolds number (Re ≈ 107) flows in controlled
laboratory experiments [14,15]. Similarly, cryogenic He gas
provides extremely large Rayleigh numbers (Ra ≈ 1017) in
convective flows [16]. Liquid 4He undergoes a superfluid
phase transition at Tλ ≈ 2.17 K at saturated vapor pressure.
Superfluid 4He, or He II, is a quantum fluid, and its flow
properties cannot be described by means of classical fluid
dynamics. According to Landau’s two-fluid model [17,18], it
behaves as if composed of two interpenetrating liquids (the
normal and superfluid components) with individual velocity
fields and temperature-dependent densities. At the superfluid
transition at Tλ, the density of the normal component accounts
for 100% of the total density, but drops rapidly with decreas-
ing temperature and vanishes for T → 0 K.

Oscillatory flows of He II have been studied using var-
ious oscillators such as disks [19,20], piles of disks [21],
spheres [22–24], grids [25–29], tuning forks [30–33], reeds
[34], double paddles [35–37], cylinders of rectangular [38]
or circular cross-section (wires) [39–42] since the discovery
of superfluidity, and have led to important insights to this
fundamental physical phenomenon. For reviews, see [43,44].
Despite these efforts, a universal picture is still missing in
superfluid hydrodynamics, which motivated us to investigate
oscillatory flows of He II due to mechanical oscillators of
largely varied geometries (vibrating tuning forks, a microwire
loop, a torsionally oscillating disk, and a double-paddle oscil-
lator) and search for universal features.

II. INTRODUCTION

In this section, we introduce the key concepts of super-
fluid hydrodynamics, and use classical oscillatory flows in
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the high-Stokes-number regime as a stepping stone to derive
the properties of similar flows in superfluids. We limit our
discussion of the dynamics of superfluids to the Newtonian-
type hydrodynamic description applicable above �1 K, as this
corresponds to most of the experiments described here.

A. Superfluid hydrodynamics

On a phenomenological level, superfluid 4He at finite
temperatures is described as consisting of two components:
a viscous normal component and an inviscid superfluid com-
ponent [17]. Their temperature-dependent densities ρn and ρs,
respectively, add up to the (nearly temperature-independent)
total density of He II, ρ. While the normal component behaves
classically, possessing finite viscosity and carrying the entire
entropy content of He II, the superfluid component has neither
entropy nor viscosity and, due to quantum restrictions, the
vorticity is constrained into line singularities called quan-
tized vortices [18]. In He II, each quantized vortex carries
one quantum of circulation, given as κ = h/m4 ≈ 0.997 ×
10−7 m2 s−1, where h is the Planck constant and m4 denotes
the mass of a 4He atom. Superfluid turbulence [45] therefore
takes the form of a dynamic tangle of quantized vortices in the
superfluid component.

At temperatures above �1 K, where the fraction of the
normal fluid is significant, this tangle of quantized vortices
typically coexists with classical-like turbulent flow of the
normal component, making up what is usually called quantum
turbulence (turbulent flow of a quantum fluid). In the presence
of quantized vortices, the otherwise independent normal and
superfluid velocity fields become coupled by a mutual friction
force which arises due to thermal excitations (responsible for
the entropy and viscosity of the normal component) scattering
off the cores of quantized vortices. Quantum turbulence can
thus be loosely defined as the most general way of motion of
quantum fluids displaying superfluidity [45].

Does quantum turbulence always contain quantized vor-
tices? Strictly speaking, quantized vortices are not a necessary
ingredient of quantum turbulence, as one can imagine a two-
fluid flow of He II consisting of turbulent normal flow and
potential superflow. Indeed, in the hypothetical case of a
macroscopic sample of He II free of quantized vortices (i.e.,
without mutual friction coupling the two velocity fields), in
an isothermal flow the normal and superfluid components
move independently and any instability criteria ought to be
applied to them separately. In this hypothetical case, quantized
vortices must be nucleated intrinsically; this process requires
critical velocities of order 10 m/s or higher [45]. In practice,
however, remnant vortices always exist in macroscopic sam-
ples of He II and nucleation of quantized vorticity takes place
extrinsically, by stretching and reconnections of seed vortex
loops. In many types of flow, the critical velocity for extrinsic
vortex nucleation is observed to be a few cm/s. As turbulence
of the normal component may be possible even below this ve-
locity threshold, it follows that there indeed is a possibility of
having a quantum flow displaying (nearly) potential superflow
together with a vortical flow of the normal component.

With very few remnant quantized vortices present, the
mutual friction force is negligible and, according to the two-
fluid model of Landau [17], an isothermal flow of the normal

component is described by the Navier-Stokes equations, while
that of the superfluid component by the Euler equations for
ideal fluids. Under these conditions, any body moving through
He II at low velocity below the (generally independent) criti-
cal thresholds would experience drag forces originating from
the normal component alone, while the drag forces offered by
the superfluid component are zero (neglecting any drag due to
surface waves and compressibility effects). In this case, the su-
perfluid component can be understood as a physical vacuum,
merely renormalizing the effective mass of the oscillating
body by means of conservative inertial forces. Therefore, to
derive the scaling laws for the drag forces in the Newtonian
limit, we must analyze the Navier-Stokes equations governing
the motion of the normal component.

B. Classical oscillatory flows: Hydrodynamic limit

To describe a classical oscillatory flow, the governing
Navier-Stokes equations (NSE) may be expressed in terms
of dimensionless velocity u′ = u/U , time t ′ = t/T , and po-
sitions r′ = r/Li as

ωU
∂u′

∂t ′ + U 2

L1
(u′ · ∇′u′ + ∇′ p′) = νU

L2
2 �′u′, (1)

where the characteristic length scales L1,2 are used together
with the characteristic velocity U to estimate the maximum
magnitude of the respective velocity derivatives. An indepen-
dent timescale is introduced, given (in the continuum limit) by
the angular frequency of oscillation ω. Generally, the choice
of L1 and L2 depends on body geometry and flow parameters.
Candidates may include the typical body size D, the surface
roughness Rq, or the Stokes boundary layer thickness (vis-
cous penetration depth), defined as δ = √

2η/(ρω), where η

denotes the dynamic viscosity of the working fluid. If, for a
given body δ � D, one may say that the object oscillates in
the high-frequency regime, which is equivalent to the high-
Stokes-number limit St = D2/(πδ2) � 1.

In the high-frequency limit, depending on body geometry
(especially surface roughness and the presence of sharp cor-
ners), δ or D may take the part of L1 (related to the largest tan-
gential velocity derivative) in the NSE, but it is always δ that
takes the part of L2 (related to the largest velocity derivative
in any direction) (see Fig. 1). When sharp corners are present
[case (a) in Fig. 1] or when Rq � δ [case (d) in Fig. 1], one
may safely put L1 = L2 = δ, and the Navier-Stokes equation
may be expressed using only one dimensionless parameter,
the boundary-layer-based Reynolds number: Reδ ≡ (δρU )/η.
Conversely, for a hydrodynamically smooth body (Rq � δ)
without any sharp corners, such as a cylinder [case (b) in
Fig. 1], one would obtain the Navier-Stokes equation with the
Keulegan-Carpenter number KC = UT/D as the only relevant
dimensionless parameter [2]. However, for laminar flows with
KC � 1, where the nonlinear term can be neglected, the
viscous drag force would still be expected to scale with Reδ ,
as for the viscous drag L2 = δ is the only relevant length scale
even in this case.

Of the oscillators used in this work, only the disk may
be considered hydrodynamically smooth. The classification
of our oscillators would thus be tuning forks [Figs. 1(a) and
1(d)], vibrating wire [Fig. 1(d)], double paddle [Fig. 1(a)],
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FIG. 1. Illustration of the effects of surface roughness and sharp
corners on the estimates of (maximum values of) velocity derivatives
in the high-frequency limit, where δ � R. In cases (a) and (d), both
velocity derivatives present in the NSE are estimated using δ, while
in case (b), the tangential velocity derivative is estimated using R and
the Laplacian using δ. In case (c), where Rq � δ, reliable estimates of
the tangential derivative prove difficult; a smooth crossover between
cases (b) and (d) is expected.

disk [Fig. 1(b)]; see Sec. III for details. The tuning forks
contain sharp corners and have a surface roughness exceeding
the boundary-layer thickness at the same time. We expect the
roughness to be more significant for the commercial tuning
fork (see Sec. III A).

C. Oscillatory flows of He II

Assuming two independent velocity fields in He II, as is the
case at low velocities, where the normal component exhibits
laminar flow and the superfluid component remains potential,
the above considerations are fully applicable to the oscillatory
viscous flow of the normal component. We therefore replace
ρ by ρn, decompose the pressure into partial pressures of the
normal and superfluid components, and replace δ by δn =√

2η/(ρnω), where η denotes the dynamic viscosity of He
II. Again, if, for a given body δn � D, and Rq � δn (in our
experiments, typically δn ≈ 1 μm, except for the disk, where
δn ≈ 0.5 mm), we may put L1 = L2 = δn, and the Navier-
Stokes equation may be written using only one dimensionless
parameter: Dn ≡ (δnρnU )/η, which we call the Donnelly
number [46]:

2
∂u′

∂t ′ + Dn (u′ · ∇′u′ + ∇′ p′
n) = �′u′. (2)

We note that Dn will become equivalent to Reδ at the su-
perfluid transition temperature Tλ, allowing direct comparison
with classical fluids.

If δn � R is satisfied (high-Stokes-number limit), then the
flow may be regarded as potential everywhere outside the thin

boundary layer of thickness on the scale of δn. Moreover, if δn

is smaller than the typical radius of curvature of the oscillator
surface, the surface may be described as consisting of many
planar elements, and the velocity profile within the boundary
layer is given by the solution to Stokes second problem (an
oscillating plane). In laminar flow around such a body, the
average energy dissipation per unit time is given by [47]

〈Ė〉 = 1

2

η

δn

∮
|�vL0,t|2dS = 1

2

η

δn

∮
α2

Lu2
L0dS, (3)

where �vL0,t is the difference between two local velocity
amplitudes projected tangentially to the surface, that of the
potential flow just outside the boundary layer and that of the
surface element of the body. Then, αL is the local flow en-
hancement factor relating this velocity difference to the (local)
velocity amplitude uL0 of the surface element in question:
|�vL0,t| = αLuL0. Integrating over the entire surface of an
oscillator, we get

〈Ė〉 = αξU 2
p Sr

2

η

δn
, (4)

where Up is the maximum velocity amplitude along the sur-
face of the resonator (peak velocity). The dimensionless quan-
tity of order unity ξ = ∮

u2
LdS/(SrU 2

p ) describes the velocity
profile along the resonator, and an effective surface area Sr �
S may be used to account approximately for surface rough-
ness. The integrated flow enhancement factor α is defined
from αξ = ∮

α2
Lu2

L0dS/(SrU 2
p ). We note that for a smooth

rigid oscillator this becomes α = ∮
α2

LdS/S, e.g., for a sphere:
αL = 3/2 sin(θ ), with the angle θ measured from the direction
of the flow, and α = 3

2 . Similarly, for a cylinder oriented
normally to flow, αL = 2 sin(θ ) and α = 2. We emphasize
that the above derivation is valid for all the cases described in
Fig. 1, as the length scale relevant to viscous drag is always δn.

Using the peak velocity Up, it is possible to model a
given mode of the resonator as a one-dimensional (1D) linear
harmonic oscillator, as done in Ref. [30] for a tuning fork. This
leads to the definition of a (net) dissipative force amplitude:

F = 2〈Ė〉
Up

= αξη

δn
SrUp. (5)

We note that this force is meaningful only in the 1D model
of the given resonant mode (or for a rigid oscillator) and
does not, generally, offer a direct measure of the total forces
experienced by the body. In analogy with steady flow, we
define the dimensionless drag coefficient related to the normal
component of He II as

Cn
D = 2F

AρnU 2
p

= 2αξSr

A

η

ρnUpδn
≡ �/Dn, (6)

where A is the sectional area perpendicular to the direction of
flow, and the dimensionless quantity � = 2αξSr/A is deter-
mined purely by the geometry of the oscillator. This scaling
law is valid universally for laminar flow around all types of
objects shown in Fig. 1.

Additionally, in accordance with the principle of dynam-
ical similarity, for hydrodynamically rough bodies or bodies
with sharp corners, the normal fluid drag coefficient may
be expressed as a unique function of the Donnelly number

054511-3



D. SCHMORANZER et al. PHYSICAL REVIEW B 99, 054511 (2019)

Cn
D = Cn

D(Dn) even in nonlaminar flow. Any departure from
this function must then signify either a violation of these
assumptions or an instability occurring in the superfluid com-
ponent. In such a case, if the superfluid component becomes
turbulent at some critical velocity UC, we expect a marked
increase in the drag coefficient above the dependence Cn

D(Dn)
measured in a classical fluid (substituting the total density ρ

for ρn and Reδ for Dn).
The Donnelly-Glaberson (DG) instability leading to the

production of quantized vorticity in the superfluid is related
to self-reconnections of seed vortex loops. This process has
been described in the literature [48,49], and for macroscopic
objects, the related critical velocity is expected to scale as
UC ∝ √

κω. Hence, it is convenient to define a reduced dimen-
sionless velocity Û = Up/

√
κω. To facilitate a hydrodynamic

description of the drag forces originating in the superfluid
component, we also define the superfluid drag coefficient

Cs
D = 2F

AρsU 2
p

= 2F

AρsκωÛ 2
. (7)

For laminar/potential flow of normal/superfluid components,
this reduces to

Cs
D = φ

Û
; φ = �

√
ηρn

2κρ2
s

, (8)

where � is the same as above. If turbulence is triggered in
the superfluid component without any significant coupling to
the normal component, again a unique function Cs

D(Û ) should
be observed. However, this scenario seems unlikely except
close to the critical velocity, as the action of the mutual friction
force would couple the two components when a sufficient
density of quantized vortices is produced.

In the turbulent drag regime, at velocities sufficiently above
the critical values, the normal and superfluid components are
expected to be coupled due to the mutual friction force and
contribute to the pressure drag together. In this situation, the
classical definition of the drag coefficient is applicable: CD =
2F/(AρU 2), where the total density ρ = ρn + ρs is used.
It is expected that in coupled turbulent flows, CD will tend
towards a temperature-independent constant value of order
unity [43,50].

The total energy contained in the oscillatory motion of the
resonator and the fluid is given as E = meffU 2

p /2, defining the
effective mass of the resonant mode meff . For a quasi-one- or
two-dimensional resonator oscillating perpendicularly to its
large dimension(s), such as a thin cantilever, beam, or mem-
brane, it follows that meff = ξm + mHD, where m is the actual
mass of the resonator and mHD represents the hydrodynamic
added mass. If the hydrodynamic mass contribution can be
neglected, it is convenient to define a fluidic quality factor Qf :

1

Qf
≡ 〈Ė〉

ωE
= αξSr

meff

√
ηρn

2ω
≈ αρnSrδn

2m
, (9)

which can be directly linked to the resonant frequency f and
linewidth � by Qf = f /(� − �0), where �0 is the linewidth
in vacuum. Conversely, the effective mass may be expressed
from the resonant frequency in vacuum f0 as meff/(ξm) =
( f0/ f )2.

The fluidic quality factor in Eq. (9) differs from the one
given in Ref. [7] (in the limit of Newtonian hydrodynamics)

by the explicit inclusion of the flow enhancement factor α. We
note that this factor is related to the potential flow outside the
boundary layer and is necessary not only to recover correctly
the analytical solutions obtained for the drag force acting on
an oscillating sphere or cylinder, but in fact for all oscillators
with nontrivial geometry. The fluidic quality factor Qf is
related to the drag coefficient prefactor � by

� = 4meff

QfAδnρn
. (10)

This relation may be used to extract the value of � directly
from resonant properties of the oscillator, without precise
calibration of driving force or peak velocity. In the laminar
regime, it can also be used to infer either force or velocity,
provided that the other quantity is known, together with meff ,
A, and working fluid properties.

The prefactors in the universal scaling law predicted for the
oscillators used in this work will be discussed case by case in
Sec. III.

D. Multiple critical velocities in the superfluid

Here, we comment briefly on the transition to turbulent
drag regime observed in the superfluid at very low tempera-
tures corresponding to the ballistic regime. In oscillatory flows
under these conditions, a number of experimental studies us-
ing vibrating wires [41], grids [26,27], or tuning forks [31,51]
reported observation of more than one critical velocity of
hydrodynamic origin. Recently, we have presented convincing
evidence for three distinct hydrodynamic critical velocities
and proposed an explanation linking all the observations of
oscillatory flow in zero-temperature limit into a single frame-
work [33].

The first critical velocity, connected mostly to frequency
shifts rather than changes in the drag force, is associated with
the formation of a number of quantized vortex loops near the
surface of the oscillator, possibly forming a thin layer, which
affects the coupling to the fluid and thus the hydrodynamic
added mass. This first critical velocity is hardly observable in
the two-fluid regime above 1 K. The second critical velocity
is related to the quantized vorticity propagating into the bulk
of the superfluid, either in the form of emitted vortex loops
or, eventually, as a turbulent tangle. It is always accompanied
by a marked increase in the drag force and usually hysteresis
(detectable with amplitude sweeps). We would like to stress
that it is this critical velocity which we will be discussing later
in relation to the experiments performed in the hydrodynamic
regime above 1 K.

For completeness, there is a third critical velocity of hy-
drodynamic origin, likely associated with the development of
larger vortical structures from bundles of polarized quantized
vortices. We note that at finite temperature, such polarized
vortex bundles or rings have been studied numerically [52,53].
The mentioned critical velocity (typically above 1 ms−1)
might not be relevant in the two-fluid regime at all, as classical
features would likely develop in the vortex tangle due to
mutual friction even before this mechanism can take effect.

054511-4



DYNAMICAL SIMILARITY AND INSTABILITIES IN … PHYSICAL REVIEW B 99, 054511 (2019)

E. Additional dissipation mechanisms

In addition to viscous damping, losses due to sound emis-
sion through the surrounding fluid may occur, and may be
accounted for approximately [54]. In this work, acoustic
losses can be safely neglected for the fundamental mode of
both tuning forks used and represent perhaps a very small
contribution to the damping the first overtone of the custom-
made fork [55]. Based on our previous studies of acoustic
emission by oscillating objects in He II [54,55], acoustic
losses are negligible for all other oscillators used in this work.
In our experiments, no sign of cavitation and associated losses
was detected.

We also note that the above description of viscous dissi-
pation is approximate in the sense that it neglects the steady
streaming flow that is known to exist in the vicinity of the
oscillating objects and has been recently visualized in He II
in highly turbulent flow due to vibrating quartz turning fork
[38]. However, the streaming flow has negligible effect on the
drag forces measured in laminar viscous flow, as the typical
length scale associated with streaming is of order of the size
of the oscillator, while the boundary-layer thickness is at least
an order of magnitude lower in our experiments. Of course, in
turbulent flows, the pressure drag is significantly larger than
both the viscous friction and any additional drag due to the
streaming.

III. EXPERIMENTAL DETAILS

Most of the resonators used in our investigation, the wire,
the tuning forks, and the double paddle, were driven by an
Agilent A33220 signal generator, and a phase-sensitive Stan-
ford Research SR830 lock-in amplifier was used to measure
both the in-phase and out-of-phase components of the induced
signals.

The measurements presented here were performed in
Prague, mostly in a helium immersion cryostat during a
dedicated experimental run for each resonator. The helium
bath is brought down to the desired temperature using a rotary
pump and a Roots pump and stabilized on the level of few
mK either by manually adjusting the pumping speed or using
a temperature controller. The lowest attainable temperature of
1.27 K allows access to most of the hydrodynamic (two-fluid)
regime.

A. Quartz tuning forks

Quartz tuning forks are piezoelectric oscillators with a cal-
ibrated resonant frequency, often used as frequency standards
or shear force sensors for scanning optical microscopes [56].
Tuning forks are well-established probes of cryogenic helium
flow [30].

The fork is driven by applying an ac voltage V from a
function generator to the metallic electrodes deposited on the
surface of the quartz. This produces a force proportional to
the voltage which sets the two prongs oscillating in antiphase.
The distortion of the quartz induces a piezoelectric current I
which is proportional to velocity U . The relations between
force, velocity, voltage, and current are

F = afV

2
I = afU, (11)

40 µm

2 mm

3.50 mm

90 µm
75 µm

90 µm

7.0

3.07.5

10.0

19.5

3.0

19.0

(a) (b)

(c)

FIG. 2. Schematic diagrams of the vibrating wire resonator (a),
of the quartz tuning fork (b), and the double paddle (c). The dimen-
sions of the double paddle are in millimeters. The wafer thickness is
75 μm for the tuning fork and 250 μm for the double paddle.

where af is the so-called fork constant, which may be ob-
tained through calibration by deflection measurement or self-
calibration in vacuum, in which case it is given as af =√

4πmeff�I/V , where meff is the effective mass of the fork,
and � is the measured resonant width [30] at half-height of
the (Lorentzian) peak. The effective mass [55] of the tuning
fork in vacuum is given by meff = ξm = TfWfLfρf/4, where
ρf is the density of the fork material (in our case quartz,
ρf = 2650 kgm−3), and the dimensions Tf , Wf , Lf stand for
the tine thickness (in the direction of motion), width, and
length, respectively. The ac current is measured using an IV
converter [57] and a SR-830 lock-in amplifier. The standard
measurement scheme used here can be found, e.g., in Fig. 1
of Ref. [33].

We have used two different forks in this work. The first is
a commercially produced fork of the following dimensions:
Lf1 = 2.17 mm, Tf1 = 210 μm, Wf1 = 100 μm, and the gap
between the prongs is Df1 = 120 μm. Its surface roughness
is ≈5 μm. The second is a custom-made fork with Lf2 =
3.50 mm, Tf2 = 90 μm, Wf2 = 75 μm (original wafer thick-
ness), and Df2 = 90 μm, with roughness ≈1 μm. A sketch
of the fork geometry including the dimensions is shown in
Fig. 2. The commercial fork resonates at 32 kHz, while with
the custom-made fork, we use two different flexural resonant
modes: the fundamental resonance at 6.5 kHz and the first
overtone at 40.0 kHz.

To describe the drag force acting on tuning forks in lam-
inar flow, unfortunately, no analytical solutions of NSE can
be obtained. However, significant effort has been invested
into studying the dynamical response of rectangular beams
immersed in viscous fluids [58,59], resorting to numerical
integration to obtain the hydrodynamic response function for
rectangular beams of arbitrary aspect ratio. These calculations
may thus be applicable to tuning forks. Although we consider
� as a parameter to be determined experimentally for each
oscillator due to surface roughness effects, we may use the
results of Ref. [59] to obtain the approximate dependence
Cn

D � 4.67/Dn for the custom-made fork (see Appendix A).
For the commercial fork, Cn

D � 5.55/Dn is obtained in a
similar fashion, if its surface roughness is ignored.
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B. Vibrating wire resonator

Vibrating wire resonators are well-established low-
temperature probes [60]. They consist of a semicircular loop
of wire subjected to a vertical magnetic field B, as shown in
Fig. 2. A loop is used to prevent closely spaced or degenerate
modes one may observe on a straight wire.

Traditionally, the vibrating wire is described in the follow-
ing way. Passing an alternating current I (ω) through the wire
forces it to oscillate due to the Lorentz force FL = BDI . As the
wire moves through the magnetic field, it induces a voltage
which can be determined using Faraday’s law. For a rigid
semicircular wire with leg spacing D, oscillating at a peak
velocity Up, the area bounded by the loop is A = πD2/8 and
the rate of change of angle to the field is 2Up/D. Therefore, the
induced Faraday voltage generated by a semicircular vibrating
wire loop is traditionally given by

V = −d (B · A)

dt
� π

4
BDUp. (12)

Here, we argue that the traditional model does not describe
the behavior at resonance correctly, in the sense that the
energy dissipation at resonance is not equivalent in terms of
electrical quantities Ėel = 1/2V I and within the 1D mechani-
cal model Ėmech = 1/2 FUp, as they differ by a factor of π/4.
This due to the fact that one cannot take the total Lorentz
force FL as the driving force of the resonant mode of the
wire, but a projection of this force on the mode shape must
be considered. The remaining Lorentz force is driving other
resonant modes, as determined by its distribution along the
length of the wire, but it does not dissipate any energy, as it
is frequency mismatched with respect to those modes (in an
off-resonance condition).

A correct definition of the model force may be obtained
directly from energy dissipation, as has been done for tuning
forks [30]. We use this approach in our proposed model
that describes the vibrating wire as a doubly clamped beam.
Neglecting for a moment the curvature of the wire (a valid ap-
proximation if the wire radius is much smaller than the radius
of the loop), the resonant mode shapes may be obtained by
solving the Euler-Bernoulli equation. Using the appropriate
boundary conditions, one obtains in terms of local velocities

uL(x) ∝
{

sinh(bnx) − sin(bnx)

− [cosh(bnx) − cos(bnx)][sinh(bnL) − sin(bnL)]

cosh(bnL) − cos(bnL)

}

(13)

for x ∈ [0, L], where L is the length of the semicircular loop,
and bn = (μω2

n/EI )1/4, with μ representing the mass per unit
length, ωn the angular frequency of the nth mode, E the
Young’s modulus, and I the second moment of area of the wire
cross section. The resonance frequencies are determined from
the equation cosh(bnL)cos(bnL) = 1, which has to be solved
numerically.

The mode shapes can then be integrated to obtain a mode-
dependent effective mass. For n = 1, we get meff ≈ 0.396m.
Now taking into account the curvature of the wire to find
the changing projected area of the loop on the direction of

B using the obtained mode shape, Eq. (12) will be replaced by
V ≈ 0.690BDUp and the driving force will be given by F ≈
0.690BDI . This is the correct projection of the Lorentz force
FL(x) = BI sin(πx/L) on the mode shape of the fundamental
resonance, as can be verified by direct integration.

To obtain the drag force in laminar flow, we again neglect
the curvature of the loop, approximating each segment along
the length of the wire as a smooth cylinder oscillating with a
local velocity amplitude uL(x). The drag force per unit length
acting on such a cylinder is given, e.g., in Ref. [47]. Following
the procedure outlined in Sec. II C, for the fundamental mode,
the drag coefficient is given as Cn

D = 4πξ/Dn ≈ 4.98/Dn.
The vibrating wire resonator used in this study consists of

a semicircular loop of superconducting NbTi wire with a leg
spacing of D = 2 mm and a diameter of 2R = 40 μm. The
wire was mounted in a brass cell submerged in the bulk super-
fluid and mounted between a pair of NdFeB permanent mag-
nets in a magnetic field of (170 ± 10) mT at room temperature.
We estimate that the field is reduced by approximately 23% at
low temperatures [61] due to spin reorientation occurring in
NdFeB at 135 K. Given the uncertainty of the magnetic field,
we have used Eq. (10) to obtain a self-calibration of the force
driving the vibrating wire.

C. Double paddle

Recent studies [36,37] have shown that double-paddle
oscillators (DPOs) may serve as promising probes to study
superfluid hydrodynamics. They have demonstrated high-
quality factors in vacuum compared to other mechanical
resonators since any vibrational losses through their base are
heavily suppressed.

Here, we reanalyze the results obtained with the silicon
DPO etched from a 0.25-mm-thick 〈110〉 wafer used by
Zemma and Luzuriaga [36], sketched in Fig. 2. The two
larger wings are approximately 10 mm × 7.5 mm and the
smaller upper paddle is 7 mm × 3 mm. The DPO was driven
magnetically by attaching a small magnet located between the
wings in the oscillator stem; its displacement was detected
capacitively. In order to generate the oscillatory motion, an
ac current was applied to a small superconducting coil fixed
to the support frame.

The complex geometry of the DPO precludes any analyti-
cal solutions of NSE, and we are not aware of any numerical
studies detailing the laminar drag experienced by a submerged
DPO.

D. Torsionally oscillating disk

The torsional oscillator consists of a 0.05-mm tungsten
wire, 32 cm long, with a borosilicate glass disk fixed to the
wire at its midpoint using a thin 0.8-mm brass capillary and
Stycast 2850 GT. The disk is 1 mm thick with a diameter of
40 mm; a schematic diagram is shown in Fig. 3. When the wire
is under tension, the disk is positioned approximately midway
between the two copper-coated, polished FR-2 plates placed
10 mm apart (both disk sides are approximately 4.5 mm
away from the FR-2 plate facing them). The deflection and
angular velocity of the disk are determined from recorded
video sequences as detailed in Appendix B.
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FIG. 3. Schematic diagram of the torsionally oscillating disk.

To facilitate comparison with other oscillators, we define
a drag coefficient for a thin disk torsionally oscillating in a
viscous fluid of density ρn as

Cn
D = 2MF

Aρn�
2
0R3

, (14)

where MF is the moment of friction forces, R is the disk’s
radius, A = πR2 is the surface area of one side of the disk, �0

is the amplitude of the angular velocity, and ω is the angular
frequency of oscillation. For a rationale of this definition,
and for the derivation of the Donnelly number dependence,
we refer the reader to Appendix C. In laminar flow, the drag
coefficient due to the normal component can be expressed in
terms of the Donnelly number as Cn

D = 2/Dn.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section we present our drag force measurements
using the resonators introduced above and compare the results
against the proposed universal scaling law.

A. Tuning forks

The custom-made tuning forks used in our measurements
are fully described and characterized in Ref. [33]. By per-
forming frequency sweeps in vacuum at low temperature, the
experimental fork constant is estimated to be af = 3.665 ×
10−7 C/m and ao

f = 1.409 × 10−6 C/m for the fundamental
mode and first overtone, respectively. We estimate that the
fork constant has an uncertainty of 10% since it was shown
that the optically measured prong velocity can be 10% lower
[62] than that determined from the electromechanical model
described in Sec. III A. The details of the commercial fork are
given in Ref. [50], where it is labeled “L2.”

Figure 4 shows typical results for the drag offered by He II
to driven oscillations of the quartz tuning fork and compares
them to the numerical results of Ref. [59]. In the left of Fig. 4,
we plot the classical drag coefficient as a function of the
peak velocity at various temperatures. As expected, the tuning
forks exhibit linear damping at low velocities at all tempera-
tures. Upon increasing the velocity, the drag coefficient tends
to a temperature-independent constant value of order unity
(CD ≈ 0.6) as one would expect for fully coupled normal
and superfluid components. The flow due to the fork then

behaves as a single classical-like fluid in the turbulent drag
regime. On decreasing temperature, the drag coefficient drops
appreciably over the range of low and intermediate velocities
as the density of the normal fluid component decreases. This
is in agreement with previous analysis [50].

To characterize the flow of the normal component, we plot
the normal fluid drag coefficient as a function of the Donnelly
number in the right of Fig. 4. At low Donnelly numbers, the
data collapse to a single dependence for each fork, before de-
viating at some critical value. Note that despite the difference
in the velocity profile and the viscous penetration depth, the
same prefactor � in Eq. (6) is obtained for the two resonant
modes of the custom-made fork, supporting the validity of
the derived scaling law. This is due to the fact that both
modes have the same flow enhancement factor α determined
by the rectangular cross section of the prong and practically
the same effective mass meff = ξm + mHD with ξ = 1

4 (see
Appendix A of Ref. [55]). Furthermore, the obtained prefactor
� agrees almost perfectly (≈2% deviation) with Ref. [59] (see
calculation in Appendix A). Careful inspection also reveals
differences in the onset of nonlinear drag for the lowest two
temperatures (this will be further analyzed in Sec. IV E). The
commercial fork shows the same universal scaling, but the
obtained prefactor is 1.4× higher than the numerical result.
This is likely due to surface roughness effects. Comparison
to oscillations in classical liquid helium and helium gas is
shown on the commercial fork data, where Dn ≡ Reδ is
used, highlighting the same form of the scaling law in both
classical and quantum fluids. As the commercial tuning fork
is hydrodynamically rough, a unique dependence Cn

D(Dn) is
expected in classical fluids as well as wherever the superfluid
component does not contribute to the drag force appreciably.
This is illustrated in the lower right panel of Fig. 4, as the data
obtained in He I, He gas, and at T = 2.16 K agree quite well
over the entire range of Dn. Departures from this dependence
mark drag forces originating from the superfluid component,
or arising in either component due to their coupling by mutual
friction.

B. Vibrating wire resonator

The resonant response of the vibrating wire resonator is
obtained by measuring the voltage in phase with the driving
current, as a function of frequency. In accord with previ-
ous works [41,42,60], for small drive levels, the frequency
response is of Lorentzian form. Upon increasing the drive
level, the Lorentzian shape becomes distorted and the resonant
frequency decreases. The flattening of the peak indicates
the onset of nonlinear drag forces typically associated with
turbulent instabilities in the generated oscillatory flow.

The classical drag coefficient as a function of velocity for
the vibrating wire is plotted in the left of Fig. 5. In order to
collapse the contribution of the normal fluid component to
the drag forces acting on the wire to a single dependence,
we again plot the drag coefficient for the normal component
as a function of the Donnelly number [see Eq. (6)] in the
right of Fig. 5. Universal scaling with the Donnelly number
is observed for the wire, up to critical value, which is now,
however, temperature dependent, in striking difference with
the custom-made tuning fork. We also note that the prefactor
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FIG. 4. Left: drag coefficient as function of velocity for the quartz tuning forks. Right: the corresponding normal fluid drag coefficient as a
function of the Donnelly number. Note that (i) the same prefactor for the laminar scaling is displayed for the fundamental mode and overtone
of the custom-made tuning fork, in near perfect agreement with the calculation described in the text and that (ii) for commercial fork, the same
scaling is observed in classical (He I, He gas) and quantum (He II) fluids. A slight disagreement in the prefactor with respect to the numerical
calculations is observed: the experimental data can be recovered by applying a multiplicative factor of 1.4, which we associate with the surface
roughness of the commercial fork.

for the laminar drag is by 10% to 15% smaller than calculated.
This is most likely due to the uncertainty in the wire radius and
hence in its effective mass, which enters Eq. (10) that was used
to obtain the driving force from resonant properties. While the
2-mm wire loop was located in a cylindrical cavity of diameter
4 mm, we do not expect a significant effect of the container

walls on the measured drag, as the viscous penetration depth
δn is of order 1 μm.

C. Double paddle

We now apply the same analysis to results obtained using a
silicon DPO by Zemma and Luzuriaga [36]. Specifically, we

FIG. 5. Drag coefficients as functions of the peak velocity or Donnelly number obtained for the vibrating wire.
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FIG. 6. Normal fluid drag coefficient as a function of the Don-
nelly number calculated for the silicon double paddle of Zemma and
Luzuriaga [36].

analyze the symmetric torsion mode data [35]. In vacuum at
≈4.2 K, the resonant frequency of the paddle is 520 Hz, in
liquid helium at 4.2 K it is 358 Hz. The viscous penetration
depth is ≈3 μm. Since the lateral characteristic length scale
of the paddle is D � 7 mm, and the thickness is 250 μm, the
paddle is operating in the high-Stokes-number limit, justifying
our analysis.

In Fig. 6, we present the normal fluid drag coefficient
plotted against the Donnelly number. The viscous drag force
again collapses to a single dependence within an uncertainty
of ±15%, demonstrating that the paddle is indeed in the high-
Stokes-number limit. The drag force offered by the normal
fluid is again described by the same universal scaling law,
even for an oscillator of significantly different shape than
a wire or tuning fork, in this case following approximately
Cn

d = 4.55/Dn. To the best of our knowledge, no theoretical
or computational works exist that would allow a quantitative
comparison of the prefactor.

D. Torsionally oscillating disk

The torsionally oscillating disk differs from the previous
oscillators in three fundamental ways. First, as the disk oscil-
lates around its axis, it does not displace any fluid, hence, there
is no potential flow outside the boundary layer. Second, in this
case we are not able to perform measurements in a steady
state and we have to deal with slowly decaying oscillations
of the disk and of the flow due to its motion. Third, we
cannot directly measure the drag force and have to infer the
damping from the decaying amplitude of oscillation. Despite
these important differences, we seek to analyze the flow in a
manner similar to the above oscillators.

First, we have established that the intrinsic damping of the
disk is negligible compared to that due to the surrounding
helium. This was done by measurements in vacuum at room
temperature and 78 K, and already at 78 K the intrinsic
damping was far below any measured in superfluid helium.
We note, however, that the entire tungsten filament had to be
submerged in helium in order to ensure that its temperature is
sufficiently low, as it was connected to the driving mechanism
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FIG. 7. Typical measurement of angular displacement of the
torsionally oscillating disk in He II as a function of time. (Top) The
signal extrema were evaluated to obtain the angular displacement
amplitude φ0. The logarithmic plot (bottom) clearly shows two
distinct regions: exponential (viscous) decay due to laminar flow of
the normal component for t � 500 s and a faster nonlinear decay
at earlier times, related to turbulent drag. The position of the disk
oscillating with a period of T � 3.17 s is sampled at 240 Hz (see
Appendix B). The turbulent decay is typically observed on timescales
of order 100 s, whereas decays of coflow or counterflow turbulence
in He II typically in a few seconds.

at the top flange by a thin-walled stainless steel tube with no
special regards for thermal isolation.

As the moment of frictional forces MF cannot be ob-
tained directly from the experiment, we have to infer the
drag coefficient from other measurable quantities, such as
the extremal displacements of the disk during its damped
oscillations as shown in Fig. 7. If the series of extremal
angular displacements occurring at times tn is labeled ϕn

(interleaving maxima and minima in chronological order), the
logarithmic decrements of the amplitude of oscillation αn are
determined as αn = ln(ϕn−1) − ln(ϕn+1) and the immediate
angular frequency of oscillation is ωn = 2π/(tn+1 − tn−1).
This leads to an alternative definition of the drag coefficient:

Cn
D = 2Iα

πAρnR3ϕ0
� ρdhdα

πρnRϕ0
, (15)

where ϕ0 denotes the immediate angular displacement am-
plitude, and I = I0 + IHD stands for the effective moment of
inertia consisting of the moment of inertia of the disk itself
I0, and of its hydrodynamic enhancement IHD. If IHD � I0,
the simplified expression on the right-hand side of Eq. (15)
holds, where ρd is the density of the disk material and hd the
height (thickness) of the disk. The derivation can be found in
Appendix C.

We plot the drag coefficient Cn
D measured at various tem-

peratures against the Donnelly number Dn = ρnδnRωϕ0/η in
Fig. 8. At small values of Dn, the data collapse to a single
dependence illustrating the universal behavior. As the disk
is hydrodynamically smooth, we do not expect the turbulent
instability to occur at a well-defined critical value of Dn,
but we may still be able to distinguish between a classical
instability in the normal component and the onset of superfluid
turbulence by considering the dependence of the nonlinear
drag on the densities ρn and ρs.
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FIG. 8. Normal fluid drag coefficient as a function of the Don-
nelly number for the torsionally oscillating disk at the various
indicated temperatures. The dashed blue line is the predicted depen-
dence for viscous drag Cn

D = 2/Dn. Prior to the calculation of Cn
D,

the logarithmic decrements αn have been smoothed by a 50-point
weighted adjacent averaging filter and checked against the original
data, showing minimal deviation.

E. Analysis of instabilities

While the drag coefficients shown in the previous sections
contain, in principle, all necessary information about the flow
properties, it is useful to examine the transition to nonlinear
drag in more detail. In particular, we are interested in de-
termining which type of instability occurs upon increasing
oscillation amplitude first: a classical instability of the normal
component or the multiplication of remnant quantized vortices
in the superfluid component?

To tackle this issue, we need to analyze the first departures
from laminar drag, hence, we withdraw from the measured
drag force the part that is linear with velocity, keeping
only the nonlinear contribution. Such a quantity needs to be
normalized and plotted against parameters relevant to either
component in order to deduce the nature of the first detected
instability. It seems particularly advantageous to use the quan-
tity 1 − �/(Cn

DDn) in a plot against Dn to describe the action
of the normal component and, analogically, 1 − φ/(Cs

DÛ)
against Û for the superfluid component [see Eq. (7)]. These
definitions guarantee that the result is always close to zero in
laminar flow, and approaches one as the nonlinear drag starts

FIG. 9. Turbulent instability analysis for both tuning forks and the vibrating wire resonator. Left: nonlinear drag normalized using
normal component properties versus Donnelly number. Right: nonlinear drag normalized using superfluid component properties versus
nondimensional velocity Û . We note that the quantities on the ordinate axes are equivalent, as both represent the ratio of the nonlinear drag to
the total drag experienced by the oscillator.
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FIG. 10. Turbulent instability analysis for the double paddle and the disk. Left: nonlinear drag normalized using normal component
properties versus the Donnelly number or Keulegan-Carpenter number, as applicable. Right: nonlinear drag normalized using superfluid
component properties versus nondimensional velocity Û .

to dominate. For the oscillating disk, KC is used instead of Dn,
in agreement with the theory in Sec. II B.

Such plots are shown in Fig. 9 for the two tuning forks and
the vibrating wire resonator, with each oscillator displaying
different behavior. We consider the instability occurring at a
given departure from the linear drag, which must be above
the experimental noise level in the data acquired in laminar
flow. For the tuning forks, we use a 5% departure criterion,
for the wire, 10% seems more appropriate. To understand the
results, it is useful to consider two aspects: (i) the magnitude
and relative spread of critical values of either Dn or Û
when crossing the given threshold, (ii) the rate at which the
nonlinear drag sets in.

In the top two panels of Fig. 9, the custom-made fork shows
a notably lower spread in Dn than in Û , signifying that Dn
is likely to be the correct parameter governing the (classi-
cal) instability in a larger part of the range of temperatures
investigated. On the other hand, the vibrating wire resonator
(bottom two panels) displays a rather well-defined critical
value of Û , while showing significant spread in Dn (except for
the two highest temperatures, for which the critical values of
Dn coincide), giving evidence of a Donnelly-Glaberson type
of instability in the superfluid component. The commercial
tuning fork (middle panels) shows a clear crossover: at tem-
peratures below 2.0 K the instability is governed by Û , while
at higher temperatures it is determined by Dn. It is interesting
to note that whenever the instability is determined by Û ,
the onset of nonlinear drag is notably sharper. A crossover
between a classical and quantum instability might be present
in the other two oscillators as well, but is not as pronounced
as with the commercial tuning fork.

The presented interpretation is further supported by the
observed critical values of the governing parameters. For the
commercial fork, the critical dimensionless velocity ÛC ≈
1.2, and for the vibrating wire resonator values between
1.5 and 3 are found. However, the custom-made fork has
only Û ≈ 0.1 when the nonlinear drag sets in. Hence, the
Donnelly-Glaberson instability is very unlikely to occur, and
is preceded by the classical instability near DnC = 2.5. Fur-
thermore, the (minimum) critical value of Dn characterizing
the classical instability can be obtained from measurements in
classical fluids, such as He I or He gas, or from experiments
very close to Tλ where the drag offered from the very low
density superfluid component can be neglected. Hence, for
the commercial fork we obtain DnC ≈ 2.5 and for the wire
we get Dnm

C in ≈ 9 from the data at 2.07 and 2.17 K. The lower
value of DnC obtained for the forks is likely related to velocity
enhancement in flow past its sharp corners.

In Fig. 10 we analyze the data from the DPO and the
torsionally oscillating disk in a similar manner. For the DPO
we find a classical instability in the entire temperature range,
characterized by a critical value of the Donnelly number
DnC ≈ 0.1, with the rather low value again related to flow
enhancement. Indeed, in the symmetric torsion mode of the
DPO, the displaced fluid needs to move significantly faster
than the oscillator itself to flow from one side of the wings to
the other and back during one period of oscillation.

For the disk, the situation is more complex and fundamen-
tally different from the oscillators just discussed, for several
reasons. In analyzing the data, we need to bear in mind that
contrary to the other oscillators, the disk is hydrodynamically
smooth, and hence the instability should be governed by
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the Keulegan-Carpenter number KC. Unfortunately, KC scales
with the fluid properties in a very similar fashion to the dimen-
sionless velocity Û , making our situation complicated. The
spread of critical values of both parameters is very similar,
and the numerical critical values are in both cases acceptable.
For comparison, if the data in the bottom left panel in Fig. 10
were plotted against Dn, the critical values would show a
very large spread between 8 and 100 (see Fig. 8). However,
since the data taken at 2.16 K (where fluid properties ought to
be dominated by the normal component) differ significantly
from the all the other series, we are led to believe that except
for this highest temperature, the instability has origins in the
superfluid component.

Furthermore, since the disk is set into motion at a high
amplitude and left to oscillate, we are dealing with a decaying
turbulent flow; this has implications for our interpretation,
if hysteresis exists at the turbulent transition. Here, we em-
phasize that temporal decays of quantum turbulence usually
observed in both coflow and counterflow geometries are typ-
ically much faster than the observed timescale of the decay
of torsional oscillations. We thus believe that the intensity
of quantum turbulence is, at all times, near its steady-state
value determined by the immediate amplitude of oscillations
of the disk. Nevertheless, the observed critical values do not
signify the first instability occurring in a laminar flow as
with the other oscillators, but rather a minimum requirement,
a necessary condition for preexisting turbulence to survive,
which might generally depend on details of the turbulent flow.
Such a requirement seems to be given by 10 < ÛC < 20 for
all the investigated temperatures except for 2.16 K, where a
higher critical velocity is observed.

To the best of our knowledge, there are two possible
reasons for this behavior. First, it is likely that most of the
nonlinear drag observed at 2.16 K above ÛC ≈ 30 is in fact
due to the normal component which behaves independently
from the superfluid and undergoes its own instability at KC ≈
2, corresponding to ÛC ≈ 30. The nonlinear drag from the
superfluid component (still present) might then be below
our resolution. The second possibility is that at 2.16 K, the
significantly enhanced damping of the motion of quantized
vortices in He II is responsible for the dissipation of any
existing quantum turbulence (the dissipative part of mutual
friction force grows steeply with temperature close below the
superfluid transition [11]). This seems plausible especially in
a situation with no large-scale flow of the superfluid compo-
nent to provide a supply of energy, as in our case the superfluid
is not displaced by the motion of the torsionally oscillating
disk.

V. DISCUSSION

Let us summarize the experimental results on the two-fluid
He II flows due to several types of mechanical oscillators. In
all of them, the normal fluid flow (as well as the corresponding
flow of classical viscous normal He I) is characterized by high
Stokes number, and for low velocities it is laminar. In this
limit, the superflow is either potential or, in the case of the
oscillating disk, the superfluid component remains stationary
in the laboratory frame of reference (barring a low density
of pinned remnant vortices [63]). We therefore have two

(almost) independent velocity fields, and flows of the normal
and superfluid components can be treated independently. It is
therefore natural to treat the normal fluid as classical viscous
fluid and it is not surprising that the drag coefficient Cn

D due
to the normal fluid displays universal scaling in terms of the
Donnelly number Dn. Assuming that the flow of the superfluid
component remains potential, upon increasing the Donnelly
number the universal scaling holds and, for hydrodynamically
rough bodies, describes instabilities in the normal flow leading
to gradual transition from laminar to turbulent drag regime
in the normal fluid flow. The normal fluid flow is no longer
laminar and the overall He II flow can be characterized as
quantum turbulence in the sense of a vortical flow occurring
in a quantum fluid, despite that there are almost no quantized
vortices present.

In some of the investigated oscillatory two-fluid He II
flows, the opposite situation appears in that the critical ve-
locity associated with the Donnelly-Glaberson instability in
the superfluid component occurs first, before the instability
in the normal fluid flow develops. This situation is not new
in superfluid hydrodynamics. Indeed, in typical experiments
with rotating superfluid 3He-B the thick normal component
virtually does not move in the laboratory frame of reference
[64]. Still, below about half of the critical temperature Tc the
dissipative mutual friction coefficient falls below unity [65]
and a tangle of quantized vortices, superfluid turbulence, can
exist in the soup of a thick stationary normal fluid.

In He II experiments with oscillators described above, the
situation is different in that the quantized vorticity coexists
with the laminar boundary layer flow of the normal compo-
nent. In 4He, this situation is reported and analyzed in this
work and is best illustrated for the case of He II flow due to
the vibrating wire (see Fig. 9).

Now, as the Donnelly-Glaberson instability occurs upon
reaching a critical velocity, but the instability in the normal
fluid flow is governed upon reaching a critical Donnelly num-
ber, a crossover is possible, thanks to the steep temperature
dependence of the kinematic viscosity of the normal fluid.
In other words, in the particular example of He II flow due
to the commercial tuning fork (see again Fig. 9) at high
temperatures, close to the superfluid transition temperature
Tλ, the classical instability in the normal fluid is reached first,
while at low temperatures the situation is reversed in favor
of the Donnelly-Glaberson instability. The existence of this
crossover is, remarkably, reported here despite the immense
effort in investigating oscillatory flows in He II, especially
during the last two decades.

Either instability eventually serves as a trigger for the
other one, mediated by the mutual friction force or fluctuating
pressure forces, until in the limit of high velocities, both fluids
are tightly coupled in the vicinity of the oscillator and He II
behaves as a single-component quasiclassical fluid.

VI. CONCLUSIONS

We have performed systematic measurements of high-
Stokes-number flows of He II due to oscillatory motion of
selected oscillators: vibrating wire resonator, tuning forks,
double paddle, and torsionally oscillating disk, over a broad
temperature range where our working fluid, He II, displays
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the two-fluid behavior. We have shown that in this class of
flows the origin of any instability in the normal or superfluid
component can be determined by complex drag force analysis,
based on which one can separate the drag offered to these
oscillators by the normal and superfluid components of He II.
For low velocities, we observe universal viscous drag scaling
in terms of the suitably defined drag coefficient Cn

D and the
normal fluid boundary-layer-based Reynolds number which
we call the Donnelly number Dn.

The superfluid component does not contribute to the
drag until an instability associated with extrinsic produc-
tion of quantized vorticity occurs, governed by the dimen-
sionless velocity Û = U/

√
κω. The underlying physics in-

volves Donnelly-Glaberson instability, i.e., self-reconnections
of quantized vortices upon reaching a critical velocity. Until
then, the flow of the superfluid component is either potential
(excepting pinned remnant vortices) with the superfluid com-
ponent playing a role of a physical vacuum, renormalizing the
hydrodynamic effective mass of the oscillators, or (in the case
of the torsionally oscillating disk) the superfluid component
remains stationary in the laboratory frame of reference.

Which instability (i.e., classical hydrodynamic instabil-
ity of laminar flow of the normal component or Donnelly-
Glaberson instability in the superfluid component) occurs first
depends both on the geometry of the oscillator and temper-
ature. We observe a crossover between these instabilities,
thanks to the steep temperature dependence of the kinematic
viscosity of the normal fluid. Upon increasing oscillation am-
plitude, either instability can live on its own until eventually it
serves as a trigger for the other one, mediated by the mutual
friction force or by pressure forces. At high velocities, both
fluids are tightly coupled in the vicinity of the oscillator and
He II behaves as a single-component quasiclassical fluid.

We believe that the described approach, i.e., treating the
flows of normal and superfluid components of He II inde-
pendently, can be extended and applied to different two-
fluid He II flows, such as different types of coflows (where
the normal and superfluid components are forced together)
but perhaps also to the more general case of counterflows
(where a nonzero difference of mean velocities of normal
and superfluid components exists), in particular to special
cases known as thermal counterflow and pure superflow. One
can find known features of these flows, such as temperature
dependence of the onset of quantum turbulence at various
geometries, which provide hints that this approach will most
likely be useful, however, dedicated detailed experiments are
needed to fully resolve the long-standing puzzles of super-
fluid hydrodynamics such as the existence of experimentally
observed [66] turbulent states TI, TII, and TIII in thermal
counterflow and pure superflow. We believe that our results
will stimulate further research of the fascinating topic of
superfluid hydrodynamics and quantum turbulence.

All data used in this paper are available in Ref. [67],
including descriptions of the data sets.
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APPENDIX A: DERIVATION OF TUNING FORK DRAG
COEFFICIENT

In Ref. [59], numerical calculations are used to evaluate the
inertial and drag forces per unit length acting on uniformly
oscillating rectangular cylinders. The cylinders are assumed
infinite, with the same cross section everywhere. The drag
force amplitude per unit length is expressed in Eq. (2) of
Ref. [59] as

fldl = π

4
ρω2X 2Wcyl�(ω), (A1)

where ρ is the fluid density, ω the angular frequency of
oscillation, X a dominant length scale which corresponds to
the larger dimension of the beam cross section, Wcyl is the
displacement amplitude, and �(ω) is a complex-valued hy-
drodynamic response function. This function is then evaluated
numerically for cylinders of selected aspect ratios at selected
values of a modified Stokes number βd , where βd = ωd2/ν,
and d = X/2. The real and imaginary parts of �(ω) corre-
spond to inertial and dissipative forces, respectively; we will
thus need to evaluate only the imaginary part Im(�(ω)). The
local energy dissipation rate is given by ε̇l = flul/2, where ul

is the local velocity. Integrating the dissipation rate along the
length of a tine of a tuning fork, we obtain

Ė =
∫ L

0
ε̇ldl = π

8
ρωX 2LξU 2

p Im(�(ω)), (A2)

where ξ again describes the velocity profile along the tine
[32]. This leads to the drag force and drag coefficient:

F = π

4
ρωX 2LξUpIm(�(ω)), (A3)

CD = 2F

ρW LU 2
p

= πξωX 2Im(�(ω))
2WUp

. (A4)

To estimate the dissipation of a tuning fork of aspect
ratio Ar = T/W in the high-Stokes-number limit, we express
Im(�(ω)) as a function of the modified Stokes number βd :

lim
βd →∞

Im(�(Ar, ω)) = c(Ar )β
−1/2
d = 2c(Ar )

X

√
ν

ω
, (A5)

where c(Ar ) is a constant coefficient for a given aspect ratio
Ar that can be obtained with sufficient accuracy from the
numerical data of Ref. [59].

Substituting for Im(�(ω)) in Eq. (A4), we get

CD = πξXc(Ar )
√

νω

WUp
=

√
2πξXc(Ar )

W Reδ

, (A6)

where Reδ = Upδ/ν is the boundary-layer-based Reynolds
number (equivalent to the Donnelly number in superfluid He).
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For both forks discussed here (and indeed for most tuning
forks available), we have T > W and therefore X = T or,
equivalently, X/W = Ar (in the opposite case we would have
used X = W ). The drag coefficient expressed for the normal
component of superfluid helium then becomes Cn

D = �/Dn,
where the prefactor � = √

2πξArc(Ar ) is again determined
solely by the geometry of the tuning fork.

To evaluate c(Ar ) for the custom-made fork of aspect ratio
Ar = 1.2 and the commercial fork of aspect ratio Ar = 2.1, we
analyze the results obtained for the aspect ratios of 1.0, 2.0,
5.0 as given in Ref. [59], obtaining c(1.0) ≈ 3.78, c(2.0) ≈
2.41, and c(5.0) ≈ 1.57. This gives by linear interpolation
c(1.2) ≈ 3.51 and c(2.1) ≈ 2.38 for our tuning forks. Using
ξ = 1

4 , we finally arrive at Cn
D � 4.67/Dn for the custom-

made fork and Cn
D � 5.55/Dn for the commercial one.

APPENDIX B: DETERMINATION OF THE POSITION AND
VELOCITY OF THE TORSIONALLY OSCILLATING DISK

Sixteen black marks around the circumference of the disk
are used to determine the deflection and angular velocity
of the disk from recorded video sequences. The motion of
the disk is recorded with a Casio EX-10 digital camera.
The recordings are acquired at the frame rate of 240 fps
with a resolution of 512 × 384 pixels. A large optical lens
is placed between the camera and the cryostat to improve
the spatial resolution. Our raw data are in the form of video
recordings of the motion of the disk during the experiments.
Because the marks on the disk have rather low contrast to the
not-entirely-uniform background, standard motion tracking
software could not be used to process the videos. Hence, fairly
complex postprocessing is required to extract quantitative and
interpretable data.

The videos are split into individual frames and de-
interlaced. The color images are converted to monochromatic
bitmaps by dynamic contrast algorithms implemented in NI

VISION software, so that the marks appear as black spots on
a white background. These monochromatic bitmaps are then
analyzed by a custom-made LABVIEW program. In the first
pass, the program localizes the black areas in each image and
evaluates their size and center of mass. In the second pass,
using only numerical data from the first pass, it then links
corresponding images of the same dot between all frames
to each other (making special arrangements for those not
reproduced in some of the bitmaps) and calculates the angular
displacement of the disk in each instant. The program uses
a self-calibration obtained from a complete revolution of the
disk around its axis. The optical distortion from the lenses and
the curved walls of the glass cryostat are negligible, as only
a 10-mm central portion of the field of view is used in the
processing.

APPENDIX C: HYDRODYNAMIC DESCRIPTION OF THE
TORSIONALLY OSCILLATING DISK

Here, we derive the equation of motion of the torsionally
oscillating disk and the relevant hydrodynamic quantities. The
motion of the harmonic torsional oscillator is given by the

equation

I0ϕ̈ + κfϕ = MF, (C1)

where ϕ is the angular displacement, I0 is the moment of
inertia of the disk, κf is the moment of torsion of the fiber,
and MF represents the moment of drag forces due to the
surrounding fluid.

In laminar flow, with some simplification, the moment of
the frictional forces can be calculated on the basis of the
analytical solution of the Navier-Stokes equations. First, we
assume that the velocity profile u(r, t ) locally corresponds
to the rotation of the rigid body modulated with the dis-
tance from the disk, u(r, t ) = �(z, t ) × r, where �(z, t ) =
(0, 0,�(z, t )), in which �(z, t ) is the instantaneous angular
velocity of the fluid at the distance z from the disk surface.
Furthermore, we assume that the radius of the disk R is
significantly greater than its thickness hd and all other relevant
dimensions. The Navier-Stokes equation is then expressed in
the form

∂�(z, t )

∂t
= ν

∂2�(z, t )

∂z2
, (C2)

where ν is the kinematic viscosity. Assuming that any tempo-
ral changes of the amplitude of oscillation are much slower
than one period of oscillation, the solution of this equation
meeting the boundary conditions on the surface of the disk
(z = 0) and at infinity can be expressed in the form

�(z, t ) = �0e−z/δei(ωt−z/δ), (C3)

where �0 is the instantaneous amplitude of the disk’s angular
velocity and δ = √

2ν/ω is the viscous penetration depth.
The total torque acting on the disk will be determined by
integration of drag forces over both surfaces of the disk,
neglecting the friction along its edge. The magnitude of
the local viscous drag force fL (per unit area) is given by
fL(r, t ) = η ∂u(z, t )/∂z, where η is the fluid dynamic viscos-
ity. The magnitude of the local contribution to the torque of
the viscous forces is then given as ML(r, t ) = r fL(r, t ). The
total moment of frictional forces is given as

MF(t ) = 2
∫ R

0

∫ 2π

0
ML(r, t )r dθ dr

= −πη
1 + i

δ
�0R4eiωt

= π√
2

(1 − i)
√

ηωρ ωR4ϕ0eiωt , (C4)

where �0eiωt = iωϕ0eiωt was used, with ϕ0 representing the
instantaneous amplitude of angular displacement.

The moment of the friction forces is therefore phase shifted
with respect to the angular velocity of the disk by π/4. By
defining a hydrodynamically induced moment of inertia IHD =
πR4√ηρ/2ω and the coefficient � = πR4√ηρω/2, we can
rewrite the moment of the frictional forces as

MF(t ) = −�ϕ̇(t ) − IHDϕ̈(t ), (C5)

where the two terms on the right-hand side correspond to
dissipative and inertial torques, respectively.
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The energy dissipated by the viscous forces can be ob-
tained as

Ė (t ) = −2
∫ R

0

∫ 2π

0
Re(Mv(r, t ))Re(�t )r dθ dr

= −πη�2
0R4

δ
[sin(ωt ) cos(ωt ) − cos2(ωt )]. (C6)

Averaging over one period, we get

〈Ė〉 = π

2

η�2
0R4

δ
. (C7)

Using the fact that the total energy stored in the motion
of the disk is E = I0�

2
0/2, and its moment of inertia is given

by I0 = mR2/2 (neglecting hydrodynamic contributions), we
may define a fluidic quality factor

1

Qf
= 〈Ė〉

ωE
= A

md

√
ηρω

2
, (C8)

where A = πR2 is the area of one side of the disk, and md is
the disk’s mass.

To define the drag coefficient, we follow the definition
used in classical steady flow: the force F acting on a body
in steady flow is given by F = 1

2 CDA′ρU 2, where CD is the
dimensionless drag coefficient, A′ is the cross section of the
body perpendicular to the direction of motion, ρ is the density
of the fluid, and U is the (homogeneous) velocity of the fluid.
In analogy, it is possible to define the drag coefficient for the
torsionally oscillating disk from

MFD

R
= 1

2
CDAρ�2

0R2, (C9)

where MFD = ��0 is the dissipative part of the moment of
frictional forces and we again use A = πR2.

Finally, to define the dimensionless Donnelly number, we
use the peak velocity at the circumference of the disk U =

R�0, yielding

Dn = R�0ρnδn

η
. (C10)

Comparing with Eq. (C9), we arrive at Cn
D = 2/Dn, where the

normal component drag coefficient Cn
D differs from CD only

by replacing the density ρ with ρn.
Substituting (C5) into the dynamic equation (C1) and

dividing by the total moment of inertia I = I0 + IHD,
we get

ϕ̈ + 2γ ϕ̇ + ω2
0ϕ = 0, (C11)

where γ = �/2I is the damping coefficient and ω2
0 = κf/I is

the square of the intrinsic angular frequency of the undamped
resonator. Thus, we have a standard equation of the damped
harmonic oscillator, which is satisfied by the solution

ϕ(t ) = ϕ0e−γ t eiωt , (C12)

where the angular frequency ω is related to the frequency of a
hypothetical undamped oscillator by ω2 = ω2

0 − γ 2.
After processing the recorded videos of the disk motion,

we obtain data in the form of ϕ(t ). From this, we determine the
extrema ϕ0,i and the logarithmic decrements αi = ln(ϕ0,i−1) −
ln(ϕ0,i+1), which are related to the damping coefficient γ

in Eq. (C11) by γi = αiω/(2π ). The dissipative part of the
moment of friction forces, the first term on the right-hand
side of Eq. (C5), is then MFD,i = 2Iωγiϕ0,i. The drag coef-
ficient obtained from each experimental point may then be
expressed as

CD,i = 2Iαi

πAρR3ϕ0,i
. (C13)

If the hydrodynamic contribution to the moment of inertia
is negligible, we may put I � I0 = mR2/2, where the mass
of the disk can be expressed as m = Ahdρd, where hd is the
disk height and ρd its density. The drag coefficient can then be
further simplified to

CD,i = 1

π

ρdhdαi

ρRϕ0,i
, (C14)

which no longer requires the precise knowledge of I or I0.
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