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Corrections to Higgs mode masses in superfluid 3He from acoustic spectroscopy
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Superfluid 3He has a rich spectrum of collective modes with both massive and massless excitations. The
masses of these modes can be precisely measured using acoustic spectroscopy and fit to theoretical models.
Prior comparisons of the experimental results with theory did not include strong-coupling effects beyond the
weak-coupling-plus BCS model, so-called nontrivial strong-coupling corrections. In this paper we utilize recent
strong-coupling calculations to determine the Higgs masses and find consistency between experiments that relate
them to a subdominant f -wave pairing strength.
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I. INTRODUCTION

Collective modes are integral to the understanding of
many-body physics because they reflect the broken symme-
tries for condensed phases and encode the dynamical response
of a system to external forces. The dynamics of excitations in
superfluid 3He depend upon whether or not an energy gap ex-
ists in their corresponding energy-momentum relation, which
is analogous to the mass of elementary particles [1]. In a 1985
paper, Nambu observed that the masses of bosonic collective
modes of superfluid 3He-B, including the analog of the Higgs
boson, are related to the mass of the fermionic excitations
through a sum rule [2]. Further, he speculated on the possi-
bility that there is a hidden supersymmetry associated with the
class of field theories of the Bardeen-Cooper-Schrieffer (BCS)
type, including superfluid 3He. Following the discovery of the
Higgs boson, there has been renewed interest in the Nambu
sum rule and its connection to 3He-B [3], including a recent
report showing that the Nambu sum rule is not exact [4]. The
sum rule is violated due to mass renormalization from the
polarization of the underlying fermionic vacuum as well as
strong-coupling corrections to the BCS theory [4,5].

Higgs modes have been studied in several other systems
including superconductors NbSe2 using Raman scattering
[6,7] and Nb1−xTixN with THz excitation [8]. The results
reported here are based upon acoustic spectroscopy of two
Higgs modes in superfluid 3He-B [9–12]. We analyze these
measurements using the theoretical calculations of the mass
corrections reported in Ref. [4] to determine the fundamental
interactions of the system.

Superfluidity in 3He arises when the quasiparticles of the
normal Fermi liquid condense into a p-wave, spin-triplet
superfluid (L = S = 1) that can be understood from the BCS
pairing theory for superconductivity [13]. The superfluid state
breaks not only the U(1) symmetry of the normal liquid but
also reduces the separate orbital and spin rotation symmetries
to a combined SO(3)L+S residual symmetry in the B phase.
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This complex pattern of symmetry breaking gives rise to 18
collective modes that are labeled by two quantum numbers
[14]: the total angular momentum J (= 0, 1, 2), and the
particle-hole conjugation parity c (+,−) [4,15]. Four of these
modes are massless, Nambu-Goldstone bosons while 14 have
a gap in their energy dispersion, corresponding to the Higgs
masses [4,16].

The bare masses were calculated in the weak-coupling
BCS theory by several authors [3,17–20]. For the gapped
modes, the masses have the form

MJc = ac
J (T, P)�(T, P), (1)

where � is the Bogoliubov fermion mass (the energy gap
of the superfluid) and ac

J is a pressure- and temperature-
dependent numerical coefficient [4]. Of particular interest
are the real and imaginary squashing modes with quantum
numbers and bare masses, respectively,

Jc = 2+, M2+ =
√

8

5
�, (2)

Jc = 2−, M2− =
√

12

5
�. (3)

The observed masses, however, have coefficients renormal-
ized from these bare values due to several effects including
Fermi-liquid interactions and higher-order pairing interactions
[5]. While the dominant pairing channel that gives rise to
superfluidity in 3He is p wave, a subdominant, attractive
f -wave (L = 3) interaction is predicted by ferromagnetic,
spin-fluctuation mediated pairing [21] with the interaction
strength denoted by x−1

3 , where x3 = ln Tc3/Tc and Tc3 would
be the superfluid transition temperature from f -wave pair-
ing in the absence of p-wave pairing [22]. Nonzero val-
ues for x−1

3 and the Fermi-liquid interaction parameters F s
2

and F a
2 (respectively, spin-symmetric and spin-antisymmetric

Landau parameters) would lead to observable shifts in the
mode masses. Prior comparisons between the observed and
the theoretical values of the mode masses have allowed for
these two effects as well as for strong-coupling corrections
to the energy gap [23] which incorporate physics beyond the
weak-coupling BCS theory [12,15,24].
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However, there are also strong-coupling corrections to
the coefficients ac

J , referred to as nontrivial strong-coupling
corrections. The existence of these corrections has been noted
in the literature [5,27] but a complete, dynamical theory
of all Fermi-liquid, f -wave, and strong-coupling effects has
not yet been achieved. Koch and Wölfle noted [27] that
these nontrivial corrections to ac

J can be estimated using
the strong-coupling corrections to the β parameters of the
Ginzburg-Landau (GL) functional. The five β parameters βi

are the coefficients of the fourth-order invariants of the order
parameter [4,28]. The addition of strong-coupling corrections
to βi and therefore ac

J is made possible by recent advances in
determining the strong-coupling interactions and their temper-
ature dependence [29,30].

Here, we apply a simple procedure along these lines that
incorporates mass renormalization due to Fermi-liquid, f -
wave, and strong-coupling effects to both � and ac

J . In terms
of β parameters, ac

J is given by [4]

a+
2 = 2

(
1
3 (β3 + β4 + β5)

βB

)1/2

, (4)

a−
2 = 2

(−β1

βB

)1/2

, (5)

with βB = β1 + β2 + 1
3 (β3 + β4 + β5). In the weak-coupling

limit, the β parameters satisfy the relation

−2β1 = β2 = β3 = β4 = −β5, (6)

which reduces a+
2 to

√
8
5 and a−

2 to
√

12
5 . The relation in

Eq. (6) no longer holds when strong-coupling corrections are
included. However, Eqs. (4) and (5) are still valid and can be
used in conjunction with the strong-coupling β parameters.
Using this procedure, we find improved agreement for the
f -wave pairing strength determined from several independent
experiments.

II. EXPERIMENT

Experimental signatures of the collective modes are ob-
served with acoustic spectroscopy. Superfluid 3He is able to
support propagating sound at low temperature with either
longitudinal [31] or transverse polarization [26,32]. Collective
modes in the superfluid couple to sound for which there are
both longitudinal and transverse restoring forces. The latter is
a unique property of superfluid 3He. This coupling allows one
to probe the collective mode spectra of the 2− and 2+ modes.
Both are acoustically active and have sharp spectroscopic
signatures [12]. The phase velocity and attenuation of sound
waves diverge sharply when the frequency of sound matches
the energy of the mode as shown in Fig. 1, providing a
determination of the mode mass. While longitudinal sound
has been used to measure both modes, the 2− mode has a
much stronger coupling to longitudinal sound than does the
2+ mode. This leads to a broad resonance for 2− while the 2+
mode is sharp and very well defined. Therefore, longitudinal
sound measurements are only suitable for precise measure-
ments of the 2+ mode. Transverse sound, on the other hand,
can only propagate due to an off-resonant coupling to the 2−
mode [26,32]. When the transverse sound frequency is less

than the energy of the 2− mode, sound propagation ceases
abruptly, giving a clear indication of the mode mass. Tempera-
ture, pressure, and frequency sweeps have been performed by
several groups to map out the energy of the modes throughout
the entire superfluid phase diagram [9–12].

For temperature and pressure sweeps, a piezoelectric trans-
ducer is driven either continuously or with pulsed excitations
at one of its odd harmonics. This method was employed by
Mast et al. [9], Giannetta et al. [10], and Davis et al. [12,25].
While this method can be used to obtain precise values for at-
tenuation and sound velocity, the frequency range is restricted
to discrete harmonics of the transducer. Complementary to
this, Fraenkel et al. [11] employed pulsed excitation of a non-
resonant ultrasound transducer to perform frequency sweeps
at fixed temperature and pressure. In this case the frequency
was swept through the mode and a Lorentzian absorption
spectrum was observed. The frequency of the maximum ab-
sorption corresponds to the mode mass. The frequency sweep
method, however, cannot extract the absolute attenuation [11].

Davis et al. used lanthanum diluted cerium magnesium
nitrate (LCMN) susceptibility thermometry precise to within
30 μK that can be calibrated using fixed points from the
Greywall melting-curve temperature scale [33]. Giannetta
et al. used the Helsinki scale [34] which is referenced to a dif-
ferent superfluid transition temperature than the more precise
Greywall scale. For our analysis, we rescaled the temperatures
reported by Ref. [10] to the Greywall melting-curve scale.
Fraenkel et al. expressed temperature dependence in terms of
the normal-fluid fraction ρn/ρ which we converted to reduced
temperature T/Tc by interpolating data from Ref. [35].

III. STRONG-COUPLING AND f -WAVE CORRECTIONS

The experimental results indicate that a+
2 is 10%–15%

smaller (depending upon pressure) than the bare value of
√

8
5 .

On the other hand, a−
2 is only 1%–4% larger than its bare value

of
√

12
5 . Therefore, Fermi-liquid, f -wave, and strong-coupling

effects must be included to obtain a consistent understanding
of the mode masses.

The mode masses M2+ and M2− , including renormalization
due to Fermi-liquid and f -wave interactions, were first calcu-
lated by Sauls and Serene [4,5] in the weak-coupling limit.
We combine their result with Eqs. (4) and (5) to obtain

0 = M2
2+ −

[
4

(
1
3 (β3 + β4 + β5)

βB

)
�2

]

+ λ(M2+ , T )
(
M2

2+ − 4�2
)( 2

25
F a

2 + x−1
3

(
M2+

2�

)2
)

(7)

0 = M2
2− −

[
4

(−β1

βB

)
�2

]

+ λ(M2− , T )
(
M2

2− − 4�2
)( 3

25
F s

2 + x−1
3

(
M2−

2�

)2
)

, (8)

where λ(MJc , T ) is the frequency- and temperature-dependent
superfluid response function, evaluated at the mode mass [26].
This expression can be used in both the weak- and strong-
coupling limits with appropriate values of the β parameters
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FIG. 1. Spectroscopic signatures of the 2+ mode at 13 bars and 84 MHz (left) and of the 2− mode at 3.61 bars and 76.304 MHz
(right). The blue trace in the top two panels shows the superfluid energy gap � opening up as temperature is lowered while the green trace
shows the corresponding increase in mode masses. For (a) and (b), longitudinal sound is excited at a fixed frequency of 84 MHz, represented
by the orange trace. When the sound frequency crosses the mode energy, denoted by the vertical dashed line, a sharp resonance in the acoustic
attenuation α is observed, indicating the value of the 2+ mode mass, as seen in (b) (blue circles are data from Ref. [9], and the red line is
a phenomenological model). For (c) and (d), transverse sound is excited at a fixed frequency of 76.304 MHz. Transverse sound can only
propagate in the region between the black dashed and blue dotted-dashed lines, where its frequency is between 2� and the 2− mode. At the
crossing, the transverse phase velocity ct diverges, indicating the value of the 2− mode mass (blue circles are taken from data [25]; the red line
is from the theory [26]).

inside the square brackets. The f -wave interaction parameter
x−1

3 can be determined using Eqs. (7) and (8) with sufficiently
precise measurements of the masses and Fermi-liquid param-
eters. Independent measurements of these parameters give
values for F s

2 ranging from −0.2 at 0 bar to +0.6 at 30 bars
while F a

2 is negative for all pressures, ranging from −0.9 at 0
bar to −0.1 at 30 bars [15]. Positive values for Fermi-liquid or
f -wave interactions increase the mass while negative values
decrease the mass (see Ref. [4], Fig. 3).

The gap used in our calculation is determined from Rainer
and Serene’s weak-coupling-plus model that extends the BCS
theory to include strong-coupling interactions [15,36]. This
model is believed to accurately represent the energy gap,
limited by the accuracy of measurements of the heat ca-
pacity jump [15]. Masuhara et al. [37] performed direct
measurements of the energy gap using acoustic spectroscopy
where they concluded that the weak-coupling-plus model
overestimates the energy gap by 2%–4%. However, what they
believed to be the 2� pair-breaking edge was likely another
collective mode with mass just below 2� [38]. This new mode
has mass between 1.97� and 1.99�, which, if incorrectly
interpreted as the 2� pair-breaking edge, could lead to an
erroneous conclusion. Other determinations of the gap have
been performed by measuring quasiparticle damping [39].
The Fermi-liquid parameters F a,s

2 have uncertainties discussed

elsewhere [15]. The accuracy of the temperature scale, the
value of the energy gap, and the Fermi-liquid parameters
are the dominant sources of experimental uncertainty in our
analysis.

Davis et al. calculated x−1
3 in the weak-coupling limit from

their transverse acoustic measurement of the 2− mode mass.
In this limit, the term in square brackets for Eq. (8) reduces
to 12

5 �2 and the results are shown in Fig. 2(a). To make a
comparison with the 2+ mode, we have used the data from
Fraenkel et al., Giannetta et al., and Mast et al. to calculate
x−1

3 in the weak-coupling limit, where the term in square
brackets for Eq. (7) reduces to 8

5�2. As seen in Fig. 2(a),
there is significant disagreement between the x−1

3 inferred
from these four experiments. We find that this discrepancy is
removed by incorporating strong-coupling corrections to the
coefficients ac

J .
Strong-coupling corrections lead to a pressure and temper-

ature dependence for the terms in square brackets in Eqs. (7)
and (8). The pressure dependences of the βi have been calcu-
lated by Wiman [30] using a microscopic model of quasipar-
ticle scattering along with normal-state Fermi-liquid data and
measurements of the specific heat jump at Tc. Independently,
Choi et al. [29] calculated the pressure dependence of βi

from measurements in superfluid 3He. Wiman et al. [30,40]
showed that the temperature dependence of the βi can be
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FIG. 2. f -wave interaction strength x−1
3 calculated using data from Davis et al. [25], Fraenkel et al. [11], Giannetta et al. [10], and Mast

et al. [9]. The results in the left panel were calculated from Eqs. (7) and (8) using the weak-coupling limits of ac
J . The right panel incorporates

strong-coupling corrections, which brings all four experiments into better agreement. A linear fit (orange solid line) through the entire data set,
weighted by uncertainties, yields a pressure dependence for the f -wave interaction strength that is reasonably consistent with all experiments.

taken to be proportional to T/Tc allowing them to extend the
applicability of the GL theory to lower temperatures, based
in part on Serene and Rainer’s strong-coupling theory [23].
The pressure- and temperature-dependent strong-coupling β-
parameters are given by

βi(T, P) = βWC
i + T

Tc
�βi(P), (9)

where βWC
i is the weak-coupling value and �βi(P) is the

pressure-dependent deviation away from the weak-coupling
values at Tc reported in Ref. [29]. Temperature scaling of the
β parameters has also been used in studies of superfluid 3He
in silica aerogel [29,41,42]. This linear temperature scaling
weakens strong-coupling effects as temperature is lowered.
However, at sufficiently low temperatures, estimated to be
approximately 0.3Tc, the linear dependence is expected to
break down [43]. The overall uncertainty in our analysis is
indicated by error bars.

With the strong-coupling corrections that have been pre-
sented here, a+

2 decreases with pressure while a−
2 increases.

When combined with the F a
2 and F s

2 corrections, we obtain
a consistent determination of x−1

3 from independent exper-
iments on two different order parameter collective modes,
as seen in Fig. 2(b). The left-hand panel shows the x−1

3
determinations using the weak-coupling values for ac

J while
the right-hand panel uses the strong-coupling βi, bringing the
four experiments into better agreement. While the f -wave in-
teraction parameter only has a pressure dependence, its effect
on the masses also has a temperature dependence inherited
from the superfluid response function λ(M, T ). This implicit
dependence leads to measurements at the same pressure being
shifted by different amounts.

To within experimental uncertainty, the four experiments
find x−1

3 varying consistently from close to zero at low
pressures to −0.25 at high pressures. A linear fit through the

entire data set, weighted by uncertainties, yields a pressure
dependence for x−1

3 ,

x−1
3 (P) = 0.0091 − 0.0092 P/(bar). (10)

The f -wave interaction parameter is negative throughout the
phase diagram, indicating an attractive pairing interaction in
this channel, consistent with pairing mediated by ferromag-
netic spin fluctuations. The magnitude of x−1

3 can be used
to calculate the instability temperature at which liquid 3He
would undergo a superfluid transition with f -wave Cooper
pairs, if the p-wave channel did not exist. For the present
values of x−1

3 at high pressure, this temperature is 90 μK at
34 bars. It is also noteworthy that x−1

3 is close to zero at zero
pressure.

Superfluid 3He and superconductors are usually inves-
tigated assuming a single pairing channel. However, the
possibility of pairing in multiple angular momentum chan-
nels has been predicted to exist in certain high-temperature
superconductors [44,45]. Here, we find evidence that the
dynamics of superfluid 3He are indeed best modeled
by a pairing potential with multiple angular momentum
channels.

IV. CONCLUSION

This strong-coupling analysis of the Higgs masses of the
J = 2 collective modes in superfluid 3He is significantly
different from the earlier work which only accounts for
strong-coupling corrections to the energy gap. Our work in-
corporates nontrivial strong coupling using the pressure- and
temperature-dependent β parameters of the time-dependent
GL theory. We find that the measurements of the collec-
tive modes from transverse and longitudinal acoustics are
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sufficiently accurate that it is possible to extract the pairing
interaction in the f -wave channel. Observations from two
different collective modes, Jc = 2+ and 2−, indicate that
f -wave pairing is attractive and is stronger with increasing
pressure, consistent with spin-fluctuation mediated pairing.
The consistency between the results suggests that the theory of
the collective modes, and correspondingly the Higgs masses,
is now well established.
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