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Reentrant Fulde-Ferrell-Larkin-Ovchinnikov state in small-sized superconductors
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We study the effect of a parallel magnetic field in a thin and small superconductor. The field suppresses
superconductivity through Zeeman coupling while stabilizing the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
state at high fields before superconductivity is destroyed. When the spatial period of FFLO state is comparable
to the size of the superconductor, there is a strong commensuration effect, which modifies the superconducting
phase diagram. We investigate the FFLO state and the phase diagram in the presence of strong commensuration
effect both for the s- and d-wave superconductors using the Bogoliubov–de Gennes equation, Green function
approach, and Ginzburg-Landau theory. We found that the superconducting phase diagram is strongly modulated.
Interestingly, there is reentrance of superconductivity upon increasing the magnetic field. The commensuration
effect of the FFLO state can be used to detect the FFLO state in experiments.
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I. INTRODUCTION

Advances in nanofabrication technique has opened many
exciting possibilities to study superconductors with size com-
parable to the superconducting coherence length ξ . Gener-
ally, superconductivity is suppressed in small superconductors
due to the level splitting of the electron states [1]. In those
small superconductors, many new properties emerge due to
the strong geometry confinement. For example, the surface
energy barrier for a vortex to penetrate or exit the supercon-
ductor is highly asymmetric, resulting in a large hysteresis in
magnetic field associated with vortex penetrating or exiting
the superconductor [2–4]. Other interesting phenomena origi-
nating from the geometry confinements include the paramag-
netic Meissner effect [5], symmetry-induced antivortex state
[6], Landau quantization of the superconducting macroscopic
wave function under magnetic field [7], and destruction of the
global phase coherence when the flux in the superconductor
is half-integer of the flux quantum �0 = hc/2e [8]. In those
studies, the geometry confinement on the orbital effect in
superconductors under magnetic field has been investigated.

Aside from the coupling with the orbital motion of Cooper
pairs, the magnetic field also couples to the spin of a Cooper
pair through the Zeeman coupling. In type II superconduc-
tors, the magnetic field induces Abrikosov vortex lattice [9]
through the orbital coupling. At high magnetic field, vortex
cores start to overlap and the superconductivity is destroyed
at a threshold field. This defines an orbital limited upper crit-
ical field Horb = �0/2πξ 2. The Zeeman coupling of Cooper
pairs also suppresses superconductivity with singlet pairing.
By equating the superconducting condensation energy to the
energy gain if the spins of a Cooper pair are fully polarized
by magnetic field, one can define another upper critical field
Hp = √

2�/gμB, which is called the Chandrasekhar-Clogston
limit [10,11]. Here, � is the zero-temperature superconduct-
ing energy gap, μB is the Bohr magneton, and g is the electron
spin g factor. In most superconductors, both the orbital effect

and Zeeman effect are at work to suppress superconductivity
by magnetic field. When Hp � Horb, the upper critical field is
limited by orbital pair-breaking effect; while in the opposite
limit when Horb � Hp, it is limited by Pauli pair-breaking
effect.

In superconductors with Horb � Hp, also known as Pauli-
limited superconductors, Fulde and Ferrel [12] and, indepen-
dently, Larkin and Ovchinnikov [13] predicted a new super-
conducting phase with spatially modulated superconducting
order parameter. In their honor, this state is now known as
the FFLO state. The period of the modulation is comparable
to ξ . In this way, the system can gain superconducting con-
densation energy in the region with nonzero superconducting
order parameter and gain Zeeman energy when the supercon-
ducting order parameter vanishes. The phase boundary in the
thermodynamic limit has been calculated [14–16]. Finite-size
effects of the FFLO state have been studied using mean-field
methods in Refs. [17,18]. Using the Bogoliubov–de Gennes
(BdG) equation for a finite system, the order parameter,
local density of states [19,20], and phase boundary also have
been calculated [21,22]. Several families of superconductors
have been identified as candidates for the realization of the
FFLO state with encouraging experimental evidence [23–33].
However, a conclusive experimental detection of the FFLO
state in superconductors remains a challenge [34]. Recently,
ultracold atomic Fermi gases in optical lattices provide a new
platform to detect and characterize the FFLO state [35–40].

The thin and small superconductors provide a suitable
platform to investigate the FFLO state. In thin superconduc-
tors, the orbital pair-breaking effect can be minimized by
applying a magnetic field parallel to the superconductors.
When the FFLO state is induced by the magnetic field, one
would also expect a strong commensuration effect between
the FFLO state and the geometry of the superconductor, hence
resulting in modulated superconducting phase diagrams with
superconductivity being suppressed (enhanced) when the size
of the superconductor is incommensurate (commensurate)
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with the period of the FFLO state. The modulation of the
phase diagram due to the commensuration effect can serve as
experimental evidence of the elusive FFLO state. We remark
that the experimental setups in Refs. [3,4,41] can be readily
adapted to study the FFLO state in nanosized superconductors
[42].

In this work, we study the effect from geometric con-
finement on a small Pauli-limited superconductor under a
magnetic field. We employ direct numerical calculations of
the BdG equation for a tight-binding BCS Hamiltonian with
s- or d-wave pairing interaction to demonstrate the general-
ity of the commensuration effect. In addition, we compute
the phase boundary between the superconducting and nor-
mal states using the Green function approach [43], which
shows a good agreement with the BdG prediction. We also
provide a more intuitive understanding based on the phe-
nomenological Ginsburg-Landau approach [44,45]. Using the
Ginzburg-Landau approach, oscillatory behavior of the FFLO
state in ring and cylinder geometries has been discussed
[46,47]. Based on these complementary methods, we find
that the temperature–magnetic field phase diagram is strongly
modulated due to the geometry confinement. Interestingly,
there exist superconducting pockets separated by the normal
region in the phase diagrams. As a consequence, an increasing
magnetic field can induce a transition from the normal to
superconducting phases due to the commensuration effect.

We remark that the reentrant superconducting phase tran-
sition is also discussed in layered superconductors either
due to the orbital effect [48] or Pauli pair-breaking effect
[49–51]. The reentrant transition, however, is different from
that originated from the geometric confinement studied here.

The remainder of the paper is organized as follows. In
Sec. II, we detail our model. The Bogoliubov–de Gennes
equation is derived and solved numerically in Sec. III. In
Sec. IV, we calculate the phase boundary using the Green
function approach. The temperature–magnetic field phase di-
agram, which is the main result of this work, is presented in
Sec. V. The commensuration effect of the FFLO state based
on the Ginzburg-Landau free energy functional is studied in
Sec. VI. The paper is concluded by a summary in Sec. VII.

II. MODEL

To demonstrate the commensuration effect between the
FFLO state and system size, we consider the mean-field
tight-binding Bardeen-Cooper-Schrieffer (BCS) Hamiltonian
defined on a square lattice as an example. The generic features
due to the geometric confinement are very general and are
expected to be valid for more realistic model Hamiltonians.
The Hamiltonian of our system reads as

H =
∑
i j,σ

c†
iσ hi j,σ c jσ +

∑
i j

(�i jc
†
i+c†

j− + �∗
i jc j−ci+), (1)

where hi j,σ = −ti j − μσδi j . Here, ti j is the hopping coefficient
from site j to site i. We choose ti j = t for the nearest-
neighbor pairs and ti j = 0 otherwise. The lattice constant a
is used as the length unit. σ = + is for spin up and σ = −
for spin down. We consider the grand-canonical ensemble
and combine the chemical potentials μ± = μ ± gμBH/2 with
μ = (μ+ + μ−)/2 and h = (μ+ − μ−)/2 = gμBH/2, where

H denotes the magnetic field. We consider a setup with a
magnetic field parallel to the thin sample, therefore, the orbital
coupling of electrons to the gauge field is absent. The spin-
orbit coupling is neglected, and the spin quantization axis is
defined along the field direction in the following calculations.
We consider the clean limit which is known to favor the FFLO
state, and neglect the effect of impurities.

The gap function, which also represents the superconduct-
ing order parameter, is

�i j = 1
2Vi j (〈ci+c j−〉 − 〈ci−c j+〉), (2)

where 〈A〉 denotes the thermal expectation value of A and Vi j

is the effective attraction between the electrons. The supercon-
ducting pairing symmetry depends on the functional form of
Vi j . For instance, Vi j = V δ(i − j) stabilizes the s-wave pairing
symmetry, so the order parameter is an onsite quantity. On
the other hand, Vi j = V δ(i − j + r) favors the d-wave pairing
symmetry, where r is a primitive vector. For the d-wave paring
interaction, we use the following definition [52]:

�x
i = �i,i+x̂, �

y
i = �i,i+ŷ,

�s
i = (�i,i+x̂ + �i,i−x̂ + �i,i+ŷ + �i,i−ŷ )/4, (3)

�d
i = (�i,i+x̂ + �i,i−x̂ − �i,i+ŷ − �i,i−ŷ )/4,

where x̂ and ŷ are the two primitive vectors. The s-wave
component �s

i is invariant while the d-wave component �d
i

changes sign under the C4 rotation. We will consider open
boundary condition in the following calculations.

III. BOGOLIUBOV–DE GENNES EQUATION

We use the Bogoliubov canonical transformation to diago-
nalize the grand-canonical Hamiltonian [53]. By introducing
the quasiparticle operator γn, the electron operators can be
written as a canonical transformation

ciσ =
∑

n

(
un

iσ γn − σvn∗
iσ γ †

n

)
, c†

iσ =
∑

n

(
un∗

iσ γ †
n − σvn

iσ γn
)
. (4)

The quasiparticle operators satisfy the anticommutation
relations

{γn, γ
†
m} = δnm, {γn, γm} = {γ †

n , γ †
m} = 0. (5)

The diagonalized Hamiltonian has the following form:

H =
∑

n

Enγ
†
n γn + Eg, (6)

where Eg is the ground-state energy. Using the canonical
transformation and the anticommutation relations

{H, γn} = Enγn, {H, γ †
n } = −Enγ

†
n , (7)

one can obtain the equation [53]∑
j

Mi jφ j = Enφi, (8)

where

Mi j =

⎛
⎜⎜⎜⎝

hi j,+ 0 0 �i j

0 hi j,− � ji 0

0 �∗
i j −hi j,+ 0

�∗
ji 0 0 −hi j,−

⎞
⎟⎟⎟⎠, φn

i =

⎛
⎜⎜⎜⎝

un
i+

un
i−

vn
i+

vn
i−

⎞
⎟⎟⎟⎠. (9)
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Since the Bogoliubov–de Gennes (BdG) equation is in a
block-diagonalized form when the spin-orbit coupling is ab-
sent, we can decompose it into two sets of coupled equations:

Eñ1

(
uñ1

i+
vñ1

i−

)
=

∑
j

(
hñ1

i j,+ �i j

�∗
ji −hi j,−

)(
uñ1

j+
vñ1

j−

)
(10)

and

Eñ2

(
vñ2

i+
uñ2

i−

)
=

∑
j

(−hñ1
i j,+ �∗

ji

�i j hi j,−

)(
vñ2

j+
uñ2

j−

)
. (11)

The first equation can be rewritten as

−Eñ1

(−uñ1∗
i+

vñ1∗
i−

)
=

∑
j

(−hñ1
i j,+ �∗

ji

�i j hi j,+

)(−uñ1∗
j+

vñ1∗
j−

)
. (12)

Comparing to the second equation, we obtain the equivalence(
vñ2

i+
uñ2

i−

)
=

(−uñ1∗
i+

vñ1∗
i−

)
, (13)

and Eñ2 = −Eñ1. This symmetry allows us to rewrite the
canonical transformation using only the positive-energy
states:

ci+ =
′∑
ñ

(
uñ1

i+γñ1 − vñ2∗
i+ γ

†
ñ2

)
, c†

i+ =
′∑
ñ

(
uñ1∗

i+ γ
†
ñ1 − vñ2

i+γñ2
)
,

ci− =
′∑
ñ

(
uñ2

i−γñ2 + vñ1∗
i− γ

†
ñ1

)
, ci− =

′∑
ñ

(
uñ2∗

i− γ
†
ñ2 + vñ1

i−γñ1
)
.

(14)

Here,
∑′ denotes the summation over only the positive-

energy states. The diagonalized Hamiltonian is

H =
′∑
ñ

Eñγ
†
ñ γñ +

∑
i, j

|�i j |2
Vi j

, (15)

where ñ = ñ1, ñ2 comes from the Bogoliubov transformation
and we drop the constant ground-state energy.

Using the canonical transformation, the gap function be-
comes

�i j = Vi j

4

∑
ñ

(
uñ1

i+vñ1∗
j− + uñ1

j+vñ1∗
i−

)
tanh

(
Eñ

2kBT

)
. (16)

Here, kB is the Boltzmann constant. Numerically, the order
parameter can be found by the following procedure: Let �i j,ν

be the order parameter of the νth iteration. With an initial
guess of the order parameter �i j,0, we calculate the eigen-
vectors and eigenvalues using Eq. (10). With the eigenvalues
and eigenvectors, we then calculate the order parameter for
the next iteration �i j,1 using Eq. (16). We repeat the process
until the order parameter converges, i.e., until

∑
i j ||�i j,ν | −

|�i j,ν+1||/t is smaller than a preset tolerance value of 10−16.
Depending on the initial values of the BdG equation, the

system may be trapped in a metastable state rather than con-
verge to the thermodynamically stable state. In order to find
the thermodynamically stable state and the phase boundary
between one superconducting state and another, we need to

compare the free energy, which can be obtained as follows.
The entropy of the Bogoliubov quasiparticle in Eq. (15) is [54]

S =
∑

i

βEi f (Ei ) ln(e−βEi + 1), (17)

where f (x) = [exp(βx) + 1]−1 is the Fermi function with
β = (kBT )−1. From the relation F = 〈H〉 − ST we obtain the
free energy

F = − 1

β

′∑
ñ=ñ1,ñ2

ln(e−βEñ + 1) +
∑
i, j

|�i j |2
Vi j

. (18)

IV. GREEN FUNCTION APPROACH

The order parameter � is in general not uniform, and the
Bogoliubov–de Gennes equation can be used to obtain its pro-
file. However, a system of size N requires the diagonalization
of 2N × 2N matrices, so the size of the system will be limited
in the numerical calculations. If we are interested only in
finding the phase boundary between the superconducting and
normal phases, where the order parameter approaches zero,
we can obtain a semianalytic solution by expanding the Green
function around the phase boundary where the gap vanishes.

The Green function method for systems in equilibrium
is usually cast in the imaginary-time formalism [43]. Fol-
lowing Ref. [43], we construct the thermal operator ci(τ ) =
eHτ/h̄cie−Hτ/h̄ with the imaginary time τ . The imaginary-time
evolution equations are

h̄∂τ ci±(τ ) =
∑

j

(−hi j,±c j±(τ ) ∓ �i jc
†
j∓(τ )), (19)

h̄∂τ c†
i±(τ ) =

∑
j

(hi j,±c†
j±(τ ) ± �i jc j∓(τ )). (20)

We define the imaginary-time ordered Green functions

Gα,β (x1τ1, x2τ2) = −〈
Tτ

{
cx1α (τ1)c†

x2β
(τ2)

}〉
, (21)

Fα,β (x1τ1, x2τ2) = −〈
Tτ

{
cx1α (τ1)cx2β (τ2)

}〉
, (22)

F †
α,β (x1τ1, x2τ2) = 〈

Tτ

{
c†

x1α
(τ1)c†

x2β
(τ2)

}〉
. (23)

Here, Tτ denotes imaginary-time ordering and α, β = +,−.
By using the equations for the fermion operators, we obtain

the equations for the Green function.(
−h̄∂τ1 −

∑
x

hx1x,±

)
G±±(xτ1, x2τ2)

±
∑

x

�x1,xF †
∓±(xτ1, x2τ2) = h̄δ(τ1 − τ2)δ(x1 − x2), (24)

(
−h̄∂τ1 +

∑
x

hx1x,±

)
F †

∓±(xτ1, x2τ2)

±
∑

x

�∗
x1,xG±±(xτ1, x2τ2) = 0. (25)

Using the Green function method to solve for a general case
can be difficult. However, the method can be used to find
the equation determining the normal-superconducting phase
boundary where � → 0.
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When � = 0, we obtain the normal-state Green functions
using the properties of tridiagonal Toeplitz matrices summa-
rized in Appendix A. Explicitly,

G0±±(x1τ1, x2τ2) =
∑
k,ωn

ukωn (x1τ1)u∗
kωn

(x2τ2)

× h̄

iωnh̄ − ξ±(k)
, (26)

ukωn (xτ ) = 2√
(Nx + 1)(Ny + 1)h̄β

sin

(
πx(1)kx

Nx + 1

)

× sin

(
πx(2)ky

Ny + 1

)
exp(−iτωn),

where ξ±(k)= − 2t (cos( πkx
Nx+1 ) + cos( πky

Ny+1 ))−μ ∓ h
for the two-dimensional rectangular lattice. Here,
ωn = (2n + 1)π/β h̄ is the fermionic Matsubara frequency
and x = (x(1), x(2) ). The solutions for G and F † are

G±±(x1τ1, x2τ2) = G0±±(x1τ1, x2τ2) ∓ 1

h̄

∑
x3,x4

∫
dτ

× G0±±(x1τ1, x3τ )�x3,x4 F †
∓±(x4τ, x2τ2),

(27)

F †
∓±(x1τ1, x2τ2) = ±1

h̄

∑
x3,x4

∫
dτ

× G∗
0∓∓(x3τ, x1τ1)�∗

x3,x4
G±±(x4τ, x2τ2),

(28)

which can be verified by plugging them back to Eqs. (24)
and (25). Using the definition of the order parameter �∗

x1,x2
=

V (x1 − x2)(F †
−+(τ1x1, τ1x2) − F †

+−(τ1x1, τ1x2))/2, we obtain
the expansion to the lowest order in �:

�∗
x1,x2

= 1

2h̄

∑
x3,x4

∫
dτ V (x1 − x2)

× [
G∗

0−−(τx3, τ1x1)�∗
x3,x4

G0++(τx4, τ1x2)

+ G∗
0++(τx3, τ1x1)�∗

x3,x4
G0−−(τx4, τ1x2)

]
. (29)

The second term inside the square brackets is identical to the
first term except the up spin and down spins are switched.
This equation determines the phase boundary between the
superconducting and normal states as � vanishes.

A. s-wave pairing interaction

For the system with s-wave pairing interactions, we assume

V (x1 − x2) = V δ(x1 − x2). (30)

The order parameter can be written as

�∗
x1,x2

= δ(x1 − x2)�∗
x1
. (31)

Summing over x2, the self-consistent equation (29) at the
phase boundary becomes

�∗
x1

= V

2h̄

∑
x3

∫
dτ [G∗

0−−(τx3, τ1x1)�∗
x3

G0++(τx3, τ1x1)

+ (+σ ↔ −σ )], (32)

which is in the form of
∑

x3
�∗

x3
[A(x3, x1)−δ(x3, x1)] = 0,

where A(x3, x1) = (V/2h̄)
∫

dτ [G∗
0−− (τx3, τ1 x1) G0++

(τx3, τ1x1) + (σ ↔ −σ )].

B. d-wave pairing interaction

For the system with d-wave pairing interaction, we assume

V (x1 − x2) = V
∑

r

δ(r + x1 − x2), (33)

where r = {rxx̂,−rxx̂, ryŷ,−ryŷ} is the collection of the prim-
itive vectors to the nearest neighbors. The order parameter can
be written as

�∗
x1,x2

=
∑

r

δ(r + x1 − x2)�r∗
x1

, �r∗
x1

= �∗
x1,x1+r . (34)

Here, �−r
x = �r

x−r since �x1,x2 = �x2,x1 . The equation for the
phase boundary becomes∑

r1

δ(r1 + x1 − x2)�r1∗
x1

= 1

h̄

∑
r1,r2,x3,x4

∫
dτ V δ(r1 + x1 − x2)

[
G∗

0−−(τx3, τ1x1)�r2∗
x3

× δ(r2 + x3 − x4)G0++(τx4, τ1x2)

+ G∗
0++(τx3, τ1x1)�r2∗

x3

× δ(r2 + x3 − x4)G0−−(τx4, τ1x2)
]
. (35)

The δ function is satisfied when x2 = x1 + r1, and the equation
becomes

�r1∗
x1

= 1

2h̄

∑
r2,x3

∫
dτ V

[
G∗

0−−(τx3, τ1x1)�r2∗
x3

× G0++(τ (r2 + x3), τ1(r1 + x1))

+ (+σ ↔ −σ )
]
, (36)

which is in the form of
∑

r2,x3
�r2∗

x3
[A(r2 + x3, r1 +

x1) − δ(x3, x1)δ(r2, r1)] = 0, where A(r2 + x3, r1 + x1) =
V
2h̄

∫
dτ [G∗

0−−(τx3, τ1x1)G0++(τ (r2 + x3), τ1(r1 + x1)) +
(+σ ↔ −σ )]. Techniques for calculating A(r2 + x3, r1 + x1)
can be found in Appendix B.

V. PHASE DIAGRAM

Our system can host the normal, BCS, and FFLO states.
The BCS state has uniform superconducting order parameter
except in the region near the sample edges. In the following
discussion, we refer to the superconducting state without any
sign change of the order parameter as the BCS state, and those
exhibiting sign changes as the FFLO state.

To locate the phase boundary between the normal and
superconducting states, we can use either Green function
method or solve the BdG equation numerically. To use the
Green function method, we solve the self-consistent equations
(32) and (36), which are of the form (A − 1)� = 0 in matrix
notation. It can be shown that A approaches zero at high
temperatures and strong magnetic field, so the only solution
is � = 0. The eigenvalues of A − 1 depend on temperature
and magnetic field, and we need to find the eigenvalue that
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FIG. 1. Phase diagrams of thin and small superconductors at
μ/t = −0.4 and V/t = 2.5. The pockets near the vertical axis are the
reentrant FFLO state. The superconducting-normal phase boundary
can be obtained from the BdG equation or the Green function
method, and their results agree with each other. The BCS-FFLO
phase boundary, on the other hand, is obtained from the BdG equa-
tion. The results are obtained both for the s-wave (left column) and
d-wave (right column) superconductors with system size (Nx, Ny ) =
(8, 8) (top row) and (16,16) (bottom row). Here, Nx and Ny are the
number of lattice sites in each direction and H0 = 2t/gμB.

maximizes the superconducting region at a given temperature
or field. If we approach the normal-superconducting phase
boundary from the normal state, one of the eigenvalues of
A − 1 approaches zero from the negative side. By locating
the zeros of the largest eigenvalue of A − 1, we find the
phase boundary between the normal and superconducting
states from the Green function method. We also use the BdG
equation to locate the phase boundary by calculating where
the order parameter becomes zero. The results from both
methods agree well.

To find the BCS-FFLO phase boundary, the Green func-
tion method cannot be used since the derivation is not valid
when the order parameter is not small, which is the case
inside the superconducting regime. Therefore, we use the
BdG equation to locate the BCS-FFLO phase boundary. By
using different initial values of the order parameter, we obtain
different metastable solutions from the BdG equation. At
given values of temperature and magnetic field, we compare
the free energies of the BCS state and the FFLO state and find
the one with the lowest free energy. By locating where the
free energies of the BCS and FFLO states are equal, we find
the phase boundary of the first-order transition between the
BCS and FFLO states.

Figure 1 shows the phase boundary between the BCS,
FFLO, and normal states for the s- and d-wave superconduc-
tors. The phase boundary between the FFLO and normal states
is found by expanding the Green function, and the boundary
between the BCS and FFLO states is found by solving the
BdG equation and comparing the free energies of the FFLO
and BCS states. The transition between the superconducting
and normal states is of the second order, while the transition

FIG. 2. Profiles of the order parameter for the s-wave pairing
interaction on a 16 × 16 lattice at T = 0. Here, μ/t = −0.4 and
V/t = 2.5. (a) H/H0 = 0, (b) H/H0 = 0.4, (c) H/H0 = 0.55, (d)
H/H0 = 0.7.

between different superconducting states is of the first order
[34,55].

One anomalous behavior in the phase diagram is the reen-
trance of superconductivity upon increasing the magnetic field
at low temperatures. On the phase diagrams shown in Fig. 1,
one can see the small superconducting pockets separated by
the normal phase at low temperatures, showing reentrance of
the FFLO state. The reason for the reentrance of FFLO state
is that the FFLO state has modulations of its order parameter.
Thus, the system is stable if the modulation fits the finite
system size. The characteristic length of the modulation is
controlled by the magnetic field. If the modulation cannot fit
the system size, the FFLO state can be suppressed. However, if
at higher magnetic field the modulation can match the system
size, the system can reenter the FFLO state. Note that the
reentrance mechanism here is different from the one discussed
in Ref. [51], where the thermodynamic limit has been taken in
a bilayer system.

Figure 2 shows the typical spatial profiles of the or-
der parameter from the BdG equation with s-wave pairing
interaction at zero temperature. We used μ/t = −0.4 and
V/t = 2.5 following Ref. [19]. Because of the absence of
translational invariance due to open boundary condition, the
order parameter � is not uniform even when H = 0, as
shown in Fig. 2(a). At higher field when superconductivity
still survives, � changes signs in space, which is a defining
feature of the FFLO state. In Fig. 2(b), � is modulated along
one of the spatial direction. As the magnetic field increases,
� starts to develop modulations in both x and y directions, as
shown in Figs. 2(c) and 2(d).

The profiles of �s and �d , defined in Eq. (3), are displayed
in Fig. 3 for the d-wave pairing interaction. In the BCS state,
a subdominant s-wave component is induced at the boundary,
where the C4 rotation symmetry is absent. The presence of the
FFLO state also breaks the C4 rotation symmetry, and a finite
s-wave component is generated. Similar to those in Fig. 2, the
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FIG. 3. Profiles of the order parameter, defined in Eq. (3), of
d-wave pairing interaction in a 16 × 16 system at T = 0, μ/t =
−0.4, and V/t = 2.5. The left and right columns show �s and �d ,
respectively. (a), (e) H/H0 = 0 in the BCS state; (b), (f) H/H0 =
0.52 in the FFLO state; (c), (g) H/H0 = 0.65 in the FFO state near
the normal-superconducting phase boundary; (d), (h) H/H0 = 1 in
the reentrant FFLO sate due to the commensuration effect.

FFLO states can have spatial modulations in the x and/or y
directions at high fields.

The reentrant FFLO state can facilitate experimental detec-
tion of the elusive state. The phase diagram may be obtained
by thermodynamic measurement or resistivity measurement.
The appearance of the reentrant superconducting would pro-
vide strong evidence for the existence of the FFLO state. The
detailed spatial structure of the FFLO state may be visualized
using the scanning tunneling spectroscopy. Ultracold atoms
in optical lattices are promising systems for studying the
commensuration effect because the lattice size ranges from
tens to hundreds of lattice sites [56], but cooling the system to
the superfluid regime in 2D lattices remains a challenge [57].

VI. GINZBURG-LANDAU APPROACH

Here, we provide a more transparent understanding of
the commensuration effect of the FFLO state based on the
Ginzburg-Landau theory. The Ginzburg-Landau free-energy
function has been derived near the tricritical point in the
T -H phase diagram, where both the superconducting order

parameter and wave vector of the FFLO state are small [45].
The Ginzburg-Landau free-energy functional, up to the order
of |ψ |6, can be written as

F = α|ψ |2 + β ′|∇ψ |2 + γ |ψ |4 + δ|∇2ψ |2 + μ|ψ2||∇ψ |2
+ η[(ψ∗∇ψ )2 + (ψ∇ψ∗)2] + υ|ψ |6. (37)

Here, ψ is the order parameter, and T and H enter F through
the coefficients. For a clear demonstration, we consider the
one-dimensional (1D) case. The analysis can be generalized
to higher dimensions and the results are qualitatively similar.
For instance, for a disk in 2D, the FFLO state close to the
normal-state phase boundary can be described by using the
Bessel functions in the polar coordinates.

First, let us calculate Tc(H ) as a function of the field H in
the thermodynamic limit L → ∞, where L is the system size.
Close to Tc, we only keep the quadratic terms

F (T → Tc) = α|ψ |2 + β ′|∂xψ |2 + δ|∂2
x ψ |2.

For a parabolic dispersion of the electron band, the coeffi-
cients are [45]

α = −π
(
K1 − K0

1

)
N0, β ′ = 1

4
πK3N0 h̄2v2

F ,

δ = −π

16
K5N0 h̄4v4

F ,

K1 = −Re[�(z)]

π
, K3 = −2kBT Re[� (2)(z)]

2(2πkBT )3
,

K5 = −2kBT Re[� (4)(z)]

4!(2πkBT )5
, z = 1

2
− igμBH

4πkBT
,

where � (n) is the nth derivative of the polydigamma function,
vF is the Fermi velocity, and N0 is the density of state at the
Fermi surface. Here, K0

1 = −Re[�( 1
2 − igμBHs

4πkBT )]/π , where Hs

is the field corresponding to the second-order transition into
the uniform superconducting state. Moreover, we have the
following relation:

ln
Tc

T
= Re

[
−�

(
1

2

)
+ �

(
1

2
− igμBHs

4πkBT

)]
. (38)

The FFLO solution is stable when β ′ < 0 and δ > 0, and
its order parameter can be written as ψ = A exp(iqr) with a
continuous q. The optimal q is q2

opt = − β ′
2δ

= 2K3

K5 h̄2v2
F

with K3

and K5 defined above, and Tc(H ) is determined by K1 − K0
1 =

1
4 (K3)2/K5. The resulting phase diagram is shown in Fig. 4(a).

The Ginzburg-Landau energy functional F can only be
derived rigorously near the normal-superconductor phase
boundary. However, one can still obtain qualitative features
about the dependence of qopt on H deep inside the supercon-
ducting phase. The field dependence of qopt at T/Tc = 0.4 is
displayed in Fig. 4(b). The period of modulation is of the order
of ξ . Moreover, qopt increases with H because the separation
between the Fermi surfaces of the up- and down-spin channels
increases. The Cooper pair with opposite electron spins thus
also has large momentum, which is just qopt of the FFLO state.

Now, we consider a superconducting wire of length L
subjected to the boundary condition ∂xψ = 0 at both ends.
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FIG. 4. (a) Superconducting phase diagram and (b) FFLO wave
vector versus H obtained using the Ginzburg-Landau theory in 1D.
The red line in (a) corresponds to the normal-superconducting
phase boundary by assuming a BCS state with q0 = 0.
Here, T = 0.4Tc in (b).

The FFLO state is now described by ψ = A exp(iqnr), where
qn = πn

L with an integer n. The phase boundary is given by

α + β ′q2
n + δq4

n = 0.

The optimal qn is the qn that maximizes the superconducting
phase region. Close to the phase boundary, we can expand

α − β ′2

4δ
= −c1�

2
H , qopt = −c2�H + q̄, (39)

with q̄ the q value at H = Hc, �H = Hc−H
Hc

, and Hc the upper
critical field for L → ∞. Both c1 and c2 are positive. The first
(second) expression in Eq. (39) is even (odd) in �H because
the free energy (wave vector q) is even (odd) under the time-
reversal operation H → −H . Then, the phase boundary is
given by

f = δ
(
c2

2�
2
H − 2c2q̄�H − q2

n + q̄2
)2 − c1�

2
H = 0.

When the system is commensurate with qopt, f is negative
for �H < 0. In contrast, when qopt is incommensurate with
the system size, f can be positive and the system is in the
normal state. When c2 is large, qopt changes rapidly with
the field, and the commensuration effect is more prominent.
Meanwhile, c1 determines the energy gain in the FFLO state

FIG. 5. Superconducting phase diagram of a 1D superconductor
with L = 8h̄vF /kBTc. The optimal qn in units of kBTc/h̄vF is labeled
at the phase boundary (solid line). The dashed line corresponds to the
normal-superconducting phase boundary by assuming a BCS state
with q0 = 0.

with respect to the normal state. Therefore, for a large c2 but
small c1, it is easier to drive the system into the normal state
when qopt is incommensurate with the system size, resulting in
the reentrant superconducting phase transition with increasing
field.

For a parabolic band in 1D, the phase boundary is given by

f = − 1

16
K5(qnh̄vF )4 + 1

4
K3(qnh̄vF )2 − (

K1 − K0
1

) = 0.

The calculated phase boundary and the corresponding qopt are
depicted in Fig. 5. For this particular Fermi surface, there
is no reentrant superconducting transition as a function of
the magnetic field. However, the Ginzburg-Landau approach
shows that, because of the commensuration effect, there are
modulations of the phase boundary as different optimal wave
vectors of the FFLO state are found.

VII. CONCLUSION

To summarize, we have presented a detailed study of the
commensuration effect of the FFLO state in small and thin su-
perconductors under a parallel magnetic field. We employ the
Bogoliubov–de Gennes equation, Green function approach,
and Giznburg-Landau theory to study the various supercon-
ducting states and phase diagrams both for the clean s- and d-
wave superconductors. The three methods complement each
other and offer a consistent picture.

As a consequence of the strong geometry confinement, the
superconducting phase diagram is strongly modulated. More-
over, there exist several FFLO pockets with different wave
vectors of the order parameter separated by the normal state.
Therefore, reentrance of superconductivity by increasing the
magnetic field is observable at low temperatures. Although
we have restricted ourselves to a simple model, the generic
features due to the commensuration effect should be valid for
more realistic models relevant for experimental systems. The
commensuration effect of the FFLO state can therefore offer
additional evidence in experiments.
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APPENDIX A: TRIDIAGONAL TOEPLITZ MATRIX

To obtain the Green function in the normal state, we need
to use some properties of the tridiagonal Toeplitz matrices.
For a one-dimensional lattice with open boundary condition,
the hopping term of the Hamiltonian can be written as a
tridiagonal Toeplitz matrix, whose eigenvectors are

vk =
√

2

N + 1

[
sin

(
πk

N + 1

)
, . . . , sin

(
Nπk

N + 1

)]
. (A1)

The corresponding eigenvalues are

λk = 2t cos

(
πk

N + 1

)
, (A2)

where k = 1, . . . , N , and N is the system size.
For a two-dimensional lattice, the hopping term can be

written as a Kronecker product of a tridiagonal Toeplitz
matrix and the identity matrix of the same dimension. The
eigenvectors are

√
2

Nx + 1

[
sin

(
πkx

Nx + 1

)
, . . . , sin

(
Nxπkx

Nx + 1

)]

⊗
√

2

Ny + 1

[
sin

(
πky

Ny + 1

)
, . . . , sin

(
Nyπky

Ny + 1

)]
, (A3)

and the eigenvalues are

λkx,ky = 2t cos

(
πkx

Nx + 1

)
+ 2t cos

(
πky

Ny + 1

)
. (A4)

Here, kx = 1, . . . , Nx and ky = 1, . . . , Ny with Nx × Ny being
the system size. Using these eigenvectors, the normal Green
function with open boundary condition can be evaluated.

APPENDIX B: EVALUATION OF EQS. (32) AND (36)

In Eqs. (32) and (36), we need to evaluate the function of
the form

1

h̄

∫
dτ G∗

0−−(τx1, τ1x2)G0++(τx3, τ1x4). (B1)

Using Eq. (26), the function becomes∑
k1,k2,ωn

uk1 (x1)uk1 (x2)uk2 (x3)uk2 (x4)

β(−ih̄ωn − ξ−)(ih̄ωn − ξ+)
, (B2)

where uk (x)= 2√
(1+Nx )(1+Ny )

sin ( πx(1)kx
Nx+1 ) sin ( πx(2)ky

Ny+1 ). We carry

out the summation over ωn:

1

β

∑
ωn

1

(−ih̄ωn − ξ−)(ih̄ωn − ξ+)
, (B3)

where ωn = (2n + 1)π/β h̄ for fermions. Using the contour
integral method, the above expression is equivalent to

− h̄

2π

∮
dz

1

(−ih̄z − ξ−)(ih̄z − ξ+)

1

eiβ h̄z + 1
, (B4)

where the contour encircles the real axis. Deforming the con-
tour to encircle the poles on the imaginary axis, the integral
becomes

f
(

1
2 (ξ+ − ξ− − |ξ+ + ξ−|))

|ξ+ + ξ−| − f
(

1
2 (ξ+ − ξ− + |ξ+ + ξ−|))

|ξ+ + ξ−| ,

(B5)

where f (x) is the Fermi function. Using the identity

1

ea + 1
− 1

eb + 1
= sinh

(
b−a

2

)
cosh

(
a−b

2

) + cosh
(

a+b
2

) , (B6)

Eq. (B5) becomes

sinh(βξ )

2ξ [cosh(βζ ) + cosh(βξ )]
, (B7)

where ξ = (ξ+ + ξ−)/2 and ζ = (ξ+ − ξ−))/2. After apply-
ing a similar calculation to the other term with (σ ↔ −σ ) and
collecting the terms, Eq. (32) becomes

�∗
x1

= V
∑

k1,k2,x2

�∗
x2

sinh(βξ )

2ξ [cosh(βζ ) + cosh(βξ )]

× uk1 (x1)uk1 (x2)uk2 (x1)uk1 (x2), (B8)

and Eq. (36) becomes

�r1∗
x1

= V
∑

k1,k2,x2,r2

�r2∗
x2

sinh(βξ )

2ξ [cosh(βζ ) + cosh(βξ )]

× uk1 (x1)uk1 (x2)uk2 (x1 + r1)uk1 (x2 + r2). (B9)
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