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We investigate topological Cooper pairing, including gapless Weyl and fully gapped class DIII supercon-
ductivity, in a three-dimensional doped Luttinger semimetal. The latter describes effective spin-3/2 carriers
near a quadratic band touching and captures the normal-state properties of the 227 pyrochlore iridates and
half-Heusler alloys. Electron-electron interactions may favor non-s-wave pairing in such systems, including
even-parity d-wave pairing. We argue that the lowest energy d-wave pairings are always of complex (e.g.,
d + id) type, with nodal Weyl quasiparticles. This implies �(E ) ∼ |E |2 scaling of the density of states (DoS) at
low energies in the clean limit or �(E ) ∼ |E | over a wide critical region in the presence of disorder. The latter is
consistent with the T dependence of the penetration depth in the half-Heusler compound YPtBi. We enumerate
routes for experimental verification, including specific heat, thermal conductivity, NMR relaxation time, and
topological Fermi arcs. Nucleation of any d-wave pairing also causes a small lattice distortion and induces an
s-wave component; this gives a route to strain-engineer exotic s + d pairings. We also consider odd-parity, fully
gapped p-wave superconductivity. For hole doping, a gapless Majorana fluid with cubic dispersion appears at the
surface. We invent a generalized surface model with ν-fold dispersion to simulate a bulk with winding number
ν. Using exact diagonalization, we show that disorder drives the surface into a critically delocalized phase, with
universal DoS and multifractal scaling consistent with the conformal field theory (CFT) SO(n)ν , where n → 0
counts replicas. This is contrary to the naive expectation of a surface thermal metal, and implies that the topology
tunes the surface renormalization group to the CFT in the presence of disorder.
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I. INTRODUCTION

One of the most useful concepts of modern day condensed
matter physics is the topological classification of quantum
phases, which at the coarsest level divides into two categories:
topological and trivial. A hallmark signature of a topologically
nontrivial system is the existence of robust gapless states at
an interface with the trivial vacuum, exposing the information
about the bulk topological invariant to the external world.
This classification encompasses insulators, semimetals, and
superconductors (both gapped and gapless) [1–15]. In this
paper, we establish that a doped three-dimensional Luttinger
semimetal (LSM), describing a quadratic touching of Kramers
degenerate valence and conduction bands of j = 3/2 (effec-
tive) fermions [16,17], can harbor myriad exotic gapless and
gapped topological superconductors.

The LSM provides the low-energy normal-state descrip-
tion for a plethora of both strongly and weakly correlated
compounds, such as the 227 pyrochlore iridates (Ln2Ir2O7,
with Ln being a lanthanide element) [18–23], half-Heusler
compounds (ternary alloys such as LnPtBi, LnPdBi) [24–26],
HgTe [27], and gray tin [28,29]. Among these materials, the
227 pyrochlore iridates might support only non-Fermi liq-
uid or excitonic (particle-hole channel) orders [30–38] (most
likely magnetic such as the all-in all-out [18,20,35], spin-ice

[23] orders), since the chemical potential lies extremely close
to the band touching point [21,22]. Nevertheless, it is possible
to move the chemical potential away from charge neutrality
(e.g., via chemical doping), which can be conducive for su-
perconductivity. While Cooper pairing has not yet been found
in HgTe or gray tin, some half-Heusler compounds (such as
YPtBi, LaPtBi, LuPdBi, LuPtBi) become superconducting be-
low a few Kelvin [39–47]. This has led to a surge of theoretical
works recently [48–57]. Despite half-Heuslers standing as fer-
tile ground for topological phases of matter, the nature of the
actual pairing remains elusive so far and therefore demands
comprehensive theoretical and experimental investigations.

In this paper, we study various experimental signatures of
superconducting states that could arise in a three-dimensional
LSM. Since the superconducting order parameter is formed
from spin-3/2 band electrons, the SU(2) angular momen-
tum addition rule (3/2) ⊗ (3/2) = 0 ⊕ 1 ⊕ 2 ⊕ 3 implies that
simple paired states reside in two broad categories: (a) even
parity, such as local or intraunit cell pairing (with order
parameter spin j ∈ {0, 2}), and (b) odd parity, momentum-
dependent pairing (with order parameter spin j ∈ {1, 3})
[51,56]. We consider these two cases separately. The unpaired
conduction and valence bands are each two-fold degenerate
in the absence of inversion symmetry breaking; degenerate
states can be labeled by a band pseudospin index. All spin- j
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pairings can be classified according to their transformation
under pseudospin rotations. The j = 0 and 2 channels trans-
form as pseudospin singlets (respectively, s- and d-wave
pairings), while j = 1 represents a pseudospin triplet p-wave
pairing. We next provide a synopsis of our main findings for
even- and odd-parity pairings.

A. Even parity pairing: scenarios and main results

Even-parity local pairings are represented by anomalous
local bilinears of the spin-3/2 fermion field. Local or intraunit
cell pairings can be mediated by short-range interactions, such
as spin exchange scattering. For superconductivity at low den-
sities in an LSM, momentum-dependent pairing interactions
can be strongly suppressed relative to local ones. The mecha-
nism for this is virtual renormalization from higher energies,
as may also occur in bilayer graphene (a “two-dimensional
LSM”) [58–61] or structurally similar bilayer silicene [62].
The local pairing amplitudes couple to j = 0 and j = 2 spin
SU(2) tensor operators.

Although the even-parity pairings are local bilinears in the
LSM, we focus on the situation where the superconductivity
itself manifests mainly near the Fermi surface. The Fermi
surface is assumed to reside at finite carrier density away
from charge neutrality. The projection of the j = 0 ( j = 2)
pairing onto the conduction or valence bands give rise to
momentum-independent (dependent) s-wave (d-wave) super-
conductivity on the Fermi surface [51,56]. Both channels are
band-pseudospin singlets due to Kramers degeneracy. In this
context, we point out an important role played by the normal
state band structure. We note that in a Dirac semiconductor,
six local pairing bilinears, when projected onto the Fermi
surface, transform into two s-wave pairings and four p-wave
pairings (including the analogous paired state of the B phase,
and three polar pairings of 3He), see Appendix C. Thus, while
d-wave pairings in a doped LSM can be realized from an ex-
tended Hubbard model (containing only local or momentum-
independent interactions), in Dirac semiconductors, they may
require nonlocal interactions. The same logic was employed
by Berg and Fu to argue for the naturalness of p-wave pairings
from local interactions in a (topological) Dirac insulator [63].1

In this paper, we carefully catalog the bulk structure of
the nodal loops, single or double Weyl nodes that arise
via combinations of the d-wave pairings (at the cost of the
time-reversal symmetry breaking). We show how strain can

1The reason behind obtaining the d-wave character of the SC gap
when projecting the local pairing onto the Fermi level is reminiscent
of how Fu and Berg obtain an effective p-wave pairing by projecting
the initially local (interband) pairing onto the Fermi surface of a
doped Bi2Se3. In the latter case, the electron dispersion is linear and
the Hamiltonian has a form of a dot-product (p · L) of momentum p
and L = 1 orbital momentum. In the case of the Luttinger metal, on
the other hand, the Hamiltonian is a dot-product of a five-dimensional
vector formed from cubic harmonics and the five components of
the symmetric traceless tensors (Dirac’s � matrices) that transform
like L = 2 under the SU(2). Thus the L = 2 character results in the
d-wave pairing when projected onto the Luttinger Fermi surface,
compared to L = 1 in the case of Ref. [63].

promote particular d-wave pairings, whilst simultaneously
inducing a parasitic s-wave component. We also consider the
effects of quenched disorder on the bulk quasiparticle density
of states (DoS). In addition, we determine the anomalous spin
and/or thermal Hall conductivities expected from possible
time-reversal symmetry-breaking orders. We now highlight
our main results.

(1) We determine the transformation of various local pair-
ings under the cubic point group symmetry and the spectra
of BdG quasiparticles inside various paired phases. We show
that while pseudospin singlet s-wave pairing (transforming
under the A1g representation) induces a full gap, each of
the five simple d-wave pairings (belonging to T2g and Eg

representations of the Oh point group) produces two nodal
loops on the Fermi surface (see Sec. II and Table I). However,
due to the underlying cubic symmetry, it is always possible
to find a specific phase locking among the d-wave compo-
nents that eliminates the nodal loops from the spectra and
yields only few isolated simple Weyl nodes (characterized by
monopole charges Wn = ±1). See Secs. III B and III C. The
DoS around each Weyl node vanishes as �(E ) ∼ |E |2. Within
a weak-coupling pairing picture, complex (e.g., d + id) Weyl
superconductors are therefore energetically favored over the
simple d-wave nodal-loop pairings, since the former cause an
additional power-law suppression of the DoS [�(E ) ∼ |E | for
nodal loop → |E |2 for Weyl]. Nodal superconductivity can
also be realized when the pairing interactions in the Eg and
T2g channels are comparable, discussed in Sec III D, typically
supporting simple Weyl nodes with Wn = ±1. By contrast,
double-Weyl nodes (with monopoles charges Wn = ±2) can
only be found inside the dx2−y2 + idxy phase, which results
from a competition between Eg and T2g pairings. This gives
�(E ) ∼ |E | at low energies.

(2) The emergent topology of BdG-Weyl quasiparticles
(and therefore the symmetry of the underlying paired state)
can be probed from the measurement of the anomalous pseu-
dospin and thermal Hall conductivities, discussed in Sec. III E.
We show that despite possessing Weyl nodes the net anoma-
lous pseudospin and thermal Hall conductivities inside the Eg

paired state are precisely zero, while these are finite in any
high-symmetry plane inside the T2g paired states. On the other
hand, when pairing interactions in the Eg and T2g channels
are of comparable strength, only the dx2−y2 + idxy paired state
supports nontrivial anomalous pseudospin and thermal Hall
conductivities (see Sec. III E). These results stem from the
momentum-space distribution of the Abelian Berry curvature,
shown in Figs. 4 and 5.

(3) In strongly correlated quantum materials, a recurring
question is the coexistence of otherwise competing orders.
This includes the coexistence of charge-density-wave and
superconductivity in the cuprates, as well as magnetic and
superconducting phases in heavy-fermion compounds. Here
we demonstrate that the formation of any d-wave pairing in
an LSM breaks the cubic symmetry and causes a small lattice
distortion or nematicity that in turn induces an even smaller
s-wave component. Thus any d-wave paired state is always
accompanied by a parasitic s-wave counterpart. Such nontriv-
ial coupling between d-wave and s-wave superconductivity
with the lattice distortion can be exploited to strain engineer
various d + s paired states, by applying a weak external
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TABLE I. Classification of six local pairing operators in Eq. (2.13) for the Luttinger semimetal, and corresponding nodal-loop structures
for five basis d-wave pairings. These pairing operators are time-reversal even (constituting a six-dimensional basis for local pairings), and we
shall consider the time-reversal odd s + id (see Sec. II E) and d + id (see Sec. III and Table II) combinations in subsequent sections. (First
column) All six possible local pairings in a Luttinger semimetal. (Second column) Representation of the corresponding pairing close to the
Fermi surface in the conduction or valence band. (Third column) Transformation of each pairing under the specific irreducible representation
of the octahedral group Oh (nature of individual pairing). (Fourth column) Quasiparticle spectrum inside each individual paired state. Here,

k±
F = √

2m±∗ |μ| is the Fermi momentum in the conduction and valence bands, respectively, and k⊥ =
√

k2
x + k2

y . Since the form of the local

pairing does not depend on the choice of band, we here take k± → kF for notational simplicity. For a general discussion on pairing in a cubic
system, see Ref. [77].

Pairing in LSM Pairing near Fermi surface IREP (Nature) Quasiparticle spectrum

�0 �0 �0σ0 A1g (s-wave) Fully gapped

�1 �1 �1d̂1σ0 ≡ √
3�1 (k̂yk̂z )σ0 T2g (dyz) Gapless: two nodal loops,

{
k2

x + k2
z = k2

F , ky = 0

k2
x + k2

y = k2
F , kz = 0

}

�2 �2 �2d̂2σ0 ≡ √
3�2 (k̂x k̂z )σ0 T2g (dxz) Gapless: two nodal loops,

{
k2

y + k2
z = k2

F , kx = 0

k2
x + k2

y = k2
F , kz = 0

}

�3 �3 �3d̂3σ0 ≡ √
3�3 (k̂x k̂y )σ0 T2g (dxy) Gapless: two nodal loops,

{
k2

y + k2
z = k2

F , kx = 0

k2
x + k2

z = k2
F , ky = 0

}

�4 �4 �4d̂4σ0 ≡
√

3
2 �4

(
k̂2

x − k̂2
y

)
σ0 Eg (dx2−y2 ) Gapless: two nodal loops,

{
k2
⊥ + k2

z = k2
F , kx = +ky

k2
⊥ + k2

z = k2
F , kx = −ky

}

�5 �5 �5d̂5σ0 ≡ �5
2

(
2k̂2

z − k̂2
x − k̂2

y

)
σ0 Eg (d3z2−r2 ) Gapless: two nodal loops,

⎧⎪⎨
⎪⎩

k⊥ = kF

√
2
3 , kz = + 1√

3
kF

k⊥ = kF

√
2
3 , kz = − 1√

3
kF

⎫⎪⎬
⎪⎭

strain in particular directions (see Sec. IV). Specifically, strain
applied along the [0,0,1], [1,1,1], and [1,1,0] directions leads
to the formation of s + d3z2−r2 , s + dxy + dyz + dxz, and s +
d3z2−r2 + dxy pairing, respectively. External strain along these
three directions, therefore, induces time-reversal-symmetric
mixing of s- and d-wave pairing.

(4) Impurities and quenched disorder can be particularly
important in low-carrier systems. We investigate the stabil-
ity of various nodal topological superconductors against the
onslaught of randomness or disorder. Using renormalization
group and the ε expansion, we find that Weyl superconductors,
comprised of Weyl nodes with monopole charges ±1, remain
stable for sufficiently weak disorder, while at stronger disorder
the system can undergo a continuous quantum phase transi-
tion into a thermal metallic phase where �(0) is finite. The
disorder-controlled quantum critical point is accompanied by
a wide quantum critical regime, where �(E ) ∼ |E |, as long
as |E | � Tc (the superconducting transition temperature). By
contrast, both double-Weyl and nodal-loop paired states enter
into a diffusive thermal metallic phase for arbitrarily weak
strength of disorder (see Sec. V).2

(5) In this work, we make an independent attempt to under-
stand the peculiar power-law suppression of the penetration
depth (�λ) in YPtBi [47] by combining a power-law con-
tribution (arising from gapless quasiparticles in the d-wave

2In the presence of strong interband coupling due to pairing inter-
actions, nodal Fermi points gets replaced by BdG Fermi surface at
lowest energy [53,54]. Our conclusions remain valid above the scale
of BdG Fermi energy. Presently the strength or importance of such
interband coupling in real materials is unknown.

paired state, for example), with an exponential one, stemming
from an s-wave component (due to its inevitable coexistence
with any d-wave pairing). We find that even though both T
linear and T 2 fitting give qualitative agreement, the former
one yields a better fit over a larger window of temperature
(see Fig. 10). A T -linear dependence may arise from either
double-Weyl nodes or nodal loop(s) in a clean system, but it
might also represent BdG-Weyl quasiparticles in the presence
of quenched disorder. The dirty BdG-Weyl system can exhibit
�(E ) ∼ |E | scaling throughout a wide quantum critical fan.
We propose future experiments to determine the scaling of
specific heat, thermal conductivity, NMR relaxation time,
STM measurements of surface Andreev bound states, and
anomalous thermal Hall conductivity that can pin down the
nature of the pairing in this class of materials (see Sec. VI).
Finally, we also discuss the consequences for superconduc-
tivity of the lack of spatial inversion symmetry, which is
broken in the half-Heusler family of materials, in Sec. VI and
Appendix J.

B. Odd parity pairing: robust surface states
and topological protection

Odd-parity pairing can arise in the LSM via j = 1 or
j = 3 spin SU(2) tensor operators, coupled to odd powers of
momentum to satisfy the Pauli principle. The j = 3 operator
[Eq. (A5) in Appendix A] plays the key role in proposals for
p-wave, “septet” pairing that has been extensively discussed
in the context of YPtBi [47,51,53]. It could also arise in an
exotic, isotropic f -wave pairing scenario [49].

In this paper, we instead focus on simple isotropic p-wave
pairing, different from the gapless septet scenario proposed
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by other authors [47,51,53]. This simpler odd-parity pairing
is nevertheless very rich, and can be viewed as the spin-3/2
generalization of the B phase of 3He [15], giving rise to
fully gapped, strong class DIII topological superconductivity
[9,48,49,52].3 Unlike model spin-1/2 topological supercon-
ductors, the gapless surface Majorana fluid that arises from a
higher-spin bulk can exhibit nonrelativistic dispersion [48,49].
The robustness of “topological protection” for such a 2D
surface fluid has not been generally established, and we
have shown previously that interactions can destabilize such
states [52]. In the same work, however, we demonstrated that
topological protection can be enhanced by quenched surface
disorder.

The motivation for studying strong topological supercon-
ductivity in the LSM is twofold. We seek to define topological
protection for surface states of higher-spin superconductors,
since this is an ingredient expected to arise in candidate
materials with strong spin-orbit coupling. At the same time,
the Eliashberg calculations in Ref. [56] suggest that isotropic
p-wave pairing gives the dominant non-s-wave channel in
a hole-doped LSM due to optical-phonon–mediated pairing
interactions.

For isotropic p-wave pairing in the LSM, we show that
the bulk winding number ν = 3 describes superconductivity
arising from either the |ms| = 3/2 valence or |ms| = 1/2 con-
duction band; here ms denotes the spin projection. Unlike the
winding number, the dispersion of the surface Majorana fluid
does depend on |ms|. We investigate the effects of quenched
disorder on the cubic-dispersing fluid that obtains in the hole-
doped scenario.

The surface states of spin-1/2 TSCs with disorder are
by now well-understood, thanks in large part to their exact
solvability near zero energy using methods of a conformal
field theory (CFT) [64,65]. CFT predicts universal, disorder-
independent statistical properties of the surface states, in-
cluding power-law scaling of the average low-energy surface
density of states �S(ε) and “multifractal” scaling of surface
state wave functions. Predictions for a given class depend
only on the bulk winding number ν [64,65], e.g., �S(ε) ∝
|ε|−1/(2ν−3) for class DIII [65,66].

For the cubic-dispersing surface states of the hole-doped
LSM with isotropic p-wave pairing, we compare numerics to
the corresponding ν = 3 CFT predictions [52,65,67]. While
our numerical results give disorder-independent multifractal
spectra for ν = 3, the agreement with the SO(n)3 CFT [52,65]
is rather poor. (Here, n → 0 counts replicas, used to define
the disorder-averaged field theory [68].) We believe that this
is due to the limited system size afforded by our numerics;
finite-size effects are expected to be worse for stronger mul-
tifractality [67] and multifractality is maximized for lower
winding numbers [65]. In addition, for ν = 3 the power-law
energy scaling of the average density of states predicted by

3This outcome is insensitive to the magnitude of chemical doping
away from the band touching point. As long as the pairing takes place
in the vicinity of the Fermi surface (realized either in the valence or
conduction band), i.e., when the Fermi momentum k±

F = √
2m±∗ μ is

a real quantity or, equivalently, μ > 0 (see Sec. II for details), it is
topological in nature.

the CFT accidentally coincides with that due to the clean
cubic dispersion, and is therefore not a useful indicator in this
particular case.

Instead of performing a finite-size scaling analysis (see
Ref. [69]), we invent a generalized surface theory that allows
the investigation of a Majorana surface fluid corresponding to
a generic bulk winding number ν. Computing both the scaling
exponent for �S(ε) and the zero-energy multifractal spectrum,
we find excellent agreement between the SO(n)ν CFT [52,65]
and numerics for ν = 5, 7, predicted to exhibit much weaker
multifractality.

Since the SO(n)ν theory is known to be stable against
the effects of interparticle interactions [65], our results imply
that surface states enjoy robust topological protection, with
signatures such as the universal tunneling density of states
�S(ε) and the precisely quantized thermal conductivity [70]
that could be detected experimentally. That we find critical de-
localization for any ν is surprising, since the naive expectation
would be a surface thermal metal phase. (The thermal metal
would exhibit disorder-dependent spectra.) Indeed, the CFT is
technically unstable towards flowing into the thermal metal,
see Fig. 11. Our results for generic winding numbers suggest
that, in the presence of disorder, the topology fine tunes the
surface to the CFT.

We emphasize that the clean limit for our generalized sur-
face model exhibits a stronger density of states van Hove sin-
gularity with larger ν. This would suggest a stronger tendency
at larger winding numbers for the disorder to induce a diffu-
sive surface thermal metal, due to the high accumulation of
states in a narrow energy window that can be admixed by the
disorder. It is all the more surprising that we recover universal,
critical CFT results with better agreement for increasing ν.
We also expect that ν = 3 (relevant to the LSM) would give
results consistent with the SO(n)3 CFT for bigger system
sizes than we can access here, which could capture the highly
rarified wave functions and predicted strong multifractality.
This extrapolation from results at larger winding numbers is
in the same spirit as a large-N expansion.

It is also interesting to note that the simple generalized
surface theory introduced here allows us to “dial in” any of the
infinite class of the Wess-Zumino-Novikov-Witten (WZNW)
SO(n)ν conformal field theories (with n → 0), simply by
tuning one parameter ν ≡ 2k + 1, with k ∈ {1, 2, 3, . . .}. By
contrast, the WZNW models with higher levels typically
arise only by fine-tuning more and more parameters. This
is because higher-level WZNW models usually represent
multicritical points in 1+1-quantum field theories [71,72].
In the context of TSC surface states, (nonunitary) WZNW
theories are robustly realized without fine-tuning [52,65,69],
an emerging novel aspect of “topological protection” for 3D
topological superconductors.

C. Outline

This paper is organized as follows. The low-energy de-
scription of a LSM, possible pairings (both even- and odd-
parity) and their classification are discussed in Sec. II. The
competition between even parity s- and d-wave supercon-
ductivity is discussed in Sec. II E. In Sec. III, we focus on
the competition amongst various d-wave pairings belong-
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ing to different representations, and the emergence of Weyl
superconductivity at low temperatures. We also compute the
nodal topology of Weyl pairings and its manifestation through
anomalous pseudospin and thermal Hall conductivities. Sec-
tion IV is devoted to the effects of external strain, while
the effects of impurities on BdG-Weyl quasiparticles are
addressed in Sec. V. Connections with a recent experiment
in YPtBi and possible future experiments to pin the pairing
symmetry are presented in Sec. VI. The bulk-boundary corre-
spondence and the surface states of odd-parity p-wave pairing
are discussed in Sec. VII. We conclude in Sec. VIII. Ap-
pendix A summarizes equivalent matrix formulations for the
LSM Hamiltonian. Additional technical details are relegated
to the Appendices.

II. PAIRING IN THE LUTTINGER SEMIMETAL

We review the low-energy description of a LSM, followed
by even- and odd-parity Cooper pairing scenarios. We enu-
merate the nodal-loop structure of all even-parity d-wave
pairings. Finally, we compute the free energy, gap equation,
and transition temperature within BCS theory.

A. Luttinger Hamiltonian

Quadratic touching of the Kramers degenerate valence
and conduction bands at an isolated point [taken to be the
� = (0, 0, 0) point] in the Brillouin zone in three spatial
dimensions can be captured by the k · p Hamiltonian

HL =
∫

d3k
(2π )3

�
†
k ĥL(k) �k, (2.1)

where the four-component spinor �k is defined as

�
k = (

ck,+ 3
2
, ck,+ 1

2
, ck,− 1

2
, ck,− 3

2

)
. (2.2)

Here, ck,ms is the band electron annihilation operator with
spin projection ms ∈ {3/2, 1/2,−1/2,−3/2}. Such quadratic
touching is protected by the cubic symmetry, which restricts
the form of the Luttinger Hamiltonian [16,17] operator to

ĥL(k) =
(

k2

2m0
− μ

)
�0 − 1

2m1

3∑
a=1

da(k)�a

− 1

2m2

5∑
a=4

da(k)�a, (2.3)

where μ is the chemical potential measured from the band
touching point. The d vector appearing in the Luttinger
Hamiltonian is given by d(k) = k2 d̂(k̂), where d̂(k̂) is a
five-dimensional unit vector that transforms in the l = 2
(“d-wave”) representation under orbital SO(3) rotations. Its
components can be constructed from the spherical harmonics
Y m

l=2(θ, φ), see Appendix A. While �0 is a four-dimensional
unit matrix, the five mutually anticommuting matrices appear-
ing in the Luttinger Hamiltonian are given by

�1 = κ3σ2, �2 = κ3σ1, �3 = κ2,

�4 = κ1, �5 = κ3σ3. (2.4)

Two sets of Pauli matrices {κα} and {σα}, with α = 0, 1, 2, 3
operate, respectively, on the sign [sgn(ms)] and the magnitude

[|ms| ∈ {1/2, 3/2}] of the spin projection ms. The � matrices
provide a basis for a symmetric traceless tensor operator
formed from bilinear products of j = 3/2 matrices [Eqs. (A2)
and (A3) in Appendix A] and transform in the j = 2 repre-
sentation of the spin SU(2). Consequently, the Hamiltonian in
Eq. (2.3), is an A1g quantity in a cubic environment. For m1 =
m2, ĥL(k) exhibits continuous SO(3) rotational invariance.

Besides five mutually anticommuting � matrices and the
identity matrix (�0), we can define ten commutators as �ab =
[�a, �b]/(2i) ≡ −i�a�b for a, b = 1, . . . , 5 with a �= b that
together close the basis for all four dimensional matrices.
The ten commutators are the generators of a (fictitious) SO(5)
symmetry. Since d(k) = 0 at the � point of the Brillouin zone
k = 0, the four degenerate bands possess an emergent SU(4)
symmetry at this point. However, at finite momentum, such
symmetry gets reduced to SU(2) × SU(2), stemming from the
Kramers degeneracies of the valence and conduction bands. In
addition, the Luttinger Hamiltonian is invariant under the time
reversal transformation: k → −k and �k → �13�−k. The
antiunitary time-reversal symmetry operator is given by T =
�1�3K , where K is the complex conjugation and T 2 = −1.
The Kramers degeneracy is protected by inversion symmetry
P : k → −k.

Without any loss of generality, but for the sake of technical
simplicity, we work with the isotropic Luttinger model for
which m1 = m2 ≡ m. The Luttinger Hamiltonian then has the
alternative representation,

ĥL(k) = [(λ1 + 5λ2/2)k2 − μ]�0 − 2λ2(J · k)2, (2.5)

with J = (Jx, Jy, Jz ) and k = (kx, ky, kz ). Here, Jx,y,z

are SU(2) generators in the 3/2 representation. The
correspondence between Eqs. (2.3) and (2.5) is λ1 = (2m0)−1

and λ2 = (4m)−1. The Luttinger Hamiltonian can be
diagonalized as D†ĤL(k)D, with the energy spectra

ε±,σ (k) =
(

k2

2m0
− μ

)
± k2

2m
. (2.6)

Here, + (−) corresponds to the |ms| = 1/2 conduction
(|ms| = 3/2 valence) band. We have assumed that m0 > m1,
so that these two bands bend oppositely. The “band
pseudospin” index σ ∈ ±1, and independence of ε±,σ (k)
on σ specifies the Kramers degenerate states in each band.
For a given k, one possible choice is σ = sgn(J · k) (i.e.,
pseudospin-momentum locking), but we will not need to fix
this basis. The diagonalizing matrix D is given by [17]

D = [2(1 + d̂5)]−1/2

[
(1 + d̂5)�0 + i

4∑
a=1

�a5

]
. (2.7)

The pseudospin locking in the valence and conduction bands
becomes transparent with a specific choice of the momentum
k = (0, 0, kz ) for which the Luttinger Hamiltonian from
Eq. (2.3) readily assumes a diagonal form

ĥL(kz ) = Diag.

[
− k2

z

2m−∗
,

k2
z

2m+∗
,

k2
z

2m+∗
,− k2

z

2m−∗

]
− μ, (2.8)

in the spinor basis defined in Eq. (2.2), where m±
∗ =

m0m/|m0 ± m|. Therefore, for m0 > m, the first and fourth
(second and third) entries yield Kramers degenerate spectra
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for the valence (conduction) band. Hence, the pseudospin pro-
jection on the valence (conduction) band is |ms| = 3/2 (1/2).4

B. Even-parity local pairings

In this section, we review even-parity local pairing op-
erators that give rise to pseudospin-singlet s- and d-wave
channels when projected to the Fermi surface [51,56]. We
enumerate the nodal loop states that arise from individual
d-wave pairing (see Table I), and which form the basis for
nodal d + id Weyl superconductors in the sequel. Odd-parity
pairings are considered in Sec. II C.

The effective single-particle pairing Hamiltonian in the
presence of local or intraunit cell superconductivity assumes
the form

H local
pp = �M

∫
d3r �TM� + H.c., (2.9)

where M is a 4 × 4 matrix, �M is the pairing amplitude, T is
the matrix transpose, and H.c. denotes the Hermitian conju-
gate. The Pauli principle mandates that MT = −M, implying
that there are only six possible independent bilinears of the
form �TM�, since the allowed matrices correspond to the
generators of SO(4). Therefore the effective single-particle
Hamiltonian in the presence of all possible local pairings
reads as

H local
pp =

∫
d3r �T[�0�13 + �1�3 + �2�45 + �3�1

+�4�25 + �5�24]� + H.c., (2.10)

where we have used the product basis for the Clifford algebra
[Eq. (2.4)] to express the antisymmetric matrices. We stress
that the existence of the above six local pairing operators
does not depend on the character of the normal state; it relies
only on the fact that the low-energy description of this state
is captured by a four-component spinor. Identical pairing
operators arise for massive Dirac fermions describing either
topological or normal insulators [63,73,74], Weyl semimetals
(where the four-component representation accounts for a pair
of Weyl nodes) [75], and T -preserving nodal-loop semimetals
[76]. However, the physical meaning of these local pairings
crucially depends on the band structure of the parent state.

To characterize local pairings, we now introduce an eight-
component Nambu spinor

�N =
[

�

i�13(�†)

]
, (2.11)

4Note that in the subsequent sections, we use the same band-
diagonalization procedure to investigate the form of even-parity
local (or intraunit cell) pairings as well as odd-parity nonlocal (or
extended) pairings around the Fermi surface. When projected onto
the valence (conduction) band, the pairings takes place among the
spin-3/2 fermions with spin projection |ms| = 3/2 (|ms| = 1/2),
respectively. It turns out that the form of the local pairings (s and d
waves) around the Fermi surface do not depend on the choice of the
band, or equivalently, the spin projections (see Sec. II B), while the
form of the nonlocal p-wave pairing crucially depends on whether
the Fermi surface is realized in the valence or conduction band (see
Sec. VII).

where � is the four-component spinor defined in Eq. (2.2). We
have absorbed the unitary part of the time-reversal operator T
in the lower block of the Nambu spinor. This ensures that �N

transforms the same way as � under spin SU(2) rotations,
because the j = 3/2 generators {Jμ} satisfy the pseudoreality
condition

−�13 (Jμ)T �13 = Jμ, μ ∈ {x, y, z}. (2.12)

In this basis, the single-particle Hamiltonian operator in
the presence of six local pairings [introduced in Eq. (2.10)]
assumes a simple and instructive form

H local
pp =

∫
d3r �

†
N ĥlocal

pp �N ,

ĥlocal
pp = (τ1 cos φ + τ2 sin φ)[�0�0 + �1�1 + �2�2

+�3�3 + �4�4 + �5�5], (2.13)

where φ is the U(1) superconducting phase. The Pauli ma-
trices {τα} act on the particle-hole (Nambu) space. The
identity matrix �0 represents s-wave pairing. By contrast,
as the Clifford matrices transform irreducibly in the j = 2
representation of the spin SU(2), the corresponding pairing
channels �1,...,5 are all (effectively) d-wave. In terms of cubic
symmetry, the pairing proportional to �0 belongs to the trivial
A1g representation. The three pairings proportional to �1,2,3

transform as a triplet under the T2g representation. By contrast,
those proportional to �4 and �5 transform as a doublet under
the Eg representation in a cubic environment.

In the Nambu basis, a Bogoliubov-de Gennes Hamiltonian
ĥ(k) automatically satisfies the particle-hole symmetry

−MP ĥT(−k) MP = ĥ(k), MP = τ2 �13, (2.14)

owing to the reality condition �
†
N (k) = �T

N (−k) MP and
Pauli exclusion. For momentum-independent pairing opera-
tors, Eqs. (2.12) and (2.14) imply that only tensor operators
composed from products with even numbers of spin genera-
tors (e.g., {JμJν}) are allowed. These are precisely the identity
and the anticommuting Clifford matrices (see Appendix A).
Therefore all d-wave pairings can also be considered as
quadrupolar pairings. Since Eq. (2.14) is automatic, we can
combine it with the usual form of time-reversal symmetry to
get the chiral condition

−MS ĥ(k) MS = ĥ(k), MS = τ2. (2.15)

Thus pairings in Eq. (2.13) proportional to τ1 (τ2) are even
(odd) under time reversal (for a fixed phase φ).

We focus on superconductivity in an LSM doped to finite
electron or hole density, away from charge neutrality. The
nature of these pairings becomes transparent after projecting
onto the valence or conduction band. With local pairings the
result is the same for both bands, see Appendix B for details.
If we assume that pairing occurs only in close proximity to
the Fermi surface and does not mix the bands, the projected
pairing Hamiltonian takes the form

ĥ
local
band
pp = (τ1 cos φ + τ2 sin φ)σ0

⎡
⎣�0 +

5∑
j=1

� j d̂ j

⎤
⎦, (2.16)

as shown in Table I (see also Appendix A). Here the Pauli
matrices {σα} act on the pseudospin (Kramers) degenerate
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states within the projected band. All even-parity pairing op-
erators map to pseudospin singlets.

The band-projected kinetic energy term arising from
Eq. (2.3) assumes the simple form in the Nambu basis

ĥband
0 (k) =

[
±
(

k2

2m±∗

)
− μ

]
τ3σ0, (2.17)

where m±
∗ = m0m/|m0 ± m| (and m0 > m). Here, + (−) de-

notes the |ms| = 1/2 conduction (|ms| = 3/2 valence) band.
While both the kinetic and pairing terms involve the Clifford
matrices before the projection, only the kinetic term of the
Luttinger Hamiltonian depends on the five d-wave harmonics
d(k). Post projection, the kinetic term is trivial and the five
pairing operators become d(k) components. Therefore the
band structure in the normal state plays a paramount role in
determining the projected form of the local pairing operators.
The Nambu-doubled four-component spinor describing quasi-
particle excitations around the Fermi surface is defined as
ψ

†
k = [c†

↑,k, c†
↓,k, c↓,−k,−c↑,−k], and the time-reversal opera-

tor in the reduced space reads as T = iσ2K , so that T 2 = −1
as usual.

As a counterexample, we note that the same six local pair-
ings projected into the valence/conduction bands in a massive
Dirac semiconductor give rise to two even-parity s-wave and
four pseudospin-triplet, odd-parity p-wave pairing, including
analogous to the fully gapped B phase and three polar pairings
in 3He, see Appendix C, Table III. Hence, realization of
various superconductivity close to a Fermi surface crucially
depends on the normal state band structure, at least for low
carrier densities.

The quasiparticle spectra inside each of the six local pair-
ing states of the LSM are as follows. The s-wave pairing gives
a fully gapped spectrum everywhere on the Fermi surface. On
the other hand, each component of the five d-wave pairings
supports two nodal loops, along which the Fermi surface
remains gapless. The equations determining the nodal loop for
each d-wave pairing are reported in the rightmost column of
Table I. As a result each d-wave pairing supports “topologi-
cally protected” flatband surface states that span the images
of the bulk nodal loops on each surface [51,53]. We note that
mixing between the conduction and valence bands in paired
states of the LSM can also produce novel effects, such as bulk
quasiparticle Fermi surfaces (instead of nodal points or lines)
[53,54].

The density of states (DoS) in the presence of isolated
nodal loops vanishes as �(E ) ∼ |E |. In Sec. III, we will show
that underlying cubic symmetry causes specific phase locking
among different components of the d-wave pairings belonging
to either T2g or Eg representation (see Table I), at the cost
of the time-reversal symmetry. Consequently, the paired state
only supports simple Weyl nodes at a few isolated points
on the Fermi surface, around which the DoS vanishes as
�(E ) ∼ |E |2. Such reconstruction of the quasiparticle spectra
thus causes a power-law suppression of the DoS and that way
optimizes the condensation energy gain. Thus we expect Weyl
superconductors to be energetically favored over the nodal-
loop pairings, at least within the framework of weak BCS
superconductivity and for dominant d-wave pairing coupling
strengths.

C. Odd-parity, momentum-dependent pairings

In the isotropic case (m1 = m2 = m), odd-parity pairings
can be classified via angular momentum addition [56]. A
basis of ten Hermitian, particle-hole–odd operators with well-
defined SU(2) spin j is given by [cf. Eq. (2.13)]

τ1,2 ⊗
{

Jμ, j = 1
T μνγ , j = 3

}
. (2.18)

Here, T μνγ is a completely symmetric, traceless tensor op-
erator formed from triple products of Jμ generators, see
Eq. (A5). Equation (2.14) implies that particle-hole allowed
pairing operators obtain by multiplying any of the matrices
in Eq. (2.18) by odd powers of momentum. The resulting
momentum-dependent pairing operator with particle-hole ma-
trix τ1 (τ2) is even (odd) under time reversal [Eq. (2.15)].

For orbital p-wave pairing (l = 1), angular momentum
addition gives l ⊗ j ≡ jtot = 0 ⊕ 1 ⊕ 2 for j = 1 and jtot =
2 ⊕ 3 ⊕ 4 for j = 3. We highlight a few combinations.
The jtot = 0 corresponds to a fully gapped, isotropic p-wave
superconductor. For weak pairing, this represents strong topo-
logical superconductivity [9,48,49], which we study in detail
in Sec. VII, below. The jtot = 1 state corresponds to gapless
“px-wave” pairing. The jtot = 2 states arising from j = 1 and
j = 3 spin can mix, since only the total angular momentum is
well-defined [56].

The p-wave “septet” order considered in the context of
YPtBi is also built from the j = 3 operator [47,51,53]. Finally,
we note that isotropic f -wave pairing of the form

τ1,2 ⊗ T μνγ kμkνkγ , jtot = 0,

turns out to give the same band-projected Bogoliubov-de
Gennes Hamiltonians as the isotropic p-wave case, Eq. (7.4),
except that the pairing potential is multiplied by an additional
factor of k2 in each case.

D. Free energy and gap equation

We now discuss the free energy and resulting gap equations
for the five d-wave pairings summarized in Table I. At zero
temperature, the free energy of a superconductor is given by
[78]

Fj = |�d |2
2gd

− a3
∫

|ξk |<�D

d3k
(2π )3

√
ξ 2

k + |�d |2d2
j (k),

(2.19)

where d j (k), j ∈ {1, . . . , 5} are the d-wave harmonics (see
the second column of Table I), ξk ≡ k2

2m∗ − μ, a denotes the
lattice spacing, gd is the coupling strength, and we set h̄ = 1
throughout. The pairing is restricted to an energy window
set by the (effective) Debye frequency �D. We introduce
dimensionless variables defined via f j ≡ Fj/[μ2�(μ)], x ≡
|k|/kF , λd ≡ gd�(μ), �̂d ≡ �d/μ, and ωD ≡ �D/μ, where
�(μ) = 2a3m∗√2m∗μ/(2π2) is the DoS at the Fermi level. In
what follow, we throughout use the above set of dimensionless
variables.
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FIG. 1. The temperature dependence of the superconducting gap
for (a) dx2−y2 and (b) d3z2−r2 pairings, calculated with λd = 1 and
ωD = 0.02. The two gaps have identical transition temperature (Tc)
given by Eq. (2.24), but are generally different at any lower temper-
ature T < Tc, with the zero-temperature values approximately given
by Eq. (2.22).

In terms of these dimensionless variables the correspond-
ing gap equation is of the form:

1

λd
=

∫ ωD

−ωD

dy

√
1 + y

2

∫
d�

4π

d2
j (y,�)

Ej (y,�)
tanh

[
Ej (y,�)

2kBT

]
.

(2.20)

where y = x2 − 1, � denotes the angular variables, and

Ej (y,�) ≡
√

y2 + |�̂d |2d2
j (y,�) is the (dimensionless) bulk

quasiparticle energy. At zero temperature, the above gap equa-
tion can be simplified provided the pairing takes place within
a thin shell around the Fermi momentum so that ωD � 1,
yielding

1

λd
=

∫
d�

4π
d̂2(�) ln

⎡
⎣ωD +

√
ω2

D + |�̂d |2 · d̂2(�)

�̂d · d̂ (�)

⎤
⎦,

(2.21)

where d̂ (�) is a purely angle dependent form factor. This
equation can be solved analytically in the standard BCS weak-
coupling approximation, |�d | � ωD, yielding

�x2−y2 (0) = �xy(0) = 3.355 ωD exp(−5/λd ),

�3z2−r2 (0) = 3.501 ωD exp(−5/λd ). (2.22)

The appearance of the factor of 5 in the exponent can
be traced to the angle average of the d-wave form factors∫

d� d̂2(�)/(4π ) = 1/5, resulting in an exponential sup-
pression of the gap compared to the well known s-wave result:
�s(T = 0) ≈ 2ωD exp(−1/λs) [78].

FIG. 2. Superconducting gap profiles for (a) dx2−y2 and (b)
d3z2−r2 pairing on an isotropic Fermi sphere (realized for m1 = m2),
with the red curves representing the nodal lines of the gap (see
Table I). It is obvious that the two gap structures cannot be related
by any SO(3) rotation. By contrast, any of the three T2g gaps can be
obtained by an appropriate rotation of the dx2−y2 gap, shown in (a).

It may appear surprising, at first glance, that the two Eg d-
wave harmonics have different values of the superconducting
gap in Eq. (2.22) at T = 0. This is not a mistake, and the
numerically exact solution of the gap equation Eq. (2.20)
leads to the identical conclusion, see Fig. 1, with about 4%
difference between the zero-temperature values of the gap.
This fact, identical to the case of d-wave pairing of spin-
1/2 particles, is actually well documented [77] but perhaps
not always appreciated. What is true is that the two Eg

harmonics have the same Tc, by virtue of belonging to the
same representation of the cubic point group, but the same
cannot be said about the order parameters below Tc, as our
Fig. 1 demonstrates. Degeneracy lifting within the Eg sector
was previously discussed in Ref. [77], however necessitating
consideration of the sixth-order terms in the expansion of the
Landau potential, valid near Tc. Here we demonstrate, perhaps
more transparently, that the zero-temperature solutions of the
gap equations (2.22) display splitting within the Eg doublet.
Our analysis is valid far away from Tc (including at zero
temperature) where the argument of Ref. [77] can no longer
be applied. Simply put, the magnitudes of the superconducting
order parameters within the Eg doublet are not equal because
of the different geometry of the nodal loops in dx2−y2 and
d3z2−r2 paired states, as shown in Fig. 2. Said differently, there
is no way to rotate these two harmonics into each other by
any SO(3) rotation (let alone by any operation of a cubic
point group). The difference in the order parameter amplitudes
becomes smaller on approaching Tc (see Fig. 1), consistent
with the analysis in Ref. [77].5

We conclude that the two Eg solutions have different gap
values. These solutions however have the identical transition
temperature Tc, protected by the cubic symmetry. Indeed, the

5This outcome can be contrasted with the scenario for a p-wave
pairings. Let us assume that the system is spherically or SO(3) sym-
metric. Then each component of p-wave superconductor, namely,
px, py, and pz pairings, possesses identical transition temperature,
free energy, and gap size at T = 0, since the p-wave pairings
transform as a “vector” under SO(3) symmetry. By contrast, five
d-wave pairings transform as components of a “rank-2 tensor” under
SO(3) rotation, leading to the mentioned degeneracy lifting in the
free energy and gap size at T = 0.
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expression for Tc follows from Eq. (2.20), yielding

1

λd
=

∫ ωD

−ωD

dy
(1 + y)

5
2

2y
tanh

(
y

2kBTc

)∫
d�

4π
d̂2

j (�). (2.23)

Symmetry requires that
∫

d� d̂2
j /(4π ) = 1/5 for all d-wave

harmonics (belonging to Eg and T2g representations), and thus
all five d-wave pairings must have the identical Tc. Weak-
coupling (ωd � 1) yields

kBTc = 2eγ

π
ωD e− 5

λ ≈ 1.134 ωD e− 5
λ , (2.24)

where γ ≈ 0.577 is the Euler’s number. It follows from the
above and from Eq. (2.22) that the ratio

�d (0)

kBTc
=

{
2.96 for x2 − y2, xy, xz, yz,
3.09 for 3z2 − r2,

(2.25)

is nonuniversal and should be contrasted with the well known
result �s(0)/kBTc = 1.76 for s-wave pairing [78].

Despite having the same transition temperature, d3z2−r2

pairing will be realized as it has a higher (by modulus)
condensation energy gain, which can be appreciated from the
difference between the free energies in the normal (N) and
superconducting (SC) states

� f |T =0 = ω2
D

2

∫
d�

4π

⎡
⎣
√

1 + �̂d (0)2

ω2
D

d̂2
j (�) − 1

⎤
⎦ (2.26)

in terms of the dimensionless parameters defined earlier (see
Appendix D) for the details of the derivation). Note that the
above expression should not be thought of as the Landau free
energy—indeed, �̂d (0) here is not a variational parameter,
but rather the self-consistent solution of the zero-temperature
gap equation (2.21). Expanding the integrand in the powers of
(�̂d/ωD), we obtain

fN − fSC = |�̂d |2
20

+ O(|�̂d |4). (2.27)

As emphasized above, this equation expresses the well known
fact that the Cooper pair condensation energy is proportional
to the square of the superconducting order parameter. Con-
sequently, the cubic harmonic with the largest value of �d ,
namely, 3z2 − r2, will have the lowest energy, as verified by
our numerical solution in Fig. 1.

E. s + id pairing

Recall that in addition to d-wave pairings, the even-parity
local pairing also contains an s-wave component that trans-
forms under the A1g representation (the first row in Table I).
Such solution is generically fully gapped, with the exception
of accidental nodes in an extended s wave, which occur if
the Fermi surface happens to cross the lines of nodes (for
instance, �(k) = cos(kx ) cos(ky) has nodes at kx,y = ±π/2).
We exclude this latter possibility based on the fact that this
would require a very large doping of the Luttinger semimetal
in order to achieve the necessarily large kF . For low car-
rier density (kF → 0), the amplitude of such an extended s-
wave pairing also vanishes as we approach the band-touching
points. Hence, the nucleation of extended s-wave pairing is
energetically more expensive.

In this section, we instead investigate the possibility of
a time-reversal symmetry breaking s + id pairing. Such a
solution necessarily involves a combination of two different
irreducible representations, and one generically finds �s �=
�d in the Bogoliubov quasiparticle dispersion:

Es+id (k) = [
ξ 2

k + |�s|2 + |�d |2d2(k)
]1/2

, (2.28)

where the five d-wave form factors d (k) are listed in Ap-
pendix A. It is intuitively clear that for such an s + id so-
lution to be realized, pairing strengths λs and λd need to be
comparable: otherwise, a pure s wave or a pure d wave (more
precisely, d + id) will dominate. One can therefore imagine
that by tuning the ratio r = λd/λs, the s + id solution might
be realized in an intermediate parameter range. To see whether
this is, indeed, the case, we must solve a gap equation similar
to Eq. (2.21) in Sec. II D for each of the two gap components

�̂s

λs
=

∫ ωD

−ωD

dy

2

∫
d�

4π

√
1 + y �̂s√

y2 + |�̂s|2 + |�̂d |2d2(y,�)
,

(2.29)

�̂d

λd
=

∫ ωD

−ωD

dy

2

∫
d�

4π

√
1 + y �̂d d2(y,�)√

y2 + |�̂s|2 + |�̂d |2d2
j (y,�)

,

(2.30)

where �̂ j = � j/μ and y = (k/kF )2 − 1 are the dimension-
less parameters, introduced in Sec. II D.

The coupled system of equations (2.29) and (2.30) does
not lend itself to an analytical solution, nevertheless the
solution can be obtained numerically, with the result shown
in Fig. 3(a). At first, for low values of r = λd/λs, the only so-
lution to Eq. (2.30) is a trivial one: �̂d = 0, resulting in a pure
s-wave solution. As the strength of d-wave pairing grows,
a nonzero value of �̂d (blue diamonds) starts developing
above a certain value rc1 � 5, and an s + id solution appears
in a finite region of the phase diagram rc1 < r < rc2 [ma-
genta shading in Fig. 3(a)]. Above the second critical point,
r > rc2 ≈ 7.75, only a trivial solution �̂s = 0 is possible,
resulting in a pure d wave for large coupling strength λd . See
Appendix F for details.

So far, it appears that the initial intuition was correct and
that the s + id solution exists in an intermediate regime of
coupling strength rc1 < r < rc2. However, one must carefully
consider other competing orders: in particular, since we are
entertaining the possibility of time-reversal symmetry broken
phases, we must also include d + id order into the consider-
ation. Allowing for the d + id solution (specifically, dx2−y2 +
id3z2−r2 pairing, as it is energetically the most favorable state
in the Eg sector, see Sec. III B), we find that �d+id rises
precipitously with increasing λd [black squares in Fig. 3(a)]. It
is clear that the d + id order parameter grows parametrically
faster than that of the pure d wave and that it should dominate
for sufficiently large λd . This is intuitively clear since the
d + id solution only has point nodes, as discussed in Sec. III,
and is therefore energetically more favorable than the pure d
wave with its line nodes. This argument can be made rigorous
by comparing our result for dx2−y2 from Eq. (2.22) to that of
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FIG. 3. Competition between s + idx2−y2 and dx2−y2 + id3z2−r2

pairings as a function of pairing strength ratio λd/λs, computed
for a fixed λs = 0.4. (a) Zero-temperature gap values in the d + id
channel (black squares), as well as the s component (circles) and d
component (diamonds) of the s + id solution. The shaded magenta
region indicates the (unstable) s + id phase with nonzero values of
both s and d components. (b) The corresponding free energies in
these two channels. The vertical dotted line indicates the position of
a first-order phase transition from a pure s-wave pairing on the left,
to the (d + id ) pairing on the right.

dx2−y2 + id3z2−r2 solution [see Sec. III B and Eq. (3.6)]:

�̂d = 3.355 ωD exp

(
− 5

λd

)
,

�̂d+id = 2.705 ωD exp

(
− 5

2λd

)
. (2.31)

Hence the d + id order parameter is parametrically larger than
the pure d wave one because of the value in the exponent.
Therefore the question is: can the s + id phase survive the
competition against its d + id rival?

To answer this, we plot the energies of the two solutions
in Fig. 3(b), from which it becomes evident that d + id has
lower energy than pure s wave or s + id , provided r > r0 ≈
2.9 (to the right of the vertical dashed line in Fig. 3). The
entire region of existence of the putative s + id phase lies
at coupling strength r > r0, and we conclude that the s + id
phase is therefore energetically unstable. Instead, there is a
first-order phase transition (i.e., an energy level crossing) at
r = r0 from pure s wave directly into the d + id phase. The
phase diagram is summarized in Fig. 3(b). Such outcome
is rooted in the underlying cubic symmetry of the system,
for which Eg is a two-component representation, permitting

a dx2−y2 + id3z2−r2 pairing to compete with (and finally win
over) the s + idx2−y2/3z2−r2 pairing. By contrast, in a tetragonal
environment, the dx2−y2 pairing belongs to a single-component
B1g representation, and consequently a s + idx2−y2 pairing
can easily be found for comparably strong λs and λd (for
example, see the magenta shaded region in Fig. 3). Therefore
our formalism is specifically tailored to address the com-
petition among the pairings (including the local as well as
the nonlocal ones), belonging to different multi-component
representations, in a cubic environment; even though we here
explicitly study only the competition between the simplest A1g

pairing and the Eg pairings, it can be generalized to address the
competition between Eg and T2g pairings, as well as A1g and
T2g pairings. We leave these exercises for future investigations.

III. WEYL SUPERCONDUCTORS

In this section, we consider competition among the even-
parity, d-wave pairings enumerated above in Sec. II B and
Table I. The conclusions are identical for weak-pairing su-
perconductivity arising from a finite density Fermi surface in
either the |ms| = 1/2 conduction or |ms| = 3/2 valence bands,
and thus, for notational simplicity, we take m±

∗ → m∗.
We explicitly demonstrate below that pairing energy min-

imization and the underlying cubic symmetry cause specific
phase locking amongst various components of the d-wave
pairings in both the Eg and T2g sectors. As a result, simple
Weyl superconductors are expected to emerge at low temper-
ature if the pairing strength in the d-wave channel dominates.
We first review the nodal topology of such Weyl supercon-
ductors, since we will be interested in its manifestation in
various measurable quantities (such as the anomalous thermal
and pseudospin Hall conductivities, discussed in Sec. III E).

A. Topology of Weyl superconductors

Since all d-wave pairings are band pseudospin singlets we
can further simplify the reduced BCS Hamiltonian ĥpair =
ĥband

0 (k) + ĥ
local
band
pp [see Eqs. (2.16) and (2.17)] as a direct sum

of two 2 × 2 blocks (reflecting the pseudospin degeneracy).
To illustrate the nodal topology of such a system, it is now
sufficient to consider one such block, which can schematically
be written as

ĥk = Ek [n̂k · τ]. (3.1)

For simple Weyl nodes Ek is a general linear function of
all three momenta. Here, n̂k is a unit vector, a function of
only polar (θ ) and azimuthal (φ) angles, and the τs are three
standard Pauli matrices operating on the particle-hole/Nambu
index. The monopole charge of a Weyl node (Wn) is then
defined as

Wn = 1

4π

∫ 2π

0
dφk

∫ π

0
dθk

[
n̂k ·

(
∂n̂k

∂θk
× ∂n̂k

∂φk

)]
, (3.2)

which for simple Weyl nodes Wn = ±1 (see also discussion in
Refs. [75,79–83]). The Weyl node with monopole charge +1
(−1) corresponds to a source (sink) of Abelian berry curvature
of unit strength.

The topological nature of the BdG-Weyl quasiparticles
can also be assessed from the gauge invariant Abelian Berry
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curvature (�n,k), given by

�n,k,a = (−1)n

4
εabc n̂k ·

[
∂n̂k

∂kb
× ∂n̂k

∂kb

]
, (3.3)

with a, b, c = x, y, z and n = 1, 2 are the Bogoliubov
band indices. The Berry curvature distribution in various Weyl
superconducting phases will be displayed below.

Due to the bulk-boundary correspondence, Weyl super-
conductors (arising from time-reversal symmetry breaking
d + id pairings) support topologically protected pseudospin-
degenerate Fermi arc surface states, which connect the pro-
jections of the Weyl nodes on the surface in the reciprocal
space. By contrast, in the presence of a nodal-loop pairing,
the pseudospin degenerate surface states are completely flat
and correspond to the images of the bulk loop [3]. A detailed
analysis of these topologically protected surface Andreev
bound states is left as a subject for a future investigation. In
the absence of inversion symmetry such surface states lose the
pseudospin degeneracy, which could be directly observed in
scanning tunneling microscopy (STM) measurements. Weyl
nodes in the normal state can also be realized in a LSM via
Floquet driving [84].

B. Eg pairing

We first investigate the effect of underlying cubic symme-
try in the Eg channel. Since Eg is a two-component representa-
tion, encompassing dx2−y2 and d3z2−r2 pairings, optimal mini-
mization of the condensation energy then enforces nucleation
of dx2−y2 + id3z2−r2 pairing (within the framework of weak-
coupling pairing). The matrix coefficients in the reduced BCS
Hamiltonian

ĥ
Eg

pair =
(

k2

2m∗
− |μ|

)
τ3 +

√
3|�4|
2k2

F

(
k2

x − k2
y

)
τ1

+ |�5|
2k2

F

(
2k2

z − k2
x − k2

y

)
τ2, (3.4)

then appear as the sum of the squares in the expression for
the Bogoliubov dispersion, where kF = √

2m∗μ is the Fermi
momentum. Here and in what follows, we assume that μ > 0
for weak BCS superconductivity that arises from a spheri-
cal Fermi surface in the conduction band. The conclusions
are identical for the hole-doped system. The time-reversal
symmetry in such a paired state is spontaneously broken,
and the quasiparticle spectra vanishes only at eight isolated
points on the Fermi surface ±kx = ±ky = ±kz = kF /

√
3,

precisely where the nodal loops for individual dx2−y2 and
d3z2−r2 pairings cross each other (see Table I and Fig. 2).
These isolated points are Weyl nodes and the phase can be
considered a thermal Weyl semimetal, since the BdG-Weyl
quasiparticles carry well-defined energy (but not well-defined
electric charge). At the cost of shedding the time-reversal
symmetry, the dx2−y2 + id3z2−r2 paired state eliminates the
line nodes of its individual components (see the fifth and
sixth rows of Table I). The distribution of the Abelian Berry
curvature for the dx2−y2 + id3z2−r2 Weyl superconductor is
shown in Fig. 4. For possible dx2−y2 + id3z2−r2 pairing in the
close proximity to a Fermi surface of spin or pseudospin-1/2
electrons in heavy-fermion compounds, see also Ref. [85].

FIG. 4. Distribution of the Abelian Berry curvature for the nodal
Weyl superconductor arising due to dx2−y2 + id3z2−r2 (Eg) pairing.
The source (with outward arrows) and sink (with inward arrows)
are symmetrically placed about the four possible body-diagonal
directions of the spherical Fermi surface (an octupolar arrangement).
The net Berry curvature through any high-symmetry plane therefore
vanishes and the paired state does not support any anomalous pseu-
dospin or thermal Hall conductivity.

Competition within Eg. Given the discussion in Sec. II D,
we know that the two Eg components have different values of
the superconducting gap below Tc. The basis of the Eg repre-
sentation obtains from two independent diagonal components
of a symmetric, 3 × 3 traceless tensor [see Eq. (A3)] and is
therefore not unique. Indeed, dropping the normalization fac-
tors for brevity, one can choose the following basis functions:

Basis A: d1(k)= k2
x − k2

y , d2(k) = 2k2
z − k2

x − k2
y ,

Basis B: d3(k) = k2
z − k2

x , d4(k) = k2
z − k2

y , (3.5)

Basis C: d5(k) = 2k2
x − k2

y − k2
z , d6(k) = 2k2

y − k2
x − k2

z .

Note that in this section and in Appendix D, only d1,...,6 are
the above-defined Eg sector harmonics. This is a different
notation than that employed everywhere else in this paper, as
exemplified by Table I.

Notice that bases A, B, and C are not independent of one
another; for instance, d4 − d3 = d1, d3 + d4 = d2, d5 + d6 =
−d2, and so on. Nevertheless, these bases are distinct in
the sense that no SO(3) rotation can convert one basis into
another. As a result, the corresponding gaps will have different
configurations of nodal loops that cannot be interconverted by
rotations and also different gap values! This raises a nontrivial
question: which one of these three bases has the lowest energy,
when we allow to form a time-reversal symmetry breaking
(dm + idn) order parameter? The details of the analysis are
relegated to Appendix E. Here we quote only the final results.
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The zero-temperature value of the superconducting gap is
given by

�
(X )
Eg

(T = 0) = NX ωd exp

(
− 5

2λd

)
, (3.6)

with NA = 2.705, NB = 2.451, and NC = 2.145 nonuniver-
sal numerical prefactors in the weak-coupling approximation,
see Appendix E. To the lowest order in |�|2, the condensation
energy gain in the (dm + idn) state is

� f ≈ −
∣∣�Eg

∣∣2

4

∫
d�

4π

n∑
j=m

d̂2
j = −

∣∣�Eg

∣∣2

10
+ O(|�d |4),

(3.7)

and thus the solution with the largest value of the zero-
temperature gap, namely the (dx2−y2 + id3z2−r2 ) paired state,
has the lowest energy. However, the location of the nodal
points in any d + id paired state is insensitive to the choice
of basis.

Finally, we note that the preferred pairing channel is se-
lected by the minimum of the free energy, independent of
the chosen basis. We introduce different bases [L ≡ A, B,C
in Eq. (3.5)] only because it is conventional to express L1 +
iL2 paired states in terms of components L1,2 that are each
themselves basis elements, not linear combinations thereof.

Nodal topology. We now investigate the nodal topology
of the eight isolated Weyl nodes inside the dx2−y2 + id3z2−r2

paired state. Since the Weyl nodes are placed along eight
possible [1,1,1] directions, we introduce a rotated coordinate
frame

qx = kx + ky − 2kz√
6

, qy = kx − ky√
2

, qz = kx + ky + kz√
3

,

(3.8)

keeping our focus around k = ±(1, 1, 1)kF /
√

3. In this ro-
tated co-ordinate system the Weyl nodes are located at q =
(0, 0,±1)kF . The reduced BCS Hamiltonian [see Eq. (3.4)]
for the dx2−y2 + id3z2−r2 state then becomes

ĥ
Eg

pair = ±[vxτ1qx + vxτ2qy + vzτ3δqz] + O
(
k−2

F

)
, (3.9)

where vx = vy = √
2|�Eg|/kF , vz = kF /m∗, and δqz = qz ±

kF . Equation (3.2) then implies that the Weyl nodes located at
k = ±(1, 1, 1)kF /

√
3 are characterized by monopole charge

Wn = ±1 [see Eq. (3.2)]. We also find that the Weyl nodes
located at k = (−1,−1, 1)kF /

√
3, (−1, 1,−1)kF /

√
3, and

(1,−1,−1)kF /
√

3 are characterized by monopole charge
Wn = +1. On the other hand, the Weyl nodes located at k =
(1, 1,−1)kF /

√
3, (−1, 1, 1)kF /

√
3, and (1,−1, 1)kF /

√
3

have monopole charge Wn = −1. See also Fig. 4. For an
illustration of nodal topology of dx2−y2 + id3z2−r2 paired state,
also consult Fig. 1 of Ref. [85].

DoS. The nodal topology determines the scaling of the
DoS inside the dx2−y2 + id3z2−r2 paired state. Since the Weyl
nodes bear monopole charge Wn = ±1, the DoS at low enough
energy vanishes as �(E ) ∼ |E |2/|Wn| ∼ |E |2. Recall the DoS in
the presence of a nodal line also scales as �(E ) ∼ |E |. There-
fore, by sacrificing the time-reversal symmetry, the system
gains condensation energy through power-law suppression of
the DoS at low energies.

C. T2g pairing

Since T2g is a three-component representation, we denote
the phases of the complex superconducting pairing amplitudes
associated with the dxy, dxz, and dyz pairings as φxy, φxz, and
φyz, respectively. The nodal loops associated to each of the
three pairing channels in isolation can only be eliminated by
the choice6

(φxy, φxz, φyz ) =
(

0,
2π

3
,

4π

3

)
, (3.10)

The resulting quasiparticle spectrum exhibits eight isolated
gapless points on the Fermi surface. In particular, for the
specific choice (φxy, φxz, φyz ) = (0, 2π/3, 4π/3) the reduced
BCS Hamiltonian reads as

ĥ
T2g

pair =
(

k2

2m∗
− |μ|

)
τ3 + �T2g

k2
F

[√
3

4
kz(kx − ky)τ2

+
√

3

2

(
kxky − 1

2
kzkx − 1

2
kzky

)
τ1

]
, (3.11)

and the energy spectrum vanishes at

(a) = (0, 0,±1)kF , (b) = (0,±1, 0)kF ,

(c) = (±1, 0, 0)kF , (d ) = ± (1, 1, 1)kF /
√

3. (3.12)

Note that the pairs of Weyl nodes denoted by (a), (b) and
(c) are located on the three C4v axes, while the Weyl nodes
(d ) are located on one of the four C3v axes. As we discuss
below, any other phase locking amongst the three components
of the d-wave pairing produces at least one nodal loop in
the quasiparticle spectrum. Thus within the framework of a
weak-coupling pairing mechanism the above phase locking
is energetically most favored. The distribution of the Abelian
Berry curvature in the presence of this pairing is shown in
Fig. 5. Next we discuss the nodal topology of the Weyl nodes
reported in Eq. (3.12).

Nodal topology. The reduced BCS Hamiltonian in the close
proximity to the Weyl nodes (a) assumes the form

ĥ
T2g

pair,(a) = ±[τ3vzδpz − τ1vx px + τ2vy py], (3.13)

where δpz = kz ± kF , px = kx+ky√
2

, py = kx−ky√
2

, vz = kF /m∗,

vx = vy = √
6|�T2g|/4kF . Therefore the Weyl nodes located at

k = (0, 0,±kF ) have monopole charge Wn = ∓1. Following
a similar analysis, we find that the Weyl nodes located at k =
(0,±kF , 0) are accompanied by monopole charge Wn = ±1,
and those residing at k = (±kF , 0, 0) have monopole charge
Wn = ∓1.

Following the discussion presented in Sec. III B, we can
immediately come to the conclusion that the Weyl nodes
(d ) [see Eq. (3.12)] are also simple, and the members

6This paired state is characterized by an eightfold
degeneracy, which can be appreciated in the following way.
Four degenerate states are realized with (φxy, φxz, φyz ) =
(0, 2π/3, 4π/3), (0, 2π/3 + π, 4π/3), (0, 2π/3, 4π/3 + π ), and
(0, 2π/3 + π, 4π/3 + π ). The remaining fourfold degeneracy is
achieved by φxz ↔ φyz [51,85], leaving φxy unchanged [set by the
global U(1) phase locking].
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FIG. 5. Distribution of the Abelian Berry curvature for the nodal
Weyl superconductor arising from a specific phase locking amongst
dxy, dxz, and dyz (T2g) pairings, given by Eq. (3.10). Weyl node pairs
are enumerated in Eq. (3.12). In the figure, the top and bottom pair of
nodes represent set (a), left and right pair set (b), front and back pair
set (c), and the two diagonally opposite ones set (d ). The net Abelian
Berry curvature of such a paired state does not vanish through any
high-symmetry plane, and concomitantly the paired state exhibits
nontrivial anomalous pseudospin and thermal Hall effects.

k = ±(1, 1, 1)kF /
√

3 have monopole charge Wn = ±1.
Therefore the DoS around all eight simple Weyl nodes van-
ishes as �(E ) ∼ |E |2. All eight Weyl nodes arising due to
the pairing in the T2g sector are simple Weyl nodes with
unit monopole charge, similar to the situation for Eg pairing.
However, the arrangement of these Weyl nodes on the Fermi
surface are completely different in these two sectors (compare
Figs. 4 and 5), which bears important consequences for the
anomalous thermal and pseudospin Hall conductivities, see
Sec. III E.

Alternative phase locking. We now briefly discuss a
few other possible phase lockings among three components
of T2g pairings: (i) �1 = �2 = 0; (ii) �3 = 0, (φxy, φxz ) =
(0, π/2); and (iii) (φxy, φxz, φyz ) = (0, 0, 0). The single-
component paired state (i) supports two nodal loops. The
equations of these two nodal loops, along which the gap on the
Fermi surface vanishes, are given in the fourth row of Table I.

The reduced BCS Hamiltonian with relative phase locking
(ii) in the above list reads as

ĥ
T2g

pair,(ii) =
(

k2

2m∗
− μ

)
τ3 +

√
3
∣∣�T2g

∣∣
k2

F

kz(kxτ1 + kyτ2).

(3.14)

The quasiparticle spectrum in the ordered phase supports (a) a
pair of simple Weyl nodes at the north and south poles of the
Fermi surface, i.e., at k = (0, 0,±kF ), and (b) a nodal loop
along the equator of the Fermi surface (kz = 0) with radius
kF . The reduced BCS Hamiltonian around the isolated nodal
points are given by

ĥ
T2g,poles
pair,(ii) = ±[vzδkzτ3 + vxkxτ1 + vykyτ2], (3.15)

FIG. 6. The distribution of the Abelian Berry curvature in the
presence of kz(kx + iky ) pairing on the spherical Fermi surface.
Notice that there is no flux line along the equator of the Fermi
surface where the BdG quasiparticles support a nodal loop. The
Berry flux through the kx-ky plane is finite and consequently the
paired state supports nonzero anomalous pseudospin and thermal
Hall conductivities in the xy plane, given by Eq. (3.27).

where δkz = kz ± kF , vz = kF /m∗, and vx = vy =√
3|�T2g|/kF . Therefore the Weyl nodes residing at the

opposite poles of the Fermi surface are characterized by
the monopole charge Wn = ±1. While the DoS due to
isolated nodal points vanishes as �(E ) ∼ |E |2, that arising
from the nodal loop scales as �(E ) ∼ |E |. Therefore the
low-energy thermodynamic responses are dominated by the
nodal loop. This is also commonly referred as kz(kx + iky)
pairing. The distribution of the Abelian Berry curvature on
the Fermi surface in the presence of kz(kx + iky) pairing is
displayed in Fig. 6. In a cubic environment this paired state
is degenerate with kx(kz + iky) and ky(kz + ikx ) pairings. The
nodal topology of these two states are same as the former one.

Finally, in the presence of phase locking appearing as (iii),
the quasiparticle spectrum supports two isolated nodal loops,
determined by

3k2 −
∑

i, j=x,y,z

kik j = 2k2
F ,

∑
j=x,y,z

k j = ±kF . (3.16)

These two nodal loops are symmetrically placed around one
of the body-diagonal [1,1,1] directions.

Note that while (i) and (iii) produce two nodal loops in the
spectrum of the BdG quasiparticles, (ii) yields only one nodal
loop and a pair of simple Weyl points. Therefore, at least
within the weak-coupling scenario for pairing, (ii) appears to
be energetically more favored among these three possibilities.
Recently, a similar pairing [kz(kx + iky)] has also been
discussed in the context of URu2Si2 [79], possessing
tetragonal symmetry. However, in a cubic environment the
kz(kx + iky) pairing can be energetically inferior to the one
discussed in Sec. III C, with (φxy, φxz, φyz ) = (0, 2π/3, 4π/3)
for example, since this pairing only produces eight isolated
simple Weyl nodes on the Fermi surface, yielding �(E ) ∼ |E |2
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TABLE II. Weyl superconductors that obtain via d + id combinations of T2g and Eg local pairings. (First column) Various possible (all
together six) broken time-reversal paired states resulting from the competition between T2g and Eg pairings. (Second column) The number of
nodes in the spectrum of BdG quasiparticles inside corresponding paired state. (Third column) The location of the gapless points on the Fermi
surface. (Fourth column) The nodal topology of the BdG-Weyl fermions. (Fifth column) Scaling of the density of states (DoS) of the BdG
quasiparticles around the nodes. (Sixth and seventh columns) Anomalous (pseudo)spin Hall conductivity (ASHC) and anomalous thermal Hall
conductivity (ATHC) in each such time-reversal symmetry breaking paired state. Here, kF = √

2m∗μ is the Fermi momentum. How the various
Weyl nodes arise from nodal-loop intersections is shown in Fig. 16. Note that dxz/yz + idx2−y2 also support a pairs of nodes at the opposite poles
of the Fermi surface. These nodes are, however, accidental and do not bear any topological charge nor do they contribute to ASHC or ATHC.

Paired State Nodes Locations Nodal topology DoS ASHC ATHC

dxy + idx2−y2 2 (0, 0, ±1)kF Double Weyl (Wn = ±2) �(E ) ∼ |E | σ s,0
xy = 2h̄

8π

kF
π

κ0
xy = 2π2k2

BT
3h

kF
π(

0, ±
√

2√
3
, ± 1√

3

)
kF ,

dxy + id3z2−r2 8
(±√

2√
3
, 0, ± 1√

3

)
kF Single Weyl (Wn = ±1) �(E ) ∼ |E |2 0 0

2 (0, 0, ±1)kF , Accidental nodes �(E ) ∼ |E |3/2 0 0

dxz + idx2−y2 4
(± 1√

2
,± 1√

2
, 0

)
kF Single Weyl (Wn = ±1) �(E ) ∼ |E |2 0 0

2 (0, 0, ±1)kF , Accidental nodes �(E ) ∼ |E |3/2 0 0

dyz + idx2−y2 4 (± 1√
2
,± 1√

2
, 0)kF Single Weyl (Wn = ±1) �(E ) ∼ |E |2 0 0

dxz + id3z2−r2 4
(
0, ±

√
2√
3
, ± 1√

3

)
kF Single Weyl (Wn = ±1) �(E ) ∼ |E |2 0 0

dyz + id3z2−r2 4
(±√

2√
3
, 0, ± 1√

3

)
kF Single Weyl (Wn = ±1) �(E ) ∼ |E |2 0 0

and thereby causing power-law suppression of the DoS at low
energies.

D. Competition between Eg and T2g pairings

We now briefly discuss the competition among various
d-wave pairings when the pairing interaction in the Eg and
T2g channels, respectively, denoted by gEg and gT2g (say),
are of comparable strength. Under this circumstance, two
distinct possibilities can arise: (a) these two paired states are
separated by a first-order transition with the pairings discussed
in Secs. III B and III C, residing on opposite sides of the dis-
continuous transition, respectively, for gEg > gT2g and gT2g >

gEg , or (b) there can be a region, roughly when gEg ∼ gT2g ,
where pairings belonging to these two distinct representation
can coexist. Leaving aside the possibility (a), we here further
elaborate on the second scenario, by restricting ourselves to a
weak-coupling pairing picture.

When pairing from these two channels coexists, at the cost
of the time-reversal symmetry, one can minimize the number
of gapless points on the Fermi surface (thereby causing gain
in the condensation energy). Since T2g and Eg channels are,
respectively, three- and two-component representations, all
together we can find six possible time-reversal symmetry
breaking paired phases (note these are simplest possibilities),
shown in the first column of Table II.

Following the discussion and methodology presented ear-
lier in this section, we realize that only the dx2−y2 + idxy

paired state gives rise to double-Weyl points, with Wn = ±2,
on two poles of the Fermi surface. The DoS of low-energy
BdG quasiparticles in the presence of double-Weyl nodes
goes as �(E ) ∼ |E |. More detailed discussion on the nodal
topology of the dx2−y2 + idxy paired state is presented in the
next section. The rest of the pairings only support simple
Weyl nodes with Wn = ±1 [see Appendix G] and result in
�(E ) ∼ |E |2 at low energies.

We also note that in the dxz + idx2−y2 and dyz + idx2−y2

paired states, besides the simple Weyl nodes in the kx-ky

plane there also exist a pair of nodes at two opposite poles of
the Fermi surface. With the former pairing the reduced BCS
Hamiltonian around the poles reads as

Hpole
d+id = ±vzδkzτ3 ± vxkx −

∣∣�T2g

∣∣
k2

F

k2
y τ2, (3.17)

where vz = kF /m∗, vx = |�T2g|/kF , and δkz = kz ± kF . For
such isolated nodes Wn = 0. Therefore this pair of nodes are
nontopological in nature and their existence is purely acciden-
tal. However, if such a node exists the DoS near the pole van-
ishes as �(E ) ∼ |E |3/2, and the low-energy thermodynamic
responses of the dxz/yz + idx2−y2 states will be dominated by
these accidental nodes. We postpone any further discussion
on the competition among all six time-reversal symmetry
breaking paired states and the nature of the ultimate ground
state for a future work.

E. Anomalous thermal and spin Hall conductivities

One hallmark signature of spin-singlet pairing is the sep-
aration of the spin and charge degrees of freedom. Electric
charge is carried by the superconducting condensate, a macro-
scopic collection of charge 2e spinless bosonic Cooper pairs,
while spin is fully carried by the fermionic excitations (BdG
quasiparticles) that do not carry definite electric charge. In
particular, such spin-charge separation bears important conse-
quences for non-s-wave (such as d-wave) singlet pairing. For
example, in a spin-singlet d-wave superconductor with broken
time-reversal symmetry, the BdG quasiparticles can give rise
to anomalous spin and thermal Hall conductivities.

One well-studied example is the dx2−y2 + idxy state, which
could be germane to cuprate high-Tc superconductors [86–91].
A state with this symmetry is also possible in the LSM (see
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Table II). Recently this pairing has also been discussed in
the context of URu2Si2 [79] and SrPtAs [81]. Such a paired
state bears close resemblance to the integer quantum Hall
effect. In two dimensions (where it is fully gapped), the
dx2−y2 + idxy state supports quantized spin (since spin is a
conserved quantity) and thermal (since energy is conserved)
Hall conductivities [92–96]. We here do not discuss the exper-
imental setup for the measurement of the anomalous spin or
thermal Hall conductivities, which are readily available in the
literature [94–96]. Instead, we emphasize these two responses
inside various Weyl superconductors that can directly probe
the net Berry flux enclosed by the paired phase, while the
lack of the time-reversal symmetry can directly be probed
by Faraday and Kerr rotations [97]. We also note that in
the absence of inversion symmetry (which is the situation
in half-Heusler compounds) the notion of (pseudo)spin Hall
conductivity becomes moot, while thermal Hall conductivity
remains well-defined.

Let us first pick a specific example of a Weyl supercon-
ductor, dx2−y2 + idxy pairing, accommodating the Weyl nodes
with monopole charge Wn = ±2 at k = (0, 0,±kF ). The re-
duced BCS Hamiltonian for such a pairing in the kz = 0 plane
is

ĥd+id (k, kz = 0) =
{(

k2
⊥

2m∗
− μ

)
τ3 + �T2g

k2
F

(2kxky)τ1

+ �Eg

k2
F

(
k2

x − k2
y

)
τ2

}
⊗ σ0, (3.18)

where k2
⊥ = k2

x + k2
y , which describes a quantum anoma-

lous thermal/spin Hall insulator, characterized by the Chern-
Number Cn = 2 in the (kx, ky) plane. Appearance of the Pauli
matrix σ0 reflects that the band pseudospin is a good quantum
number inside the paired state. Note that the pseudospin
texture in the (kx, ky) plane associated with the reduced BCS
Hamiltonian in Eq. (3.18) assumes the form of a skyrmion, and
the skyrmion number is the Chern number (Cn). If we express
the above Hamiltonian as ĥd+id (k, kz = 0) = Ek⊥[n̂k⊥ · τ], the
in-plane skyrmion number is given by

Cn =
∫

d2k⊥
4π

[
n̂k⊥ ·

(
∂n̂k⊥

∂kx
× ∂n̂k⊥

∂ky

)]
. (3.19)

At T = 0, such time-reversal symmetry breaking thermal
insulator yields a quantized spin Hall conductivity

σ xy,0
s = σ xy

s (T = 0) = h̄

8π
× Cn ≡ h̄

4π
, (3.20)

in the xy plane, where h̄/2 is the spin-charge and (h̄/2)2/h ≡
h̄/(8π ) is the quantum of spin Hall conductance. The above
thermal insulator also supports nonzero thermal Hall conduc-
tivity, which as T → 0 is given by

κ0
xy = lim

T →0
κxy(T ) = 2 × π2k2

BT

6h
Cn = 2π2k2

BT

3h
. (3.21)

In the above expression, the addition factor of 2 comes
from the spin degeneracy as two components of the spin
projection carry heat current in the same direction. In two
dimensions, the unit of anomalous spin and thermal Hall
conductivities are, respectively, J s and W K−1. Between the

spin and thermal Hall conductivity as T → 0 there exists a
modified Wiedemann-Franz relation, given by

lim
T →0

κxy(T )/T

σ
xy,0
s

= 4π2

3

(
kB

h̄

)2

= Lm, (3.22)

where Lm ≈ 2.2731 × 1023 K−2 s−2 is the modified Lorentz
number.

Note that the three-dimensional dx2−y2 + idxy Weyl super-
conductor can be envisioned as stacking (in the momentum
space) of corresponding two-dimensional class C spin quan-
tum Hall Chern insulators [described by Eq. (3.18)] along the
kz direction within the range −kF � kz � kF . The interlayer
tunneling is captured by (k2

z /2m)τ3σ0. Concomitantly, the
contribution to the anomalous spin and thermal Hall conduc-
tivity from each such layer is respectively given by Eqs. (3.20)
and (3.21). Therefore the anomalous spin and thermal Hall
conductivities as T → 0 of a three dimensional dx2−y2 + idxy

paired state are, respectively, given by

σ
xy,0
s,3D = σ xy,0

s

∫ kF

−kF

dkz

2π
= h̄

4π
×

(
kF

π

)
, (3.23)

κ0
xy,3D = κ0

xy

∫ kF

−kF

dkz

2π
= 2π2k2

BT

3h
×

(
kF

π

)
. (3.24)

In three dimensions, the unit of anomalous spin and thermal
Hall conductivities are respectively J s m−1 and W K−1 m−1.
Also note that the two double-Weyl nodes located at k =
(0, 0,±kF ) acts as source and sink of Abelian Berry curva-
ture in the reciprocal space, and the (kx, ky) plane encloses
quantized Berry flux. The anomalous spin Hall conductivity
[and thus also the anomalous thermal Hall conductivity, tied
with the spin Hall conductivity via the modified Wiedemann-
Franz relation, see Eq. (3.22)] is directly proportional to the
enclosed Berry flux. Upon unveiling the topological source
of anomalous spin and thermal Hall conductivities in a Weyl
superconductor, we can now proceed with the estimation of
these two quantities in the Eg and T2g paired states.

1. Anomalous responses for Eg pairing

We first focus on the Eg channel. Recall that the dx2−y2 +
id3z2−r2 paired state supports eight simple Weyl nodes with
Wn = ±1. From the arrangement of the source and sink of
the Abelian Berry curvature discussed in Sec. III B, we im-
mediately come to the conclusion that the net Berry flux pass-
ing through any high-symmetry plane is precisely zero (see
Fig. 4). Therefore the dx2−y2 + id3z2−r2 paired state, despite
possessing Weyl nodes, gives rise to net zero anomalous spin
or thermal Hall conductivity. Qualitatively, this situation is
similar to the all-in all-out ordered phase in the presence of
sufficiently strong repulsive electronic interactions [23].

2. Anomalous responses for T2g pairing

In the T2g paired state, with a specific phase locking
(φxy, φxz, φyz ) = (0, 2π/3, 4π/3), shown in Sec. III C, the
low-temperature phase also supports eight simple Weyl nodes
[see Eq. (3.12)] with monopole charge Wn = ±1. The topol-
ogy of each such nodal point has been discussed in details in
Sec. III C and the distribution of the Abelian Berry curvature
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is depicted in Fig. 5. Notice that even through time-reversal
symmetry breaking Eg and T2g pairings supports eight simple
Weyl nodes, their location and distribution of the Berry flux in
various high-symmetry planes are completely different (com-
pare Figs. 4 and 5). Consequently, the anomalous spin and
thermal Hall conductivity in the T2g paired state are distinct
from its counterpart in the Eg channel. For concreteness, we
here focus on these two responses in the xy plane and a plane
perpendicular to a [1,1,1] direction.

For anomalous spin and thermal Hall conductivity in the
xy plane the Weyl nodes denoted as (b) and (c) do not
contribute and contributions come only from the two pairs
of Weyl nodes identified as (a) and (d ) in Eq. (3.12). After
carefully accounting for the enclosed Berry flux we find the
anomalous spin and thermal Hall conductivities in the xy
plane are respectively given by

σ
xy,0
s,3D = h̄kF

8π2
Nxy, κ0

xy,3D = π2k2
BT kF

3hπ
Nxy, (3.25)

where Nxy = 1 − 1/
√

3. Following the same spirit, we find
that these two quantities in the yz plane are identical to the
above expressions, while those in the xz plane is obtained by
replacing Nxy → Nyz = 1 + 1/

√
3.

By contrast, in a plane perpendicular to the [1,1,1] direc-
tion all four pairs of Weyl nodes contribute to anomalous spin
and thermal Hall conductivities, yielding

σ
[111],0
s,3D = 2

3
× h̄kF

8π2
, κ0

[111],3D = 2

3
× π2k2

BT KF

3hπ
. (3.26)

Note that anomalous spin and thermal Hall conductivities are
also finite along three other body diagonals.

Recall that the kz(kx + iky) paired state supports only a
single pair of simple Weyl nodes at two poles of the Fermi
surface. Consequently, a net nonzero quantized Berry flux is
enclosed by the kx-ky plane, yielding

σ
xy,0
s,3D = h̄

8π
×

(
kF

π

)
, κ0

xy,3D = π2k2
BT

3h
×

(
kF

π

)
. (3.27)

Similarly, the two other degenerate paired states kx(kz + iky)
and ky(kz + ikx ) support anomalous spin and thermal Hall
conductivities of equal magnitude, but respectively in the kz-ky

and kz-kx planes. Following the same set of arguments we
find that all five time-reversal odd paired states, resulting
from the competition between T2g and Eg, yield net zero
anomalous spin and thermal Hall conductivities, apart from
the dx2−y2 + idxy phase, as shown in Table II.

IV. EXTERNAL STRAIN AND s + d PAIRING

We now discuss the effects of external strain on the paired
states. Generic external strain in a Luttinger semimetal can be
captured by the Hamiltonian

ĥstr = �1 �1 + �2 �2 + �3 �3 + �4 �4 + �5 �5, (4.1)

where � j (for j = 1, . . . , 5) represents the strength of the
strain. Since we are interested in the effects of external strain
on the paired state that only exists in the close proximity to the
Fermi surface, we also project the above five strain operators
onto the Fermi surface. We assume that the external strain
is too weak to significantly mix the valence and conduction

(a)
(b)

FIG. 7. (a) The Feynman diagram contributing to the Landau free
energy fstr ∼ � j� j�0, capturing the nontrivial coupling amongst
the s-wave and d-wave pairings and an external strain. Here solid
lines represent fermions, wavy (dashed) lines d (s)-wave pairing and
the spiral line the strain field. (b) Scaling of the universal function
F (ωD, t ) on ωD for various fixed values of t (quoted in the figure),
appearing in Eq. (4.6), where ωD = �D/EF , t = kBT/EF , �D is the
Debye frequency, EF is the Fermi energy, and T is the temperature.

bands. In the proximity to the Fermi surface the effects of
generic strain are then encoded in

ĥFS
str ≡

5∑
j=1

� j d̂ j (τ3σ0), (4.2)

where τ3 is the diagonal particle-hole (Nambu space) matrix
and the d̂ js are defined in Appendix A [Eq. (A1)]. Note that
external strain does not couple with the spin degrees of free-
dom and preserves time-reversal and inversion symmetries,
but breaks the cubic symmetry.

Since each component of d-wave pairing breaks the cubic
symmetry, nucleation of any such pairing causes a small
lattice distortion or electronic nematicity. In experiment, the
onset of such nematicity can be probed from the measurement
of the divergent nematic susceptibility around the transition
temperature (Tc) (see, for example, Refs. [98,99]). Externally
applied strain can directly couple with the appropriate d-wave
pairing (depending on the direction of the applied strain), and
in that way can be conducive for the nucleation of a specific
component of this pairing. In other words, strain couples with
d-wave pairing as an external field. In particular, an externally
applied strain induces nontrivial coupling between s-wave
and d-wave pairings and such coupling enters the expression
for Landau free energy as fstr ∼ � j� j�0. Here the index j
corresponds to a particular component of external strain/d-
wave pairing, bearing the same symmetry, and �0 is the order
parameter for s-wave pairing. To gain quantitative estimation
of such nontrivial coupling, we compute the triangle diagram
shown in Fig. 7(a).7

7For discussion on the coupling amongst various magnetic, namely,
the all-in all-out and itinerant spin-ice, orders with an external strain,
see Ref. [23]. Notice that coupling between d-wave and s-wave
pairings with electronic nematicity or external strain relies solely on
the symmetry of the LSM of spin-3/2 quasiparticles. Such coupling
is nontrivial if we compute the term fstr from the full band structure
of the doped LSM, as shown in Appendix H (see Fig. 17).

054505-16



TOPOLOGICAL SUPERCONDUCTIVITY OF SPIN-3/2 … PHYSICAL REVIEW B 99, 054505 (2019)

The contribution of the triangle diagram to the Landau free
energy is

fstr = −� j�
μ

l �ν
0

1

β

n=∞∑
n=−∞

∫
d3k

(2π )3
Tr[(τμd̂l )

× G(iωn, k) (τ3d̂ j )G(iωn, k) (τν ) G(iωn, k)], (4.3)

where β = (kBT )−1 is the inverse temperature and ωn =
β−1(2n + 1)π is the fermionic Matsubara frequency. In the
above expression, μ, ν = 1, 2. To test whether the coexis-
tence of s- and d-wave pairing breaks time-reversal symmetry
or not we have introduced the superscript μ, ν to the pairing
amplitudes �l and �0, respectively, for these two channels.
Specifically, nonzero Tr for (i) μ = ν corresponds to time-
reversal symmetry preserving s + d pairing and (ii) μ �= ν

implies onset of time-reversal symmetry breaking s + id pair-
ing, due to an external strain. The minus (−) sign in the
above expression comes from the fermion bubble. We here
assume that all bosonic fields [see Fig. 7(a)] are carrying zero
external momentum and frequency, yielding the leading order
contribution to the Landau potential. The fermionic Green’s
function is

G(iωn, k) = − iωn + τ3ξk

ω2
n + ξ 2

k

, ξk = |k|2
2m

− μ. (4.4)

We find that fstr ∝ Tr[τμτν] = 2δμν . Hence, external strain
supports a time-reversal-symmetry preserving combination of
s-wave and d-wave pairings. For strain-assisted time-reversal
symmetry breaking superconductivity, see Ref. [100]. After
the Tr algebra, we arrive at the following expression:

fstr = 2δμν

� j�
μ

l �ν
0

β

n=∞∑
n=−∞

∫
d3k

(2π )3

ξk(d̂l d̂ j )[
ω2

n + ξ 2
k

]2

= 1

2
δμν δ j,l

� j�
μ,l
d �ν

s

40π2

∫
dk

k2

ξ 2
k

× sech2

(
ξk

2kBT

)[
sinh

(
ξk

kBT

)
− ξk

kBT

]
. (4.5)

In the final expression, the Kronecker delta δ j,l arises from
the integral over the solid angle in three dimensions. This
delta function indicates that the external strain and the d-wave
pairing must break the cubic symmetry in the exact same way,
such that fstr is ultimately an A1g quantity. The final integral
over momentum will be performed in the close proximity to
the Fermi surface. We then arrive at the final expression

fstr = [
δμν δ j,l � j�

μ

l �ν
0

] �(EF )

40π2EF

∫ √
1+ �D

EF√
1− �D

EF

x2

(x2 − 1)2

× sech2

(
x2 − 1

2t

)[
sinh

(
x2 − 1

t

)
− x2 − 1

t

]
dx

= [
δμν δ j,l � j�

μ

l �ν
0

] �(EF )

40π2EF
F (ωD, t ), (4.6)

where �(EF ) is the DoS at Fermi energy EF , �D is the Debye
frequency, ωD = �D/EF , and t = kBT/EF . The functional

dependence of F (x, y) is displayed in Fig. 7(b). Next we
discuss some specific examples when external strain is applied
along certain high-symmetry directions.

Strain along [0,0,1]. First, we consider a situation when
the external strain is applied along one of the C4v axes. For
the sake of simplicity, we consider the external strain to be
applied along the ẑ direction. Such strain can only couple with
d3z2−r2 pairing. Thus a strain along ẑ direction results in an
s + d3z2−r2 paired state, a time-reversal symmetry preserving
combination of s-wave and Eg pairings.

Strain along [1,1,1]. Next we consider a situation when the
external strain is applied along one of the body diagonal or
[1,1,1] directions (one of the C3v axes). The coupling between
such strain and the d-wave pairings can be appreciated most
conveniently if we rotate the reference coordinate according
to Eq. (3.8). In the rotated basis strain is applied along the
ẑ direction (now aligned along the body diagonal). After
performing the same transformation for all d-wave pairings,
augmented by the argument we presented above, we realize
that only dxy + dyz + dxz pairing directly couples with the
[1,1,1] strain. Thus strain along [1,1,1] direction results in
an s + dxy + dyz + dxz paired state, a time-reversal symmetry
preserving combination of s-wave and T2g pairings.

Strain along [1,1,0]. Finally, we discuss the effect of
an in-plane external strain, applied along [1,1,0] direction.
Following the same set of arguments we conclude that when
the strain is applied along the [1,1,0], it directly couples with
dxy + d3z2−r2 pairing. Thus an external strain along [1,1,0]
direction is conducive to the formation of an s + dxy + d3z2−r2

paired state, time-reversal symmetry preserving combination
of s-wave, T2g, and Eg pairings.

We conclude that by applying strain along different direc-
tions, one can engineer various time-reversal symmetry pre-
serving combinations of s- and d-wave pairings. This mecha-
nism can, in particular, be useful to induce exotic paired states
in weakly correlated materials, such as HgTe and gray tin,
which possibly can only accommodate phonon-driven s-wave
pairing in the absence of strain. The above outcome can also
be stated in a slightly different words as follows. Anytime a
d-wave pairing nucleates in a Luttinger metal, it immediately
causes a lattice distortion or nematicity. Consequently, any
d-wave pairing will always be accompanied by an induced
s-wave component, which, as discussed in Sec. VI, may bear
important consequences in experiments. In Appendix H, we
show that induced s-wave component due to lattice distortion
is indeed finite, by minimizing a phenomenological Landau
potential, where symmetry allowed terms up to the quartic or-
der are taken into account. Notice existence of a small s-wave
component does not break any additional symmetry deep
inside the d-wave (or d + id-type Weyl) paired state. Thus
a nontrivial coupling between d-wave and s-wave pairings
and the lattice distortion does not affect flat-band (for pure
d-wave pairing) or Fermi arc (for d + id-type pairing) surface
states as long as the pairing interaction in the d-wave channel
dominates. The appearance of induced s-wave component
plays an important role in the interpretation of the penetration
depth data in YPtBi, discussed in Sec. VI.
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V. EFFECTS OF IMPURITIES ON BdG-WEYL
QUASIPARTICLES

We now discuss the effects of quenched disorder (static
impurities) on BdG-Weyl quasiparticles. Understanding the
effects of impurities on regular Weyl and Dirac fermions has
attracted ample attention in recent times [101–120]. How-
ever, the role of randomness on BdG-Weyl/Dirac quasipar-
ticles is still at an early stage of exploration (see however
Refs. [115,116]).

In the context of superconductivity in the Luttinger
semimetal (LSM), the band projection (Sec. II B and Ap-
pendix B) modifies the form of the particle-hole and chiral
time-reversal symmetries in Eqs. (2.14) and (2.15), respec-
tively. For the conduction band (say), we can express particle-
hole (P), time-reversal (T), and chiral time-reversal (S ≡ P ⊗
T) symmetry conditions in terms of the 4 × 4 band-projected
Bogoliubov-de Gennes (BdG) Hamiltonian ĥ(k) as follows:

−M (b)

P ĥT(−k) M (b)

P = ĥ(k), M (b)

P = τ2 σ2: P,

M (b)

T ĥ∗(−k) M (b)

T = ĥ(k), M (b)

T = σ2: T, (5.1)

−M (b)

S ĥ(k) M (b)

S = ĥ(k), M (b)

S = τ2: S.

The band Hamiltonian has indices in Nambu (τ ) and band
pseudospin (σ ) spaces. Eq. (5.1) obtains from the correspond-
ing conditions in the 8 × 8 LSM-BdG Hamiltonian by replac-
ing �13 → σ2, which is the band projection of the (unitary
part) of the time-reversal operator, see Eq. (2.14).

Even though all candidates for Weyl superconductors have
multiple Weyl nodes (>2), for the sake of the simplicity of the
discussion, we consider its simplest realization with only two
Weyl nodes, with opposite chiralities (left and right), located
at ±K. Linearizing the band Hamiltonian ĥ(k) in the vicinity
of the pair, we get

ĥ(W )

0 = −iη3 σ0

3∑
j=1

v j τ j ∂ j . (5.2)

Here, η3 = +1 (−1) for the Weyl node with Wn = +1 (−1)
[Eq. (3.2)]. The Weyl Hamiltonian is 8 × 8, with Pauli matri-
ces {ημ} acting on the chirality.

The symmetry conditions in Eq. (5.1) become

−M (W)

P (ĥ(W ) )T(−k) M (W)

P = ĥ(W )(k), M (W)

P = η1 τ2 σ2,

M (W)

T (ĥ(W ) )∗(−k) M (W)

T = ĥ(W )(k), M (W)

T = η1 σ2, (5.3)

−M (W)

S ĥ(W )(k) M (W)

S = ĥ(W )(k), M (W)

S = τ2.

The particle-hole and time-reversal matrices M (W)

P and M (W)

T
both flip the node chirality. By contrast, the “chiral” ver-
sion of time reversal is the same in all cases [MS = τ2

in Eqs. (2.15), (5.1), and (5.3)]. Note also that in all
cases, the time-reversal matrix is antisymmetric [e.g., M (W)

T =
−(M (W)

T )T], while the particle-hole matrix is symmetric [e.g.,
M (W)

P = (M (W)

P )T]. These conditions imply that T2 = −1 and
P2 = +1 [9].

It is easy to check that Eq. (5.2) satisfies particle-hole
symmetry with M (W)

P , as defined above. In the LSM, such a
Weyl pair arises from d + id pairing. It means that one com-
ponent of the Hamiltonian ĥ(W )

0 is time-reversal odd. Here the

component proportional to τ2 breaks time-reversal invariance.
The symmetry can be restored by setting v2 = 0, although this
flattens the band along the parent nodal loop.

Since Weyl superconductors in our analysis arise from
singlet pairings, we will assume that the disorder preserves
band pseudospin (σ ) SU(2) symmetry. The band pseudospin
is not identical to the ms = ±1/2 (conduction band) or ms =
±3/2 (valence band) physical spin-3/2 index, since the band
projection of the spin generator [≡Jμ

|ms|(k)] is momentum-
dependent and, moreover, dependent upon the explicit gauge
choice of the band diagonalizer. Nevertheless, one can check
that

−σ2
[
Jμ

|ms|(−k)
]T

σ2 = Jμ

|ms|(k),

so that the projected spin operators are odd under time rever-
sal, just like the band pseudospin operators {σ1,2,3}. Magnetic
impurities would therefore effectively couple to the band
pseudospin. Although time reversal is broken in any of the
d + id scenarios outlined in Sec. III that give rise to isolated
Weyl nodes, we assume that there is no magnetic impurity that
breaks pseudospin symmetry.

Under this assumption, the BdG-Weyl Hamiltonian ĥ(W )

commutes with all {σν}. Then we can replace the P2 = +1
physical particle-hole condition in Eq. (5.3) with an effective
P2 = −1 one,

−M (Eff)

P (ĥ(W ) )T M (Eff)

P = ĥ(W ), M (Eff)

P = η1 τ2. (5.4)

Since time-reversal symmetry is already broken in the absence
of disorder, Eq. (5.4) is the only effective symmetry expected
to hold even in the presence of disorder. Since P2 = −1, the
system belongs to class C. By contrast, the P2 = +1 condition
in Eq. (5.3) would give class D. As often occurs, a continuous
symmetry [here the band pseudospin SU(2)] changes the
random matrix classification of a Hamiltonian with a given
“microscopic” specification of P, T, and S [9].

Incorporating generic quenched disorder in class C, we get
the BdG-Weyl Hamiltonian

ĥ(W ) = ĥ(W )

0 + A0(r) · τ + B1(r) · τ η1

+ B2(r) · τ η2 + v3(r) η3. (5.5)

In this equation, τ = τ1x̂ + τ2ŷ + τ3ẑ is the vector of Nambu
matrices. There are ten allowed perturbations, which take the
form of (i) an axial [since it is missing the η3, cf. Eq. (5.2)]
vector potential A0(r), (ii) two vector components B1,2(r) of a
tensor disorder potential,8 and (iii) a Weyl node-graded (axial)
scalar potential v3(r).

We will further simplify our treatment by neglecting
quenched random fluctuations of the Weyl (d + id) pairing
amplitudes, so that we drop disorder terms in B1,2 that couple
to τ1,2. Note that B1,2 disorder can qualitatively account for
pair breaking effects. Since we are interested in sufficiently
low energies or temperatures (T � Tc), the amplitude of the

8In relativistic notation, the six independent components of B1 and
B2 couple to the independent elements of σμν ≡ iγ μγ ν , where {γ μ}
are the four 4 × 4 γ matrices acting on the spinor field formed
from the sum of left- and right-handed Weyl components. See, for
example, Ref. [121].
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d-wave pairings can be assumed to be frozen. Under this
circumstance, we are allowed to neglect disorder proportional
to B1,2. However, we note that close to Tc one should account
for all symmetry allowed disorder, appearing in Eq. (5.5),
which goes beyond the scope of the present analysis. In
our renormalization group (RG) scheme explained below, the
remaining subset still closes under the one-loop RG. Thus we
retain six random potentials, {A1,2,3

0 , B3
1, B3

2, v3}. Physically,
A3

0(r) corresponds to the electric charge density, i.e., encodes
scattering off of Coulomb impurities (despite the fact that it
appears as a vector potential component to the BdG-Weyl
quasiparticles). Real and imaginary quenched fluctuations of
the s-wave pairing are encoded in {A1,2

0 }. The potential v3(r)
is a node-staggered chemical potential or “random Doppler”
shift. A0 and v3 scatter only within a given node. The remain-
ing potentials {B3

1, B3
2} describe internode backscattering due

to short-ranged impurities.9

In Eqs. (5.7) and (5.8) above, the disorder potentials ϕ j ∈
{A1,2,3

0 , B3
1, B3

2, v3}. However, for these six we assign only four
variances:

A3
0 : �0 (electric potential),

A1,2
0 : �1 (real and imaginary s-wave pairing),

B3
1,2 : �2 (internode backscattering),

v3 : �3 [random Doppler (axial potential)]. (5.6)

We here control the renormalization group (RG) calculation
in the following way. Each disorder field is assumed to obey
the following distribution:

〈ϕ j (x)ϕk (y)〉 = δ jk
� j

|�x −�y|d−m
(5.7)

in position space or

〈ϕ j (�q)ϕk (0)〉 = δ jk
� j

|q|m , (5.8)

in momentum space and the limit m → 0 corresponds to the
Gaussian white noise distribution, which we are ultimately

9Note that random charge impurities couple as the third component
of the axial vector potential, while the two planar components stem
from the real and imaginary components of the random singlet s-
wave pairing. Therefore the strength of these two types of disorder
coupling (respectively described by �0 and �1 below) at the micro-
scopic level are different. In the presence of generic disorder, the
Fermi velocities along the z direction (along which the quasiparticle
spectrum supports Weyl nodes in clean system), denoted by v3

and in the x-y plane, denoted by v1 = v2 = v⊥ receive different
renormalizations from the disorder. Even if we impose isotropy at
the bare level (assuming v1 = v2 = v3 = v), such symmetry is no
longer respected at intermediate scale as we coarse-grain the theory.
Nonetheless, we are allowed to perform the perturbative RG analysis
with one Fermi velocity, but we need to treat the anisotropy param-
eter, defined here as α = v⊥/v3, as a running coupling. However, as
we demonstrate below that at the clean Weyl fixed point as well as the
thermal Weyl semimetal-thermal metal quantum critical point, α is a
marginal variable and does not affect the disorder-driven quantum
critical behavior in a dirty thermal Weyl semimetal (at least to the
one-loop order).

interested in. This form of the white noise distribution stems
from the following representation of the d-dimensional δ

function

δ(d )(x − y) = lim
m→0

�
(

d−m
2

)
2mπd/2�(m/2)

1

|x − y|d−m
. (5.9)

For additional details of this methodology readers should
consult Refs. [111,114]. An ε-expansion can be performed
with the construction m = 1 − ε, and ultimately for Gaussian
white noise disorder we set ε = 1 at the end of the calculation.

The RG flow equations to the leading order in the ε

expansion read as

βv3 = −4v3

3
[�0 + �1 + �2 + �3] = v3(1 − z),

βα = α
2

3
[�0 − �1], β�0 = �0

[
−ε − 8

3
�2

]
,

β�1 = �1

[
−ε + 4

3
(�0 − �1)

]
, (5.10)

β�2 = �2

[
−ε + 4

3
(�0 − 2�1 − �2)

]
,

β�3 = �3

[
−ε + 8

3
(�0 + �1 − 2�2 + �3)

]
,

in terms of dimensionless disorder couplings �̂ j =
� j�

ε/(2π2v2
3 ). For brevity we drop the “hat” notation

in the above flow equations. Here, � is the ultraviolet
momentum up to which BdG-Weyl quasiparticles possess
linear dispersion. The flow equation of v3 then yields a
scale-dependent dynamic scaling exponent

z = 1 + 4
3 [�0 + �1 + �2 + �3]. (5.11)

Notice that the bare dimension for all disorder couplings
[� j] = −ε. Therefore sufficiently weak disorder is irrelevant
at the BdG-Weyl fixed point. We here tacitly bypass the possi-
bility of coexisting rare regions in this system [116,118,119],
which suggest that Weyl fermions may become unstable for
infinitesimal strength of disorder and enter into a metallic
phase, where the DoS at zero-energy is finite. However, the
DoS at zero energy due to the rare regions is extremely small
and over almost the entire energy window the outcomes from
the perturbative analysis hold.

The above coupled flow equations support only two fixed
points in the (�0,�1,�2,�3) plane. (1) The stable fixed
point located at (�0,�1,�2,�3) = (0, 0, 0, 0) is the BdG-
Weyl “thermal semimetal” phase. (2) On the other hand, the
fixed point located at (�0,�1,�2,�3) = (0, 0, 0, 3/8)ε has
only one unstable direction. It represents a quantum critical
point (QCP), describing a quantum phase transition (QPT)
from thermal Weyl semimetal to diffusive thermal metal. In
the thermal metallic phase, the DoS at zero energy is finite,
and BdG quasiparticles possess finite elastic impurity lifetime
and mean-free path (in the plane-wave basis).

It is worth pointing out that even though we can tune the
strength of any one of the four disorder couplings, the thermal
Weyl semimetal-thermal metal QPT is ultimately driven by
the random Doppler shift, which couples to the Weyl fermions
as the axial potential. Also note that the anisotropy parameter
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FIG. 8. A qualitative phase diagram of a dirty thermal Weyl
semimetal (ThWSM) at finite temperature (T ). Here, Tc is the su-
perconducting transition temperature and t∗(=T∗/TC ) is a crossover
temperature above which the BdG-Weyl quasiparticles are not sharp.
The red dot at δ = 0 represents the disorder-controlled ThWSM-
thermal metal (ThMetal) quantum critical point, and the shaded
region represents the associated quantum critical regime (δ is the
reduced disorder strength, see text). The shape of the crossover
boundaries at finite temperature are roughly determined by |δ|νz ∼
|δ|1.5, leading to a wide quantum critical regime. For a more quanti-
tative estimation of a similar phase diagram at finite temperature or
energy, see Refs. [107,108]. Scaling of the average density of states
[�(E )] in various regimes of the phase diagram is displayed in the
figure. Here the labeling of the temperature and disorder axes are
qualitative.

α is a marginal parameter at both fixed points. Therefore both
fixed points are multicritical in the five-dimensional space
{α,�0,1,2,3}. For now we neglect the effect of α and focus only
on the four-dimensional subspace spanned by the disorder.

At the thermal Weyl semimetal-metal QCP, the dynamic
scaling exponent [see Eq. (5.11)] is given by

z = 1 + ε/2 ⇒ z = 3/2, (5.12)

for the Gaussian white noise distribution (ε = 1). The corre-
lation length exponent at the disorder controlled QCP is given
by

ν−1 = ε ⇒ ν = 1, (5.13)

for ε = 1. Equation (5.12) implies that the average density
of states at the QCP scales as �(E ) ∼ |E |(d−z)/z = |E |. The
product νz = 3/2. Consequently, the crossover boundaries at
finite temperature or energy are determined by T ∗ or E∗ ∼
|δ|νz and are concave upward, where δ = (� − �∗)/�∗ is the
reduced distance from the disorder-controlled QCP located at
� = �∗. As a result a wide quantum critical regime occupies
the largest portion of the phase diagram of a dirty thermal
Weyl semimetal at finite temperature, as shown in Fig. 8.

On the other hand, the thermal double-Weyl semimetal as
well as the thermal nodal-loop semimetal become unstable
towards the formation of a thermal metal for arbitrary weak
strength of disorder due to the clean linearly vanishing density

FIG. 9. A qualitative phase diagram of a dirty thermal double
Weyl semimetal (WSM) or thermal line-node semimetal (LNSM) at
finite temperature. Above a crossover temperature t∗ = T∗/TC , BdG
quasiparticles are not sharp. The crossover boundary between the
pseudoballistic semimetallic phase and the diffusive thermal metallic
phase scales as ∼exp[−A/W ], where W denote the strength of
disorder and A(=0.35 here) is, however, a nonuniversal (material
dependent) constant. Scaling of the density of states in various
regimes of the phase diagram is quoted in the figure. For quantitative
estimation of this phase diagram, see Ref. [108]. Here the labeling of
the temperature and disorder axes are qualitative.

of states �(E ) ∼ |E | [80,108,120]. This can be substantiated
from the computation of the scattering lifetime (τ ) from a
self-consistent Born approximation, leading to

W
∫ E�

0
dE

�(E )

h̄τ−2 + E2
= 1 ⇒ h̄

τ
= E� exp

(
− A

W

)
,

(5.14)

where W is the strength of disorder, E� is the ultraviolet
energy cut-off, and A is a nonuniversal (material dependent)
constant. Thus the self-consistent solution of τ indicates that
BdG-Weyl fermions in thermal double Weyl and nodal-loop
semimetals acquire finite lifetime and the system immediately
becomes a diffusive thermal metal. Note that the DoS at zero
energy also follows the profile of 1/τ , and the phase boundary
in Fig. 9 follows the functional form in the above equation.
This outcome is in agreement with the scaling analysis, which
suggests that disorder is a marginally relevant perturbation in
the presence of double Weyl nodes or line nodes [108].10

Strong pairing that causes intermixing between the con-
duction and valence bands could induce small “inflated node”
Bogoliubov Fermi surfaces [53,54]. Arbitrarily weak disorder
would smear these, leading to diffusive thermal metallic be-
havior with a nonzero density of states at sufficiently small
energy. The considerations of this section would still apply
for energy scales larger than that of the band intermixing.

10We note that the accidental nodes found at two opposite poles in
the presence of dxz/yz + idx2−y2 pairing (see Table II) are, however,
stable against sufficiently weak randomness [114].
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VI. CONNECTION WITH EXPERIMENTS:
PENETRATION DEPTH IN YPtBi

Even though there exists experimental evidence sugges-
tive of superconductivity in some half-Heusler materials, the
actual nature of the pairing in these compounds is not very
clear at this stage [39–47]. In this respect, a recent experiment
revealed a very interesting feature through the measurement of
the penetration depth [47]. This experiment [47] suggests that
the change in the penetration depth (�λ) vanishes in a power-
law fashion with temperature �λ ∼ T n, which is suggestive of
the existence of gapless BdG quasiparticles inside the paired
state. However, the precise value of n remains a subject of
debate. In Ref. [47], a reasonably good fit was found with
n = 1.20 ± 0.02, but only over a limited window of temper-
ature 0.1 � T/Tc � 0.2 (approximately), where Tc ≈ 0.78 K
is the superconducting transition temperature in YPtBi. Such
power-law dependence was then interpreted as the signature
of a paired state with nodal loops, for which the DoS vanishes
as �(E ) ∼ |E | in a clean system. Since �λ follows the power
law of the DoS, the deviation from a pure T -linear dependence
was attributed to impurities.

We here make an independent attempt to understand the
dependence of the penetration depth (�λ) on the reduced tem-
perature t = T/Tc and fit the available data with the following
functional form:

�λ(t ) = λ(0)

√
π�0

2kBTc

1

t
exp

(
− �0

kBTc

1

t

)
+ cn tn (6.1)

and provide alternative explanation for the experimental ob-
servation in Ref. [47]. The first term on the right-hand side
[denoted by �λs(t )] is the canonical penetration depth depen-
dence in an s-wave superconductor, whereas the power law
terms correspond to the presence of gapless BdG quasiparti-
cles for which the DoS vanishes as �(E ) ∼ |E |n. The result-
ing fits are displayed in Fig. 10. With the above functional
dependence of the penetration depth �λ(t ) we search for the
fitting parameters, such as λ(0) (zero-temperature penetration
depth of the s-wave component), �0/(kBTc) and n (takes
only integer values), to obtain the best possible fit within
the temperature window 0.05 � t � 0.33, such that gapless
BdG quasiparticles are sharp. For t > 0.33, the agreement
between the fit function and experimental data is fortuitous.
A possible microscopic justification for the scaling of �λ(t ),
see Eq. (6.1), is presented later in this section.

The solid line in Fig. 10(a) shows the best fit obtained by
keeping only the linear in temperature term in Eq. (6.1) in
addition to the s-wave contribution. We find the best fit with
the zero-temperature value of the s-wave gap �0 = 2.08kBTc,
which is close to the BCS value �BCS = 1.76kBTc, with the
amplitude of the linear term c1 = 1.04 μm. Interestingly, the
fit results in the zero-temperature value of the penetration
depth λ(0) ≈ 23 μm, which is three orders of magnitude
larger than found in conventional superconductors such as
aluminum, as remarked by the authors of Ref. [41] who
also measured a high value of λ(0)exp = 2 μm in YPtBi. As
Fig. 10(a) illustrates, a pure s-wave dependence (dotted line)
is not a good fit to the data, even though it would result
is a value of λ(0) ≈ 3 μm that is closer to the experiment
[41]. We obtain a good agreement with the experimentally
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FIG. 10. Various possible fits for the experimentally measured
data of the penetration depth (�λ) in YPtBi as a function of the
reduced temperature t = T/Tc (replotted from Ref. [47] with per-
mission). Here, Tc = 0.78 K is the superconducting transition tem-
perature in YPtBi. For details of these fittings and the corresponding
physical picture, see Sec. VI.

observed scaling of the penetration depth over a large temper-
ature window by adding an s-wave component for which the
zero-temperature absolute value of penetration depth λ(0) ≈
23 μm � λ(0)exp(=2 μm) [41]. This observation indicates
that the requisite strength of the s-wave component is rather
small in comparison to the dominant d-wave pairing, as the
superfluid density contribution scales with 1/λ(T )2.

On the other hand, including the s-wave component is
crucial to accurately fit the data. Indeed, attempts to fit to a
pure power law, see Fig. 10(b), are unsatisfactory as the fits
only work in the low-temperature regime t � 0.2. Moreover,
the extracted power-law exponent depends sensitively on the
width of the fitted temperature region and given the narrow
temperature range, it is difficult to distinguish between a T -
linear fit [solid red line in Fig. 10(b)], the T 2 fit [dash-dotted
blue line in Fig. 10(b)] or, say, the T 1.2 fit adopted by the au-
thors in Ref. [47] [dashed line in panels (a) and (b) of Fig. 10].

054505-21



ROY, GHORASHI, FOSTER, AND NEVIDOMSKYY PHYSICAL REVIEW B 99, 054505 (2019)

Of course the three curves deviate from each other at higher
temperatures t > 0.25, but by that time neither one of them
fits the experimental data even remotely. In principle, one can
try to fit the experimental data by varying the contribution
from the s-wave component, which, however, immediately
affects the temperature window over which the fitting function
from Eq. (6.1) yields agreement with the experiment. Such
semiquantitative variation of our procedure does not change
the fact that an s-wave contribution is necessary to produce
sensible agreement within reasonable temperature window.
Experimentally it is conceivable to find the contribution of the
s-wave component by comparing the gap size at the nodal and
amtinodal points (since only the s-wave component is uniform
over the entire Fermi surface), as it has been done in YBCO
[143].

Based on the above analysis and the comparison between
panels (a) and (b) in Fig. 10, we conclude that it is necessary to
include the s-wave component to properly fit the penetration
depth data. The pure s-wave fit is unsatisfactory, as remarked
earlier, and a power-law contribution must be considered. We
now turn to the comparison between different such power-law
contributions. The red and blue lines in Fig. 10(c) show the
�λs(t ) + c1t and �λs(t ) + c2t2 fits to the data, respectively.
The red curve incorporating the T -linear component fits the
data better [the same fit as the solid line in panel (a)]. By
contrast, attempts to fit the data with �λs(t ) + c2t2 form not
only fall below the target in the range 0.05 < t < 0.25, but
also requires in an unphysically large fitting parameter λ(0) ∼
103μm. We cannot however exclude possible presence of a
small T 2 component in addition to the dominant s-wave and
T -linear terms.

Based on the above analysis, we conclude that supercon-
ductivity in YPtBi is best described by a combination of a
fully gapped s-wave component and a gapless BdG quasi-
particles with linear in energy density of states. The latter is
commonly attributed to the nodal lines in the gap, such as
a d or p wave. However we stress that this is not a unique
explanation and we list several possible sources of T -linear
dependence below.

Source of T 2 dependence. Within a simple picture for
pairing in the Luttinger system, there is only one possible
source for T 2 dependence of the penetration depth: namely,
the existence of gapless quasiparticles at isolated points on
the Fermi surface where the DoS vanishes as �(E ) ∼ |E |2 at
low energy. Only a Weyl superconductor, constituted by Weyl
nodes with monopole charge Wn = ±1 yields such DoS, see
Secs. III B and III C. In this work, we have presented several
examples of Weyl superconductors; any such candidate is
capable of producing a T 2 dependence of the penetration
depth at low temperatures.

Sources of T -linear dependence. Unlike the aforemen-
tioned case of T 2 dependence, the origin of a T linear con-
tribution to �λ is not unique, with several possible sources
resulting in the gapless BdG fermions displaying the linear
scaling �(E ) ∼ |E | of the DoS. Once again within a simple
picture of pairing in the Luttinger system, we can identify
three possible origins of such E -linear scaling of the DoS.
They are the following.

(1) A double Weyl superconductor, with isolated Weyl
nodes characterized by the monopole charge Wn = ±2. Such

Weyl nodes are also referred to as double-Weyl nodes, and
yield �(E ) ∼ |E | at low energies (below the superconducting
gap). But, as we have seen above (see Table II and Sec. III D),
examples of such a double-Weyl superconductor are sparse
and so far we can only identify one candidate, namely, the
dx2−y2 + idxy paired state, that can support a linear scaling of
the DoS. Thus, based on various examples of Weyl supercon-
ductors discussed in this work, one may conclude that this
possibility is the least likely one. Nucleation of such a phase
will, however, be associated with a two-stage transition.

(2) A tempting source of �(E ) ∼ |E | is existence of at
least one nodal loop in the spectrum of BdG quasiparticles.
So far we have found ample examples in the presence of
local or intraunit cell pairings that support nodal loops in the
ordered phase (see Table I, Sec. III C). However, for each
such possibility there is always a competing ordered phase of
the d + id type that accommodates simple and isolated Weyl
nodes (with Wn = ±1) on the Fermi surface. Since �(E ) ∼
|E |2 inside the simple Weyl superconductors, nucleation of
such paired state will cause power-law suppression of the
DoS, thus optimizing the gain in the condensation energy. We
therefore conclude that Weyl nodal-point superconductors are
energetically superior to the ones with nodal loops, at least
within the framework of the weak-coupling BCS pairing.

(3) The last, but most likely, possibility is the following.
The underlying paired state supports simple BdG-Weyl quasi-
particles with the Weyl nodes that are characterized by the
monopole charge Wn = ±1 in Eq. (3.2). However, due to
the presence of impurities in the system, the thermodynamic
responses measuring the DoS (for instance, the penetration
depth �λ) are determined by the disorder-driven quantum
critical regime associated with the Weyl superconductor-
thermal metal QPT, see Fig. 8. At such a transition, the
dynamical critical exponent z = 3/2 (possibly exact in light of
recent field-theoretic and numerical works, see Sec. V) yields
the density of states �(E ) ∼ |E |−1+d/z ∼ |E |, linear in energy.
Such an origin of a T -linear contribution to the penetration
depth is quite natural in YPtBi, since the carrier density is
extremely low, making the system susceptible to impurities.

We believe that the last possibility is the most likely
scenario in YPtBi and other half-Heusler compounds for the
following reasons. Nucleation of simple-Weyl nodes in the
gap is possibly energetically the best option among various
available candidates for nodal pairings as it provides the
optimal power-law suppression of DoS at low-energy (leav-
ing aside fully gapped paired states that require nonlocal
pairing, see Sec. II C). But, due to the presence of random-
ness/impurities, the thermodynamic responses are dominated
by the wide quantum critical regime associated with disorder-
controlled Weyl-to-thermal metal QPT. Note that this critical
regime occupies the largest portion of the phase diagram of
the disordered Weyl superconductor at finite temperature, as
shown in Fig. 8.

Sources of s-wave component. Perhaps the most enigmatic
aspect of our analysis of the recent experimental data on the
penetration depth [47] is the unambiguous presence of an
s-wave component, which is however quite natural in light
of the discussion presented in Sec. IV. Recall that nucleation
of any d-wave pairing (or any combination of multiple d-
wave pairing) breaks the cubic symmetry, which naturally
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introduces a lattice distortion or electronic nematicity in the
system. In turn, the cooperative effect of the d-wave pairing
and such lattice distortion introduces a nontrivial s-wave pair-
ing in the system. Therefore incorporating the contribution
of s-wave pairing is fully consistent with the symmetry of
the problem: indeed, the s-wave A1g pairing appears on equal
footing with the nodal d-wave channels in the vicinity of the
Fermi surface, see Table I. Additionally, one could of course
imagine a more trivial origin of the s-wave pairing, such as
due to the electron-phonon coupling, considered in a recent
theoretical work [56].

Since the chemical potential in superconducting half-
Heusler compounds, such as YPtBi, lies in close proximity
to the quadratic band touching points, it is quite natural to
anticipate that intraunit cell pairings or local pairings (one s
wave and five d waves listed in Table I) stand as prominent
candidates. This is the reason why so far we have focused
on these pairings, leaving aside nonlocal or longer-range
pairings, which will be the subject of discussion in Sec. VII.
Since some of the half-Heusler compounds display magnetic
order, we also believe that non-s-wave pairing is possibly
the dominant intraunit cell pairing, which has received some
support from simple microscopic calculations [55,56]. In light
of the above discussion, the s-wave component, when it is
manifest, is not interaction driven but rather an induced one.
Our whole discussion on experimental aspects of pairing in
Luttinger system thus evolves around various d-wave pairings
that can ultimately lead to simple Weyl superconductors via
the formation of the d + id state (see Sec. III).

The proposed scaling of the penetration depth in Eq. (6.1)
may require the existence two Fermi surfaces, as a small
(induced) s-wave component in the presence of a dominant
d + id type pairing only shifts the location of the Weyl nodes
(discussed in Appendix I). The presence of two Fermi sur-
faces is quite natural in YPtBi, since the inversion symmetry
is broken in half-Heuslers. Consequently, the Kramers (or
pseudospin) degeneracy of the Fermi surface is lost. Under
that circumstance, it is conceivable that only one of the Fermi
surfaces hosts Weyl nodes, while the other one becomes fully
gapped, in the presence of an s + d + id pairing, justifying
the proposed scaling of penetration depth in Eq. (6.1). The
details of the analysis is presented in Appendix J. On the other
hand, from the fits shown in Fig. 10, we realize that inclusion
of the s-wave component is important to obtain a good fit
at slightly higher temperatures, where the DoS can deviate
from pure |E |-linear dependence due to the induced s-wave
component. Hence, the existence of two Fermi surfaces (one
being gapless while the other one being fully gapped) may
not be necessary for the applicability of Eq. (6.1), as the
component is operative at higher temperature. Only future
experiments can resolve these two competing scenarios. We
also note that even in the absence of inversion symmetry both
Fermi surfaces remain gapless for a pure d + id pairing. It
should, however, be noted that s- and d-wave pairings are
mixed solely due to the spin-3/2 nature of quasiparticles
(see Sec. IV) not the inversion asymmetry, as both pairings are
even under the spatial inversion. We should mention that once
s-wave pairing is induced by a (dominant) d-wave pairing, it
can further be amplified by electron-phonon coupling, which
is always present in any real material.

As a final remark of this section, we should point out
another possible source of an s-wave component in YPtBi
or any half-Heusler compound. Note that half-Heusler com-
pounds break the inversion symmetry, which mandates that
even (such as s- and d-wave) and odd (such as p- and f -wave)
parity pairings always coexist [141]. Presently the strength
of inversion symmetry breaking is not clear in this class of
materials (likely to be weak as no experiment has found a
clear signature of inversion asymmetry). Nevertheless, when
the interaction is conducive for a unixial p-wave pairing,
which can produce line-nodes in the ordered phase and thus
yield �(E ) ∼ |E |, the ordered phase is always accompanied
by an s-wave component [47,51]. The s + p paired state can
be immune to pair-breaking effects when inversion symmetry
breaking is sufficiently strong [142]. However, such a uniaxial
p-wave pairing can be energetically inferior to an isotropic,
but fully gapped p-wave pairing, discussed in Sec. VII. On the
other hand, for low carrier density, it is likely that local d-wave
pairings are energetically favored over the nonlocal pairings
(such as p- and f -wave), and naturally accompanied by an
s-wave component. Given the uncertainty in our knowledge
of various quintessential parameters in these materials, it is of
absolute necessity to perform complimentary thermodynamic
and transport measurement to unambiguously determine the
symmetry of the paired state. Finally, we briefly comment on
such possible future experiments that can help pin down the
pairing symmetry in these compounds.

A. Future experiments and pairing symmetry

The existence of simple Weyl superconductors can be
pinned down, at least in principle, by systematically control-
ling the impurity concentration in the system, for example.
Note that with the decreasing strength of impurity scattering
(as the material gets cleaner), the T -linear dependence of
the penetration depth is expected to get suppressed and a
T 2 dependence should become dominant. This feature, for
example, can be probed by the following measurements.
(1) Specific heat (Cv) measurements inside the superconduct-
ing phase, although difficult given the low critical tempera-
tures (0.78 K in YPtBi) in half-Heuslers, can be instrumental
in unveiling the pairing symmetry. With an underlying simple
Weyl superconductor, Cv should display a gradual onset of T 3

dependence at low temperature (T � Tc) and disappearance
of T 2 scaling as the concentration of impurities is reduced
(the system then falls on the Weyl side of the phase diagram,
escaping the critical regime), see Fig. 8. By contrast, with
increasing impurity scattering, the T 2 dependence of specific
heat is expected to gradually get replaced by the Fermi-liquid-
like T -linear dependence as the system moves into the thermal
metallic side of the transition.

(2) Measurements of the anomalous thermal Hall con-
ductivity (see Sec. III E),11 as well as probing the surface
Andreev bound Fermi arc states with the STM quasiparticle

11With the current estimation of various parameters in YPtBi
[51,56], we find κxy ∼ C 1.5 × 10−4 W K−1 m−1, where the param-
eter C ∼ 1 depends on the pairing symmetry (see Sec. III E), which
can, in principle, be measured [122].
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interference (QPI) techniques are expected to distinguish
among various candidates of Weyl pairing listed in Table II.

(3) The nuclear magnetic resonance (NMR) relaxation time
(T1) can also be a good probe to elucidate the scaling of
the low-energy DoS since 1/T1 ∼ T [�(E → T )]2 (Korringa’s
relation). Therefore, as the impurity concentration is gradually
increased, the inverse of the NMR relaxation time should
display a crossover from T −1

1 ∼ T 5 (dominated by BdG-
Weyl quasiparticles) to T −1

1 ∼ T 3 (inside the quantum critical
regime), to T -linear behavior (in the thermal metallic phase)
scaling, see Fig. 8.

(4) The longitudinal thermal conductivity (κ j j) can also
be a good probe to expose various regimes of the phase
diagram. Specifically, κ j j/T scales as (a) T when the BdG-
Weyl quasiparticles dominate the transport (clean limit),
(b) T 2/3 in the entire quantum critical regime, and (c) ap-
proaches a constant value in the thermal metallic side as T →
0, see Fig. 8. Note that the magnitude of thermal conductivity
will in general be different along various crystallographic
directions due to the natural anisotropy in the Weyl paired
state.

Above, we have discussed the experimental implications of
the Weyl-paired superconducting state and how it evolves as
a function of impurity scattering strength. If, on other hand,
the T -linear dependence of the penetration depth in Fig. 10
arises from an underlying line node, then the measurements
of the specific heat can be a good tool to pin down such a
nodal structure. In the presence of a nodal loop (or double-
Weyl node), T 2 dependence of the specific heat is expected
to occupy a progressively wider window of temperature with
a gradual decrease of impurity scattering, see Fig. 9. By
contrast, with increasing strength of impurity scattering, the
T 2 dependence will be gradually replaced by the T -linear
dependence in Cv (dominated by a thermal metal). The in-
verse of the NMR relaxation time in the presence of a nodal
loop in the quasiparticle spectra is then expected to display
a smooth crossover from T −1

1 ∼ T 3 (dominated by pseu-
doballistic quasiparticles) to T -linear dependence (governed
by thermal metallic phase), as the disorder in the system
increases. Notice κ j j/T is expected to display a T -linear
scaling, but only when the heat-current flows in the basal
plane containing the nodal loop. Otherwise, with increasing
(decreasing) impurity strength the residual value of κ j j/T as
T → 0 should increase (decrease) [123]. By contrast, in the
presence of double-Weyl nodes [separated along ẑ direction
(say), for example], κzz/T ∼ constant, while κ j j/T ∼ T at
low temperature, where j = x, y.

We realize that it may be very difficult to tune the con-
centration of impurities experimentally, the task further com-
plicated by the fact that nodal superconductivity is easily
destroyed by (nonmagnetic) impurities. Nevertheless, one
could still make meaningful conclusions about the pairing by
exploring the phase diagram at a fixed impurity concentration,
as a function of temperature. For instance, descending in
temperature to the left of the disorder controlled diffusive
QCP (the red dot in Fig. 8), one would expect to see the
crossover from the critical regime (where Cv ∼ T 2, T −1

1 ∼
T 3, and κ j j/T ∼ T 2/3) to the pure Weyl regime (with Cv ∼
T 3, T −1

1 ∼ T 5, and κ j j/T ∼ T 1). Therefore we believe that
it is still conceivable to pin the actual nature of the pair-

ing symmetry in half-Heusler compounds with the presently
available experimental tools. We hope our detailed discussion
will motivate future experiments in this class of materials.

VII. STRONG TOPOLOGICAL SUPERCONDUCTIVITY:
ODD-PARITY ISOTROPIC p-WAVE PAIRING

In this section, we study superconductivity in the Luttinger
semimetal (LSM) with isotropic p-wave pairing. This odd-
parity pairing is the spin-3/2 generalization of the B phase
of 3He [15]. The paired state represents a time-reversal in-
variant, class DIII (strong) topological superconductor (TSC)
[9]. The topology induces a two-dimensional (2D) gapless
Majorana fluid to appear at the material surface. Our goal is
to investigate the stability (“topological protection”) of this
2D Majorana fluid to perturbations that are inevitable at the
surface of a real material: quenched impurities and residual
interparticle interactions.

In a previous work [52], we investigated exactly these
questions in the Luttinger Hamiltonian [Eqs. (2.1) and (2.5)]
with isotropic p-wave pairing, but with one crucial difference.
In Ref. [52], we assumed that m > m0, i.e., that both bands in
Eq. (2.6) “bend together,” as in the light and heavy hole bands
of GaAs [17]. Assuming that both bands participate in super-
conductivity, the bulk winding number ν = 4 in that case, and
the surface Majorana fluid exhibits coexisting linear and cubic
dispersing branches [49]. We showed that interactions can
destabilize the clean fluid [52], inducing spontaneous time-
reversal symmetry breaking and surface thermal quantum Hall
order12 [9,95,124,125]. By contrast, we demonstrated that
quenched surface disorder is a strong perturbation that induces
critical Anderson delocalization, with multifractal surface
wave functions and a power-law divergence of the disorder-
averaged density of states. These results were obtained nu-
merically via exact diagonalization, and were found to agree
very well with the predictions of a certain 2D conformal field
theory (CFT). The CFT is the current algebra SO(n)ν (with
ν = 4), where n → 0 is a replica index [65]. We concluded
that the surface states are governed by this CFT in the presence
of arbitrarily weak disorder. Moreover, in a separate work, we
established that the class DIII SO(n)ν theory is stable against
the effects of residual quasiparticle-quasiparticle interactions
[65]. The main takeaway of Ref. [52] was that disorder can
enhance topological protection at the surface of a higher-spin
TSC.

The SO(n)ν CFT can be “derived” via certain conformal
embedding rules for surface states of model spin-1/2 TSCs
[65]. In the case of the LSM with p-wave pairing studied
here and for the closely related model in Ref. [52], these
rules do not obviously apply. In particular, the conformal
embedding argument assumes that the clean limit is also a
CFT, i.e., free relativistic fermions (in 2 + 0 dimensions; in
the absence of interactions, we can study the problem at
a fixed single-particle energy [65]). By contrast, the clean
surface states of higher-spin TSCs typically have higher (e.g.,
cubic) dispersion [48,49], and are not conformally invariant.

12We note that such surface order can also arise in the presence of
p + is pairing in the bulk [126].
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FIG. 11. Schematic phase diagram for the noninteracting 2D
surface states of a class DIII bulk topological superconductor. The
fixed point representing the clean surface band structure (red dot)
is unstable in the presence of time-reversal preserving quenched
disorder for any ν � 3, where ν is the integer bulk winding number.
The precise form of the clean limit depends on details. For a spin-
1/2 bulk, one can have ν species of massless relativistic Majorana
fermions, with disorder that enters as a non-Abelian gauge potential
scattering between these [65]. For isotropic p-wave pairing in the
LSM studied here with winding number ν = 3, the surface states
in the hole-doped case consist of a single two-component surface
fermion with cubic dispersion, see Fig. 12(a) and Eq. (7.9) [48], cf.
Refs. [49,52]. Our generalized surface theory in Eq. (7.23) has ν-fold
dispersion for the corresponding winding number. The disordered
system should be described by a class DIII nonlinear sigma model
with a Wess-Zumino-Novikov-Witten (WZNW) term. The WZNW
term prevents Anderson localization [65,127]. This theory has a
stable thermal metal phase (green dot) and an unstable, critically
delocalized fixed point. The latter (yellow dot) is governed by the
SO(n)ν CFT [65,70]. Our numerical results are generally consistent
with the SO(n)ν theory, see Figs. 13–15, implying that the renormal-
ization group trajectory away from the clean limit is fine-tuned by
the topology to flow into the CFT (solid vertical flow), instead of
flowing into the thermal metal (dashed flow). The same conclusion
was reached for a model with ν = 4 in Ref. [52].

Here we consider the problem in the LSM, where electron
and hole bands bend oppositely. This gives rise to a different
winding number (ν = 3) and different surface states, depend-
ing on the doping. In fact, we invent here a generalized surface
model (see Sec. VII C) that allows us to efficiently simulate
noninteracting surface states corresponding to a bulk TSC in
class DIII with arbitrary integer winding number ν. The model
has ν-fold dispersion, such that the large-ν limit corresponds
to a highly flattened surface band with a strongly diverging
clean DoS.

On physical grounds, the most general expectation for
class DIII in this case would be that disorder induces a
surface thermal metal [127]. In two spatial dimensions, the
thermal metal phase in class DIII is stable due to weak
antilocalization. Moreover, the SO(n)ν CFT fixed point, while
stable against interactions, is technically unstable towards
flowing into the thermal metal [52]; see Fig. 11. Despite
this, in Ref. [52] for winding number ν = 4 and here for
generic ν � 3, we provide strong numerical evidence that any
disorder induces the quantum critical scaling associated to
SO(n)ν , with universal predictions for experiment that depend
only on ν. These include power-law scaling for the tunneling
density of states, a quantized thermal conductivity divided by
temperature [52,70], and a universal multifractal spectrum of

local DoS fluctuations. These states are also robust against
interactions for any ν [65].

Our results suggest a deep connection between the bulk
topology of three-dimensional TSC and the universal physics
of the quench-disordered two-dimensional Majorana surface
fluid, despite the fact that key attributes of the clean surface
depend on details of the bulk. In particular, it suggests a
topological generalization of the conformal embedding rule
[SO(nν)1 ⊃ SO(n)ν ⊕ SO(ν)n] used to link ν clean relativis-
tic Majorana fermions to the SO(n)ν CFT in the presence of
disorder [65]. This topological generalization should apply in
the replica limit n → 0 to any surface band structure for any
strong class DIII TSC with the winding number ν � 3, subject
to time-reversal invariant quenched disorder.

Beyond fundamental interest, the Eliashberg calculations
in Ref. [56] suggest that isotropic p-wave pairing gives the
dominant non-s-wave channel in a hole-doped LSM due to
optical-phonon–mediated pairing. For this reason, we focus
mainly on the hole-doped model in the following, which has
ν = 3 (see below).

A. Bulk and surface theory

We write the Luttinger Hamiltonian in terms of the Nambu
spinor defined by Eq. (2.11),

H = 1

2

∫
d3k

(2π )3
�

†
N (k) ĥ(k) �N (k), (7.1)

where the 8 × 8 Bogoliubov-de Gennes (BdG) Hamiltonian is

ĥ(k) = ĥL(k) τ3 + �p(J · k) τ1. (7.2)

Here, ĥL is the Luttinger operator from Eq. (2.5) and J denotes
the vector of spin-3/2 generators [see Eq. (A4)]. The Pauli
matrices {τμ} act on the particle-hole (Nambu) space. The
parameter �p is the real p-wave pairing amplitude; with this
choice, Eq. (7.2) is time-reversal invariant [see Eq. (2.15)]. It
also satisfies the particle-hole condition in Eq. (2.14), using
Eq. (2.12).

We assume weak BCS pairing so that μ > 0 (μ < 0)
describes superconductivity in the |ms| = 1/2 conduction
(|ms| = 3/2 valence) band of the Luttinger Hamiltonian. The
physical bulk quasiparticle energy spectrum of Eq. (7.2) is
fully gapped,

E±(k) =
√

(|λ1 ± 2λ2|k2 − |μ|)2 + [(
2∓1

2

)
�pk

]2
, (7.3)

where 2λ2 > λ1 is required so that conduction and valence
bands bend oppositely [or m0 > m in Eq. (2.6)], and E+ (E−)
corresponds to superconductivity in the conduction (valence)
band. The assumption of weak BCS pairing around a finite
Fermi surface means that we can project the BdG Hamiltonian
into the |ms| = 1/2 conduction or |ms| = 3/2 valence band.
The results are

ĥ1/2(k) = [(λ1 + 2λ2)k2 − μ]τ3 + �p

2

[
−kz − k̄2

k
− k2

k̄
kz

]
τ1,

ĥ3/2(k) = [(λ1 − 2λ2)k2 − μ]τ3

+ �p

α(k)

[−kz β(k) k̄3

k3 kz β(k)

]
τ1, (7.4)
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where k ≡ kx − iky, k̄ = k∗, and

α(k) = 2
3

(
4k2

z + |k|2), β(k) = (
4k2

z + 3|k|2). (7.5)

Here we have diagonalized (J · k)2 but not (J · k), so that
the matrix elements are rational functions of the momentum
components. This is essential for obtaining a local surface
theory, derived below.

We employ the winding number defined by Schnyder
et al. [9] to characterize the topology of the bulk. After
rotating τ3 → τ2, one introduces the matrix 4 × 4 matrix
Q(k) = U −1(k) �U (k), where U (k) diagonalizes ĥ|ms|(k),
and � = diag(1, 1,−1,−1) is the flattened matrix of energy
eigenvalues. Then Q is off-diagonal,

Q =
[

0 q
q−1 0

]
, (7.6)

and the winding number is given by

ν =
∫

d3k

24π2
εi jkTr[(q−1∂iq)(q−1∂ jq)(q−1∂kq)], (7.7)

with repeated indices summed. We find that |ν| = 3 for the va-
lence and conduction bands. From here on, we ignore sgn(ν),
which can only be important at an interface (e.g., a physical
surface) where this sign flips. Our winding number is in
agreement with Ref. [48] for the |ms| = 3/2 band, but differs
from that obtained for the |ms| = 1/2 band, in which ν = 1
was claimed. We show below that surface state calculations
support our results. We believe that the discrepancy comes
from the fact the authors of Ref. [48] used a Fermi surface
winding number method [128], which gives the correct wind-
ing number only if the system is nondegenerate.

To obtain the effective surface Hamiltonian we follow the
conventional approach of terminating in the z direction and
diagonalizing ĥ|ms|(k, kz → −i∂z ), where k = kx, ky denotes
momentum parallel to the surface. For the |ms| = 3/2 valence
band, applying hard-wall boundary conditions, we obtain
zero-energy surface states at k = 0 of the form∣∣ψ0,ms

〉 = |τ2 = sgn(ms)〉 ⊗ |ms〉 ⊗ ∣∣ fms

〉
. (7.8)

The particle-hole spin locks along the +τ2 (−τ2) direction for
positive (negative) ms [49,52]. In Eq. (7.8), 〈z| fms〉 = fms (z)
denotes the bound state envelope function.

Using first-order k · p perturbation theory, we obtain the
surface effective Hamiltonian,

ĥ(S)

3/2(k) ∝ �p

k2
F

[
0 ik̄3

−ik3 0

]
. (7.9)

Equation (7.9) satisfies the projected version of the particle-
hole symmetry in Eq. (2.14),

−M̂ (S)

P

[
ĥ(S)

3/2

]T
(−k) M̂ (S)

P = ĥ(S)

3/2(k), M̂ (S)

P = σ1, (7.10)

and the projected time-reversal symmetry [Eq. (2.15)]

−M̂ (S)

S ĥ(S)

3/2(k) M̂ (S)

S = ĥ(S)

3/2(k), M̂ (S)

S = σ3. (7.11)

Here, the matrices {σμ} act on the components ms = ±3/2.
Figure 12 shows the clean Majorana surface bands ob-

tained numerically from a lattice regularization of Eq. (7.2)
for (a) |ms| = 3/2 valence-band–hole and (b) |ms| = 1/2
conduction-band–electron superconductivity. Below we focus

FIG. 12. Surface Majorana fluid band structure for the Luttinger
Hamiltonian with isotropic p-wave pairing. This is a class DIII,
strong topological superconductor with winding number |ν| = 3 for
pairing arising from either the conduction or valence bands. Results
shown here are obtained from a lattice regularization and termination
of Eq. (7.2); the momentum kx is measured in units of the lattice spac-
ing a. The left panel (a) shows the cubic-dispersing two-dimensional
surface states obtained for hole-doping, see Eq. (7.9). Only positive
kx is depicted, since the results are symmetric under reflection about
kx = 0. The BdG parameters are �p = 1, λ1 = 0.1, λ2 = 0.5, and
μ = −1. The right panel (b) shows a relativistic cone centered at
k = 0 and a gapless ring in the electron-doped case. The parameters
are the same as for (a), except that μ = +1.

on the hole-doped case in which the surface fluid has cubic
dispersion [Eq. (7.9)]. The surface fluid in the electron-doped
case is depicted in Fig. 12(b), and exhibits a linear Majorana
cone around k = 0 and a zero-mode ring at finite surface
momentum; the latter structure is inconsistent with ν = 1
[48,49].

B. Quenched surface disorder, class DIII SO(n)ν conformal
field theory, and numerical results

We now turn to perturbations of the surface theory, fo-
cusing on the cubic-dispersing Majorana fluid that arises
from hole-doped superconductivity. We can write the surface
Hamiltonian as

H (S)

0 = 1

2

∫
d2r ηT M̂ (S)

P (σ− ∂3 − σ+ ∂̄3)η, (7.12)

where η → ηms is a two-component Majorana spinor and
r is the position vector. The chiral derivative operators are
{∂, ∂̄} ≡ (1/2)(∂x ∓ i∂y), while σ± ≡ σ1 ± iσ2. Here we have
set the prefactor of Eq. (7.9) equal to one.

The simplest class of surface perturbations are constant
bilinears. Such an operator can be written as ηTM̂ (S)

P �η, with
� a 2 × 2 Hermitian matrix. The only bilinear that satisfies
particle-hole in Eq. (7.10) (i.e., which does not vanish under
Pauli exclusion) is the mass term � = σ3 � Jz. This is the
projection of the spin operator perpendicular to the surface.
The nonzero expectation value of this term (due, e.g., to a
coupling with an external Zeeman field) would open a surface
energy gap and signal time-reversal symmetry breaking. The
time-reversal broken state would reside in a plateau of a
surface thermal quantum Hall effect [9,95,124,125].

These considerations are almost identical to 3He-B [9,15],
which has spin-1/2 and ν = 1. The only difference is that the
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derivatives in Eq. (7.12) appear to the first power for ν = 1,
whereas here we get the ν = 3 power for the spin-3/2 bulk.

Residual quasiparticle-quasiparticle interactions should be
short-ranged (due to screening by the bulk superfluid). Since
η is a two-component Majorana field, the most relevant inter-
action that we can write down is

H (S)

I = u
∫

d2r η1∇η1 · η2∇η2. (7.13)

The coupling strength u has dimensions of length for cubic
dispersion and is therefore irrelevant in the sense of the
renormalization group (RG) [48].

Finally we turn to quenched disorder, which is always
present at the surface of a real sample. We assume the dis-
order is nonmagnetic, but may arise due to neutral adatoms,
charged impurities, grain boundaries, etc. In other words,
any time-reversal invariant surface potential perturbation is
allowed. Since the only bilinear without derivatives is the
massive, time-reversal odd Jz operator discussed above, we
must broaden the search to include bilinears with derivatives.
The most relevant possible potential can be encoded in the
Hamiltonian

H (S)
D = − i

2

∫
d2r

⎡
⎣ηT(r) M̂ (S)

P σα

←→
∂

∂xβ
η(r)

⎤
⎦Pαβ (r).

(7.14)

In this equation, repeated indices are summed, α, β ∈ {x, y}.
We assume that Pαβ (r) is a white-noise-correlated random po-
tential with variance λ. Then λ has dimensions of 1/(length)2

and is a relevant perturbation to the clean cubic band structure.
The effects of disorder cannot be treated perturbatively.

The standard procedure would produce a disorder-averaged
nonlinear sigma model in class DIII, which possesses a stable
thermal metal phase [127,129]. Although the thermal metal is
perturbatively accessible in the sigma model with the WZNW
term, the critical SO(n)ν CFT fixed point is not, except for
the limit of large ν. Therefore we resort to numerics in the
remainder of this section. The question we want to answer is
whether disorder flows into the SO(n)ν CFT or the thermal
metal, see Fig. 11.

The noninteracting BdG Hamiltonian implied by
Eqs. (7.12) and (7.14) has momentum space matrix elements

[ĥS]k,k′ =
[

0 ik̄3

−ik3 0

]
δk,k′ + (kx + k′

x )

[
0 1
1 0

]
Px(k − k′)

+ (ky + k′
y)

[
0 −i
i 0

]
Py(k − k′), (7.15)

where we have taken Pαβ (r) to be diagonal in its lower indices.
Gaussian white noise disorder can be efficiently simulated in
momentum space using a random phase method [67],

Pα (k) =
√

λ

L
eiθα (k) exp

(
−k2ξ 2

4

)
, (7.16)

where θα (−k) = −θα (k), but these are otherwise indepen-
dent, uniformly distributed random phases. The parameters
L, ξ , and λ denote the system size, correlation length, and
disorder strength, respectively. For exact diagonalization, we
choose periodic boundary conditions so that k = (2π/L)n,
and the components of n ∈ {Z,Z} run over a square with

−Nk � ni � Nk , for i = 1, 2. Here, Nk determines the size
of the vector space in which we diagonalize, which is
2(2Nk + 1)2. While the choice of L is arbitrary, we use it
to fix the ultraviolet momentum cutoff � = 2πNk/L. The
correlation length ξ and the dimensionful disorder strength λ

are then measured in terms of powers of �. The random-phase
approach is equivalent to the disorder average up to finite-size
corrections [67]. We perform the calculations in momentum
space in order to avoid fermion doubling.

To characterize the disordered surface theory, we study
the scaling of the disorder-averaged DoS �S(ε) and wave-
function multifractality, measures that are expected to show
universal behavior at the SO(n)3 fixed point. The clean surface
has �S(ε) ∝ |ε|−1/3 due to the cubic dispersion. For winding
number ν, in the presence of time-reversal preserving disor-
der the SO(n)ν theory predicts the scaling behavior of the
disorder-averaged DoS [65,66] to be �S(ε) ∝ |ε|−1/(2ν−3). In
the case of the hole-doped LSM with ν = 3, the clean and
dirty CFT predictions coincide. For the generalized surface
theory introduced below [defined via Eq. (7.23)] or the ν = 4
model studied in Ref. [52], the clean and dirty predictions
differ, so that the DoS provides a useful diagnostic. We will
plot the integrated density of states (IDoS) N (ε). For the
SO(n)ν theory,

N (ε) ≡
∫ ε

0
dε′ �S(ε′) ∼ |ε|(2ν−4)/(2ν−3). (7.17)

The other measure that we will employ here as a numerical
test for the SO(n)ν CFT is wave-function multifractality. The
disorder-induced spatial fluctuations of the local DoS �S(ε, r)
are encoded in the multifractal spectrum τ (q) [65,127]. The
τ (q) spectrum measures the sensitivity of extended wave
functions to the sample boundary. By partitioning a large area
L × L of the surface with boxes of small size b � L, one can
define the box probability μn and inverse participation ratio
(IPR) Pq in terms of a particular wave function ψ (r) via

μn =
∫
An

d2r |ψ (r)|2∫
L2 d2r |ψ (r)|2 , Pq ≡

∑
n

μq
n, (7.18)

where An denotes the nth box. In the case of a typical critically
delocalized wave function, one expects that

Pq ∼ (b/L)τ (q), (7.19)

where τ (q) is self-averaging and universal [127]. For TSC
surface states, the multifractal spectrum τ (q) is expected to
have the form [65,67,130]

τ (q) =

⎧⎪⎨
⎪⎩

(q − 1)(2 − θν q), q < |qc|,
(
√

2 − √
θν )2q, q > qc,

(
√

2 + √
θν )2q, q < −qc,

(7.20)

where

qc ≡
√

2/θν. (7.21)

The spectrum is quadratic below the termination threshold
q = ±qc, beyond which it is linear [127,130,131].

For disordered class DIII surface states and winding num-
ber ν, the SO(n)ν theory predicts [65]

θν = 1/(ν − 2), ν � 3. (7.22)
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FIG. 13. Numerical results for the surface states of the hole-
doped Luttinger semimetal with isotropic p-wave pairing in the bulk
and time-reversal symmetry preserving disorder on the surface. The
winding number of the bulk is ν = 3. The left plot shows the multi-
fractal spectrum [Eqs. (7.18)–(7.20)] for two typical lowest energy
surface wave functions in fixed disorder realizations. The dotted
red curves are the numerical results, while the solid blue curve is
the analytical prediction from the SO(n)3 CFT [Eqs. (7.20)–(7.22)].
The curves marked (i) and (ii) correspond to two different disorder
strengths λ; the second one is shifted vertically for clarity. Since λ

has dimensions of 1/(length)2, it is measured in units of the squared
momentum cutoff �2 (see text). The system size is a 109 × 109 grid
of momenta. Box sizes b = 1 and 5 are used to extract τ (q) [see
Eqs. (7.18) and (7.19)]. The right plot shows the integrated density
of states N (ε). In this case, both the clean limit and the SO(n)3 theory
predict N (ε) ∼ ε2/3 [Eq. (7.17)]. The full surface density of states is
exhibited in the inset. For ν = 3, the effects of disorder are strong,
as indicated by the analytical result for the universal multifractal
spectrum (blue curves, left panel). It is almost “frozen” (a frozen
state has τ (q) = 0 for q > qc [67,130,132–134]). This means that
the typical wave function consists of a few rare peaks with arbitrarily
large separation, see Fig. 1(b) in Ref. [67] for an example. We expect
that finite size effects are quite severe in this case, responsible for
the deviation between the analytical prediction and numerics. See
Figs. 14 and 15 for higher ν, which give much better agreement.

Equations (7.17) and (7.22) are exact results that obtain from
the primary field spectrum of SO(n)ν in the replica n → 0
limit. Isotropic p-wave pairing in the Luttinger semimetal
gives ν = 3, so that θν = 1 and qc = √

2 � 1.4. This corre-
sponds to quite strong multifractality, which presents some
difficulties as we will see. By contrast, large ν gives θν �
1 and qc � 1, corresponding to weakly multifractal (nearly
plane-wave) states.

Figure 13 depicts our numerical results for the τ (q) spec-
trum for two different disorder strengths, and the IDoS N (ε)
for one disorder strength. As mentioned above, the IDoS is
not particularly useful for ν = 3 because the clean and dirty
CFT predictions coincide. Moreover, the strong divergence in
the corresponding DoS �(ε) makes it difficult to get sufficient
resolution in the peak itself.

We find that the multifractal spectrum becomes disorder-
independent for sufficiently large disorder strengths. This is
important, because the thermal metal phase should exhibit
weak multifractality and a weak DoS divergence, but both
features would be disorder- and scale-dependent due to weak
antilocalization [129]. We observe rough agreement between
the analytical SO(n)3 CFT prediction [Eqs. (7.20)–(7.22)]
and the numerics. This should be compared to the ν = 4
model studied in Ref. [52], wherein quite good agreement was

0.1 0.2 0.3 0.4 0.5

0.2

0.3

0.4
0.5
0.6
N(ε)

λ = (0.87) Λ6

ν = 5

ε

ε0 2 4 6

DoS

FIG. 14. Same as Fig. 13, but for the generalized surface model
in Eq. (7.23) with ν = 5. Numerical results are shown as red dotted
curves, while analytical predictions (blue solid curves) for τ (q)
and N (ε) obtain from the SO(n)5 CFT. Box sizes b = 3 and 6 are
used to extract τ (q). The disorder strength λ formally has units of
1/(length)6, hence proportional to the sixth power of the momentum
cutoff �. The absolute disorder strength is of the same order as
in Fig. 13, with the same system size. The termination threshold
qc = √

6 � 2.45 [see Eq. (7.21)].

obtained. Even better results are found for the higher-ν model
explicated in the next section, see Figs. 14 and 15.

We attribute the relatively poor fit for τ (q) in Fig. 13 to the
strong multifractality predicted by SO(n)3. This is indicated
by the solid blue curve in the top panel of Fig. 13. The
analytical τ (q) is almost “frozen.” A frozen state has τ (q) = 0
for q > qc � 1 [130]. A critically delocalized, but frozen state
consists of a few rare probability peaks, with arbitrarily large
separation between these [67,130,132–134]. The peaks are
sufficiently rare that their heights do not scale with a power of
the system size L, similar to an Anderson localized state. (The
term “frozen” originates via a mapping to the classical glass
transition in the random energy model [130,133,134].) Frozen
states also resemble the “random singlet” wave functions
of the Jordan-Wignerized random bond XY model in 1D,
which have the quality of random telegraph signals [135]. In
a previous study [67], we found that the momentum space
method does not scale well for frozen states, and we believe
this is the source of the relatively poor fit in Fig. 13.

Note that it is only meaningful to compare the multifractal
spectrum to the analytical prediction over the range |q| < qc,
since the spectrum becomes linear outside of this. Only the
difference in slopes at q = ±qc are meaningful [69].

C. Generalized surface: higher winding numbers
and numerical results

If we believe that finite size effects are responsible for the
relatively poor fit between numerics and the SO(n)3 CFT in
Fig. 13, the obvious way to improve is to increase the system
size. Instead of doing this (which requires more computer
memory), we take another approach.

We conjecture that the Majorana surface fluid of a class
DIII TSC with bulk winding number ν ∈ 2Z + 1 (odd) can be
captured by the generalized 2 × 2 surface model

[
ĥ(ν)

S

]
k,k′ =

[
0 ik̄ν

−ikν 0

]
δk,k′ + (kx + k′

x ) σ1 Px(k − k′)

+ (ky + k′
y) σ2 Py(k − k′). (7.23)
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FIG. 15. Same as Fig. 13, but for the generalized surface model
in Eq. (7.23) with ν = 7. Numerical results are shown as red dotted
curves, while analytical predictions (blue solid curves) for τ (q)
and N (ε) obtain from the SO(n)7 CFT. Box sizes b = 3 and 6 are
used to extract τ (q). The disorder strength λ formally has units of
1/(length)10, hence proportional to the tenth power of the momentum
cutoff �. The absolute disorder strength is of the same order as
in Fig. 13, with the same system size. The termination threshold
qc = √

10 � 3.16 [see Eq. (7.21)].

For ν = 1, we get the spin-1/2 surface states of 3He-B, while
ν = 3 corresponds to the hole-doped LSM [Eq. (7.15)]. Again
taking Px,y to be random phase, white noise variables as in
Eq. (7.16), the disorder strength λ is relevant for any ν � 3,
while it is irrelevant for 3He-B.

How do we know that the surface Hamiltonian in Eq. (7.23)
can be taken to represent a TSC, without connecting it to a
bulk model for general ν? Certainly the clean limit of this
model is artificial and extremely unstable (to both disorder
and interactions) for large ν. Both attributes follow from the
strongly diverging clean DoS,

�(ε) ∼ |ε|−(ν−2)/ν . (7.24)

However, if the “topological tuning” scenario articulated in
Fig. 11 is correct, then any clean starting point should lead to
the same disordered fixed point, the SO(n)ν CFT [65].

We can infer the bulk winding number ν by computing
the surface winding number WS. This obtains by adding the
homogeneous time-reversal symmetry-breaking mass term
m σ3 to the clean band structure in Eq. (7.23) and computing
[15]

WS(m) = εαβγ

3!(2π )2

∫ ∞

−∞
dω

∫
d2k

× Tr[(Ĝ−1∂αĜ)(Ĝ−1∂βĜ)(Ĝ−1∂γ Ĝ)], (7.25)

where Tr denotes the trace over the two spinor components,
and α, β, γ ∈ {ω, kx, ky} (repeated indices are summed). The
surface state Green’s function Ĝ(ω, k, m) is given by

Ĝ(ω, k, m) ≡ [−i ω 1̂ + ĥm(k)]−1, (7.26)

where ĥm = ĥ(ν)
S |Pα=0 + m σ3 is the clean, gapped surface

Hamiltonian. The surface winding number determines the
thermal Hall conductivity [95,124,125,136–138]

κxy = WS κ◦, (7.27a)

κ◦ = π2k2
BT/6h. (7.27b)

Here, h is Planck’s constant.

It is easy to check that

WS(m) = (ν/2) sgn(m). (7.28)

For ν = 1, this is the standard “half-integer” (shifted) surface
quantum Hall effect familiar from 3He-B and topological
insulators [9,15]. For a relativistic Majorana surface fluid,
it can be shown that the maximum possible value of WS is
the bulk winding number divided by two [65]. We conclude
that the surface Hamiltonian in Eq. (7.23) is a representative
surface band structure for a class DIII TSC with winding
number ν.

Following the same logic of the previous section, we com-
pare the numerical diagonalization of Eq. (7.23) in momentum
space to the predictions of the SO(n)ν CFT. Results for ν = 5
and ν = 7 are shown in Figs. 14 and 15, respectively. In
these cases, the multifractal spectrum τ (q) and the IDoS
N (ε) match very well the corresponding CFT predictions in
Eqs. (7.20)–(7.22) and (7.17), respectively. The reason for the
better matching is the weaker multifractality of the critical
wave functions with increasing ν, as predicted by the CFT.

The SO(n)ν fixed point is stable against residual
quasiparticle-quasiparticle interactions [65]. In addition to
universal energy scaling of the DoS and wave-function mul-
tifractality (both which could be detected via STM), the ratio
of the thermal conductivity to temperature T is predicted to be
quantized in the T → 0 limit [9,70]:

lim
T →0

κxx

T
= |ν|

π

κ◦
T

, (7.29)

where κ◦ was defined by Eq. (7.27b).

VIII. CONCLUSIONS AND OUTLOOK

To summarize, we have presented possible topological
superconducting phases, including both gapless and gapped,
in a doped Luttinger system (see Sec. II). We showed that
while pseudospin singlet s-wave pairing yields a trivial fully
gapped state, the d-wave counterparts (belonging to either
T2g or Eg representations) often (if not always) lead to Weyl
superconductors at low temperature at the cost of the time-
reversal symmetry (see Sec. III). We argued that the sim-
ple Weyl nodes (sources and sinks of Abelian Berry curva-
ture, see Figs. 4–6) that arise from complex combinations
of simple d-wave nodal loops cause a power-law suppres-
sion of the density of states �(E ) ∼ |E | (for nodal loop) →
|E |2 (for simple Weyl nodes) at low energies. Therefore Weyl
paired states are generically expected, at least within the
framework of weak-coupling pairing.

While any Weyl pairing supports one-dimensional (pseu-
dospin degenerate) Fermi arcs as surface Andreev bound
states, only the T2g paired state can lead to nontrivial anoma-
lous pseudospin and thermal Hall conductivities at low tem-
perature (Sec. III E). The simple Weyl BdG quasiparticles
remain sharp in the presence of weak randomness in the sys-
tem (in contrast to double-Weyl fermions in the dxy + idx2−y2

phase or nodal-loop states, see Fig. 9). Stronger bulk disorder
in the BdG-Weyl system induces a continuous quantum phase
transition into a thermal metallic phase (Sec. V and Fig. 8).
The critical regime occupies a large portion of the phase di-
agram, where �(E ) ∼ |E |, as shown in Fig. 8, which induces
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the corresponding scaling of physical observables such as
specific heat, thermal conductivity, etc.

We demonstrated that nucleation of any d-wave pairing al-
ways causes a small lattice distortion or nematicity that in turn
gives rise to a nontrivial s-wave component in the paired state
(see Fig. 7). Such symmetry-guaranteed coupling between d-
and s-wave pairing with a lattice distortion may allow one to
strain-engineer various exotic s + d pairings, specifically in
weakly correlated materials (Sec. IV). We found that, within
a simple picture of pairing, time-reversal symmetry breaking
s + id order seems to be extremely unlikely (with s-wave
and d + id-type pairings being separated by a first order
transition, see Fig. 3). This interesting possibility cannot be
completely ruled out (Sec. II E). We also showed that when the
pairing interactions in the T2g and Eg channels are of compara-
ble strength, a myriad of gapless topological superconductors
can be realized in the system (see Sec. III D, Table II, and
Fig. 16), while only the dxy + idx2−y2 paired state, supporting
double-Weyl fermions, would exhibit nontrivial anomalous
thermal and spin Hall conductivities (Sec. III E). However,
in the presence of inversion symmetry breaking (the situation
in half-Heusler compounds) only thermal Hall conductivity
remains sharply defined.

In terms of these nodal pairings, we also attempted to
understand the recent experimental data for the penetration
depth in YPtBi [47], suggestive of the existence of gapless
quasiparticles inside the paired state. We showed that T -linear
fit, when augmented by a contribution from an ordinary s-
wave component (always present with any d-wave pairing via
the aforementioned coupling to the strain), matches extremely
well with the experimental penetration depth data in YPtBi
[47], see Fig. 10. We argued that this T -linear contribution
may originate from either nodal loops in simple d-wave pair-
ing for example (see Fig. 2), or from the effect of quenched
disorder (such that the system gets stuck inside the wide
quantum critical regime in Fig. 8) on simple Weyl nodes
stemming from the d + id pairing. Although we strongly
believe that the former source of T -linear dependence is most
likely, we proposed various experiments on specific heat,
thermal conductivity, NMR relaxation time, Hall conductivity,
etc. (Sec. VI), which can possibly pin the actual nature of the
pairing in half-Heusler compounds [39–47].

Finally, we investigated the effects of disorder on the cubi-
cally dispersing surface states that arise from odd-parity, fully
gapped p-wave pairing (as in 3He-B). Using a generalized sur-
face model with ν-fold dispersion for winding number ν � 3,
we demonstrated excellent agreement between numerical re-
sults and the conformal field theory (CFT) SO(n)ν for higher
ν. The CFT characterizes the critical delocalization of the
surface in the presence of disorder, whilst the naively expected
thermal metal phase is absent in our numerics. This suggests a
deep connection between the bulk topology on one hand, and
the disordered surface physics on the other, reminiscent of key
aspects of the integer quantum Hall effect. A key open ques-
tion is whether there exists a topological generalization of the
conformal embedding rule [SO(nν)1 ⊃ SO(n)ν ⊕ SO(ν)n],
employed to explain the robustness of CFT results in the case
of spin-1/2 topological superconductors [65].

Perhaps the most urgent issue in the context of supercon-
ductivity in a doped Luttinger semimetal is that of pairing

FIG. 16. Weyl superconductors that obtain via d + id combina-
tions of T2g and Eg local pairings. Each figure shows the double-
or single-Weyl nodes (block dots) that arise from the nodal-loop
intersections. The pairings are (a) dxy + idx2−y2 , (b) dxy + id3z2−r2 ,
(c) dxz + idx2−y2 , (d) dyz + idx2−y2 , (e) dxz + id3z2−r2 , and (f) dyz +
id3z2−r2 . Properties of these states are enumerated in Table II. Nodal
loops shown in green, red, blue, brown, and purple, respectively,
corresponds to the ones associated with the dxy, dxz, dyz, dx2−y2 , and
d3z2−r2 pairings, respectively. Equations for these loops appear in the
rightmost column of Table I. Notice that dxz/yz + idx2−y2 also supports
a pair of gapless points at the north and south poles of the Fermi
surface. These nodes do not possess any topological invariant and
thus their existence is purely accidental. Here all momentum axes
are measured in units of the Fermi momenta kF .

mechanisms. Recently, it has been argued that such pairing
can in principle be mediated by electron-phonon interactions,
specifically due to optical phonons [56]. However, given
that promising candidates such as half-Heuslers and 227 py-
rochlore iridates also display magnetic orders, pairing in these
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materials may also arise from strong electronic interactions.
Understanding the effects of magnetic fluctuations on various
pairing scenarios is a challenging, but crucial question that we
leave for a future investigations.

Note added. After our paper was posted to the arXiv,
another preprint [139] appeared, which also discusses the
topology of various paired states, using a slightly different
language. Qualitatively our conclusions appear to be same.

ACKNOWLEDGMENTS

We thank Pallab Goswami and Pavan Hosur for useful
discussions. This research was supported by the Welch Foun-
dation Grants No. E-1146 (S.A.A.G.), No. C-1809 (B.R. and
M.S.F.), and No. C-1818 (A.H.N.), and by NSF CAREER
Grants No. DMR-1552327 (M.S.F.) and No. DMR-1350237
(A.H.N.). We are grateful to J. P. Paglione and Hyunsoo Kim
for sharing with us and giving us permission to replot the data
from Ref. [47]. A.H.N. and M.S.F. acknowledge the hospital-
ity of the Aspen Center for Physics, which is supported by
National Science Foundation Grant No. PHY-1607611.

APPENDIX A: LUTTINGER MODEL COMPONENTS

In this Appendix, we present some essential details of the
Luttinger Hamiltonian. The d vector appearing in Eq. (2.3)
is a quadratic function of momentum measured from the
� = (0, 0, 0) point of the Brillouin zone, where Kramers
degenerate valence and conduction bands touch each other,
namely, d = k2 d̂. The quantity d̂ is a five-component unit
vector and its components are given by

d̂1 = i
[
Y 1

2 + Y −1
2

]
√

2
=

√
3

2
sin 2θ sin φ =

√
3 k̂yk̂z,

d̂2 =
[
Y −1

2 + Y 1
2

]
√

2
=

√
3

2
sin 2θ cos φ =

√
3 k̂xk̂z,

d̂3 = i
[
Y −2

2 + Y −2
2

]
√

2
=

√
3

2
sin2 θ sin 2φ =

√
3 k̂yk̂x, (A1)

d̂4 =
[
Y −2

2 + Y 2
2

]
√

2
=

√
3

2
sin2 θ cos 2φ =

√
3

2

[
k̂2

x − k̂2
y

]
,

d̂5 = Y 0
2 = 1

2
(3 cos2 θ − 1) = 1

2

[
2k̂2

z − k̂2
x − k̂2

y

]
.

Note that
∑5

j=1 (d̂ j )
2 = 1. In the above expression, Y m

l ≡
Y m

l (θ, φ) are the spherical harmonics with angular momentum
l = 2.

Five mutually anticommuting � matrices appearing in
Eq. (2.3) are constructed from J = 3/2 matrices according to

�1 = 1√
3
{Jy, Jz}, �2 = 1√

3
{Jx, Jz},

�3 = 1√
3
{Jx, Jy}, �4 = 1√

3
[(Jx )2 − (Jy)2], (A2)

�5 = 1

3
[2(Jz )2 − (Jx )2 − (Jy)2],

while �0 denotes the four dimensional identity matrix. Here,
{A, B} = AB + BA is the anticommutator. The {�1, . . . , �5}

are components of the rank-two symmetric traceless tensor
operator

T μν = 1√
3

[
{Jμ, Jν} − 2

3
δμ,νJ2

]
, (A3)

which transforms in the j = 2 representation of SU(2) under
spin rotations. In the basis specified by Eq. (2.2), the spin-3/2
matrices are defined as

Jx = 1

2

⎡
⎢⎢⎣

0
√

3 0 0√
3 0 2 0

0 2 0
√

3
0 0

√
3 0

⎤
⎥⎥⎦,

Jz = 1

2

⎡
⎢⎣

3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

⎤
⎥⎦, (A4)

Jy = i

2

⎡
⎢⎢⎣

0 −√
3 0 0√

3 0 −2 0
0 2 0 −√

3
0 0

√
3 0

⎤
⎥⎥⎦.

A full basis for 4 × 4 matrices can be formed by adding
the identity and the ten commutators {�ab = −i�a�b} to the
five {�a} matrices. The matrices in the product basis {�ab} do
not transform irreducibly under the spin SU(2). An irreducibly
decomposed basis of tensor operators instead uses the three
Jx,y,z generators ( j = 1) and seven components of a rank-
three, traceless symmetric tensor formed from products of
these,

T μνγ ≡ J (μJνJγ ) − (traces),
3∑

μ=1

T μμν = 0, (A5)

where (μνγ ) means complete symmetrization of these in-
dices. The latter transforms as j = 3 under spin SU(2) ro-
tations. The tensor operator T μνγ plays the key role in the
proposal for odd-parity, orbital p-wave “septet” superconduc-
tivity in Refs. [47,51,53].

APPENDIX B: BAND PROJECTION
IN LUTTINGER SYSTEM

In this appendix, we present the band projection method in
the Luttinger system. We first focus on the noninteracting part
of the theory. In the eight-component spinor basis, defined in
Eq. (2.11) the isotropic Luttinger Hamiltonian reads as

ĥN
L (k) = τ3ĥL(k), (B1)

where ĥL(k) is the four-dimensional Luttinger Hamiltonian
defined in Eq. (2.3), with m1 = m2 = m. The Luttinger Hamil-
tonian can be brought into diagonal form under the following
unitary transformation D†

N ĥN
L DN , where DN = U1U2 is the

diagonalizing matrix, with

U1 = τ0 ⊗ D, U2 = τ0 ⊗

⎡
⎢⎣

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤
⎥⎦, (B2)
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with D is already defined in Eq. (2.7). Upon performing the
unitary rotation with the diagonalizing matrix, the Luttinger
Hamiltonian takes the form

D†
N ĥN

L DN =
(

k2

2m0
− μ

)
diag.(σ0, σ0,−σ0,−σ0)

+ k2

2m
(σ0,−σ0,−σ0, σ0). (B3)

In the last expression, the bold (normal) entries correspond
to conduction (valence) band, which then leads to the kinetic
energy in the conduction band reported in Eq. (2.17). The
kinetic energy in the valence band also assumes the form of
Eq. (2.17), but with the modification that effective mass pa-
rameter reads as m∗ = mm0/(m − m0). Therefore valence and
conduction bands bend in opposite directions when the effec-
tive mass parameters in the Luttinger model satisfy m > m0.

The diagonalization process on pairing operators yields

D†
N [(τ1 cos φsc + τ2 sin φsc) ⊗ M̂4×4]DN

= (τ1 cos φsc + τ2 sin φsc) ⊗
[

â2×2 b̂2×2

ĉ2×2 d̂2×2

]
. (B4)

In the final expression, â2×2(d̂2×2) captures the form of a
given pairing (M̂4×4) on conduction (valence) bands, while
two other entries, namely, ĉ2×2, b̂2×2 capture the coupling
between the valence and conduction bands. Throughout this
work we neglect such coupling assuming that the pairing only
takes place in the close proximity to the Fermi surface.

APPENDIX C: BAND PROJECTION IN MASSIVE
DIRAC SYSTEM

In this appendix, we present the band diagonalization
procedure and transformation of six local pairings in a Dirac
semiconductor. In the basis of a four-component Dirac-spinor
defined as � = (c+

↑ , c+
↓ , c−

↑ , c−
↓ ), where cκ

σ is the fermionic
annihilation operator with parity κ = ± and spin-projection
σ =↑,↓, the massive Dirac Hamiltonian reads as

HD = viγ0γ jk j + mγ0 − μ, (C1)

where j = 1, 2, 3, and summation over repeated indices
are assumed. Here, k js are three spatial component of
momentum, measured from the � = (0, 0, 0) point of the
Brillouin zone, m is the Dirac mass and μ is the chemical
potential. Fermi velocity v is assumed to be isotropic for
the sake of simplicity, which from now onward we set to be
unity. Mutually amticommuting four-component Hermitian γ

matrices are defined as

γ0 = κ3σ0, γ1 = κ2σ1, γ2 = κ2σ2,

γ3 = κ2σ3, γ5 = κ1σ0. (C2)

Two sets of Pauli matrices {κμ} and {σμ}, with μ = 0, 1, 2, 3,
respectively, operate on parity and spin index. The above
Hamiltonian is invariant under the following discrete
symmetry operations: (a) reversal of time (T ), generated
by T = iγ1γ3K , where K is the complex conjugation, (b)
parity or inversion (P), under which r → −r and P = γ0,
and (c) charge conjugation (C), under which C�C−1 = γ2�

∗.
In the massless limit (m → 0), describing a quantum critical

point between two topologically distinct insulating phases,
the Dirac Hamiltonian also enjoys an emergent continuous
U(1) chiral symmetry, generated by γ5 [140].

Since all four dimensional representation of five mutually
amticommuting matrices are unitarily equivalent, we can ex-
press the above five matrices from Eq. (C2) in term of � js and
� jks introduced in Eq. (2.4) according to

γ0 = �43, γ1 = �24, γ2 = �14, γ3 = �5, γ5 = �4

(C3)

or, equivalently,

�1 = γ25, �2 = γ15, �3 = γ05, �4 = γ5, �5 = γ3,

(C4)

where γlm = iγlγm. Therefore all possible, namely, six, local
pairings in this system are also captured by the effective
single-particle Hamiltonian H local

pp in Eq. (2.10), which in
terms of the γ matrices can be expressed as

H local
pp = −

∫
dr{[�s�γ13� + �p�γ02� + �1�γ3�

+�2�γ05� + �3γ1 + �0�γ25�]}, (C5)

where � is the four-component Dirac-spinor, introduced ear-
lier. Also notice that we have changed the notations for the
pairing amplitudes �as from Eq. (2.10). The purpose will be
clear in a moment.

We now conveniently define an eight-component Nambu
spinor to cast all local pairing in a massive Dirac system in a
compact form

�N =
[

�

γ13 (�†)

]
. (C6)

Note that γ13 is the unitary part of the time-reversal operator.
In this eight-component basis, the Nambu-doubled massive
Dirac Hamiltonian from Eq. (C1) takes the form

HNam
D = τ3 ⊗ [γ01kx + γ02ky + γ03kz + γ0m − μ]. (C7)

The newly introduced set of Pauli matrices {τμ} operate
on the Nambu index. In the same basis, the single-particle
Hamiltonian in the presence of all local pairings is given by

H local
pp = (τ1 cos φ + τ2 sin φ)

⎡
⎣�s + �pγ5 +

3∑
μ=0

�μγμ

⎤
⎦,

(C8)

where φ is the superconducting phase. Now we can take
the advantage of the spinor basis introduced in Eq. (C6),
to classify all six local pairings according to their transfor-
mation under the Lorentz transformation (LT). Respectively
the pairing proportional to �s and �p transforms as scalar
and pseudoscalar Majorana mass under the LT. The set of
pairings {�μ}, with μ = 0, 1, 2, 3, transforms as a “four”-
vector under the LT. While the pseudoscalar and the spatial-
components (μ = 1, 2, 3) of the vector pairings are odd
under the parity (P), the scalar and the temporal-component
of the vector pairing are even under parity (see Table III).

The unitary operator that diagonalizes the massive Hamil-
tonian [see Eq. (C7)] is given by τ0D̃(k, m), where
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TABLE III. Classification of six local pairing operators for a four-component, massive three-dimensional Dirac semiconductor. The
purpose of this table is to show how the parent band structure is crucial to determine the character of local pairing operators; in particular,
the results are completely different from the Luttinger semimetal, shown in Table I. (First column) Possible local pairings for Dirac fermions.
(Second column) Transformation of each such local pairing under the Lorentz transformation (LT) [73,74]. (Third column) Transformation
of each such pairing under D3d point group (relevant for CuxBi2Se3) [63]. (Fourth and fifth columns) Transformation of each pairing under
time reversal (T ) and parity (P), respectively. (Sixth column) Form of each local pairing close to the Fermi surface (FS). (Seventh column)
Quasiparticle spectra and the nodal topology close to the Fermi surface. The four-component Hermitian γ matrices satisfy the anticommutation
Clifford algebra {γμ, γν} = 2δμν and the exact representation of γ matrices are given in Eq. (C2). Note that the zeroth or temporal component
of the vector pairing yields a gapless Fermi surface in a doped Dirac semimetal (i.e., when m → 0). Otherwise, the gap on the Fermi surface is
suppressed by a factor k−1

F , where kF = √
2mμ̃ is the Fermi vector and μ̃ is the chemical potential measured from the bottom of the conduction

band. The Dirac points on the Fermi surface in the presence of spatial components of the vector pairing produces the quasiparticle density of
states �(E ) ∼ |E |2. The details of the band projection method are presented in Appendix C.

Pairing Transformation under LT IREP D3d T P Pairing near FS Quasiparticle spectrum

�s Scalar mass A1g � � �sσ0 Fully gapped
�p γ5 Pseudoscalar mass A1u � × �pd · σ, d = (k̂x, −k̂y, k̂z ) Fully gapped
�0 γ0 zeroth-vector component A1g � � �0σ0 (m/kF ) Fully gapped

�1 γ1 first-vector component Eu � × �1d · σ, d = (0, −k̂z, k̂y ) Gapless:

{
2 Dirac points at
kx = ±kF , ky = 0 = kz

}

�2 γ2 second-vector component Eu � × �2d · σ, d = (−k̂z, 0, −k̂x ) Gapless:

{
2 Dirac points at
ky = ±kF , kx = 0 = kz

}

�3 γ3 third-vector component A2u � × �3d · σ, d = (k̂y, k̂x, 0) Gapless:

{
2 Dirac points at
kz = ±kF , kx = 0 = ky

}

k = (kx, ky, kz ),

D̃(k, m) =

⎡
⎢⎢⎢⎢⎣

kx−iky√
2λ(λ−m)

kz√
2λ(λ−m)

−kx+iky√
2λ(λ+m)

−kz√
2λ(λ+m)

−kz√
2λ(λ−m)

kx+iky√
2λ(λ−m)

kz√
2λ(λ+m)

−kx−iky√
2λ(λ+m)

0 λ−m√
2λ(λ−m)

0 λ+m√
2λ(λ+m)

λ−m√
2λ(λ−m)

0 λ+m√
2λ(λ+m)

0

⎤
⎥⎥⎥⎥⎦,

(C9)

and λ = [k2 + m2]1/2. After performing a unitary rotation
with diagonalizing matrix, the Nambu-doubled massive Dirac
Hamiltonian from Eq. (C7) becomes

τ3D̃†HNam
D τ3D̃

= −μ diag(σ0, σ0,−σ0,−σ0)

+
√

k2 + m2 diag(σ0,−σ0, ,−σ0, σ0). (C10)

In the above expression, the quantities in the bold (normal)
font correspond to the conduction (valence) band. We here
restrict ourselves with the situation when the chemical poten-
tial is placed in the conduction band, i.e., when μ > 0. We
now make a large mass expansion of the kinetic energy term,
yielding

√
k2 + m2 − μ = k2

2m
− (μ − m) ≡ k2

2m
− μ̃, (C11)

where μ̃ = μ − m is the renormalized chemical potential,
measured from the bottom of the conduction band, and kF =√

2mμ̃ is the Fermi vector. Hence, the kinetic energy for
massive Dirac fermions in the close proximity to the Fermi
surface assumes the form

H0 =
(

k2

2m
− μ̃

)
τ3σ0. (C12)

Next we perform the same band projection on six local
pairings shown in Eq. (C8). After this transformation the
pairing assumes the schematic form shown in Eq. (B4).
Since, we have assumed that chemical potential lies within
the conduction band, we are only interested in the two-
component representation of the pairings, namely, â2×2. The
band-projected version of all six local pairings, quasiparticle
spectra, etc. are displayed in Table III.

APPENDIX D: SUPERCONDUCTING
CONDENSATION ENERGY

We hereby present the calculation of the zero-temperature
free energy of a d-wave superconductor. The derivation is
standard, and we only provide it here for the sake of com-
pleteness, since the final result is already quoted in Eq. (2.26)
in the main text and is also used to compute the free en-
ergy in the case of the (s + id) pairing considered below in
Appendix F.

The free energy F is given by Eq. (2.19) in the main
text, and can be expressed in dimensionless units f =
F/[μ2ρ(μ)], where μ is the chemical potential and ρ(μ) =
2a3m∗√2m∗μ/(2π2) is the density of states at the Fermi level.
We then obtain

f = |�̂d |2
2λd

− 1

2

∫ ωD

−ωD

dy
√

1 + y

×
∫

d�

4π

√
y2 + |�̂d |2(1 + y)2d̂ (�)2, (D1)

where, using the notation introduced in the main text, �̂ =
�/μ is the dimensionless order parameter, ωD = �D/μ is
the dimensionless Debye frequency (in the units of μ), and
y = ξk/μ = (k/kF )2 − 1 is the dimensionless energy of the
normal quasiparticles relative to the Fermi level. Note that
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the factor of
√

1 + y in the integrand appears because of the
square-root dependence of the DoS in a 3D normal metal. All
the angle dependence of the superconducting order parameter
is contained in the factor d̂ (�), normalized in a standard way
such that the cubic harmonics form an orthonormal basis.
A resolution of identity is obtained when summed over all
harmonics:

1 =
∑

j

〈d j |d j〉 =
∑

j

∫
d�

4π
|d j (�)|2. (D2)

We now use the weak-coupling approximation, ωd � 1
(i.e., �d � μ), allowing us to approximate 1 + y ≈ y in the
integrand, thus obtaining

f = |�̂d |2
2λd

−
∫

d�

4π

∫ ωD

0
dy

√
y2 + |�̂d |2d̂ (�)2. (D3)

Attempting to expand the square root in powers of (|�̂d |2/y2)
would result in an infra-red divergence, with the first term
yielding an expression of order |�̂d |2 ln(y), and the subse-
quent terms even more divergent. This is to be expected, since
the zero-temperature free energy is a nonanalytic function of
�d . Instead, we proceed by formally evaluating the integral
over y in Eq. (D3):

f = |�̂d |2
2λd

− 1

2

∫
d�

4π
ωD

√
ω2

D + |�̂d |2d̂ (�)2

− |�̂d |
2

∫
d�

4π
d̂ (�)2 ln

⎛
⎝ωD +

√
ω2

D + |�̂d |2d̂ (�)2

|�̂d | d̂ (�)

⎞
⎠.

(D4)

The last term is a nontrivial integral, however we have
encountered it before, namely, in the zero-temperature gap
equation (2.21):

1

λd
=

∫
d�

4π
d̂ (�)2 ln

⎛
⎝ωD +

√
ω2

D + |�̂d |2d̂ (�)2

|�̂d | d̂ (�)

⎞
⎠. (D5)

We recognize that the last integral in Eq. (D4) is therefore
nothing else but |�̂d |2/2λd . This term cancels the first term
in Eq. (D4), thus resulting in the final expression for the free
energy

fSC = −1

2

∫
d�

4π
ωD

√
ω2

D + |�̂d |2d̂ (�)2. (D6)

This is the same expression as quoted in Eq. (2.26) in the
main text. The normal state free energy is obtained by setting
�d = 0, so that fN = −ω2

D/2 [it contains the Debye frequency
because this was our choice of the ultraviolet cutoff in the
initial Eq. (D2)]. The Cooper pair condensation energy is thus

fSC − fN = −ω2
D

2

∫
d�

4π

⎡
⎣
√√√√1 +

(
�̂2

d

ω2
D

)
d̂2

j (�) − 1

⎤
⎦. (D7)

Now we can expand the square root in the powers of the small
parameter �̂d/ωD, resulting in

fSC − fN = −�̂2
d

4

∫
d�

4π
d̂2

j (�) + O(|�̂d |4) (D8)

Because all the cubic harmonics are normalized to form
a complete basis [see Eq. (D2)], the solid-angle integral∫

d�
4π

d̂2
j (�) = 1/5 is the same for each of the five harmonics,

yielding Eq. (2.27) in the main text.
We note that although the condensation energy now has

a well defined expansion in powers of |�|2, the gap itself
is a nonanalytic function of the coupling strength λd , as is
standard. We emphasize that Eq. (D8) should not be thought
of as the Landau free energy; rather, it is the zero-temperature
condensation energy expressed in terms of the self-consistent
solution �d of the gap equation, shown in Eq. (D5).

APPENDIX E: d + id PAIRING: ENERGETICS AND
COMPETITION WITHIN Eg CHANNEL

In Sec. III B, we have established that there are three
inequivalent ways of choosing the basis functions for the
two-dimensional representation Eg, namely,

A: d1(k) =
√

3

2

(
k2

x − k2
y

)
, d2(k) = 1

2

(
2k2

z − k2
x − k2

y

)
;

B: d3(k) =
√

3

2

(
k2

z − k2
x

)
, d4(k) =

√
3

2

(
k2

z − k2
y

)
;

C: d5(k) = 1

2

(
2k2

x − k2
y − k2

z

)
,

d6(k) = 1

2

(
2k2

y − k2
x − k2

z

)
. (E1)

In this section, we provide the details of the derivation and
solution of the gap equation for these cases.

The zero-temperature gap equation, Eq. (2.22), acquires
the following form in the case of dm + idn pairing:

1

λd
= 1

2

∫ ωD

−ωD

dy
√

1 + y
∫

d�

4π

|dm|2 + |dn|2√
y2 + |�d |2(|dm|2 + |dn|2)

,

(E2)

where y = (k/kF )2 − 1. The general structure of the form
factors is as follows:

|dm(k)|2 + |dn(k)|2 =
(

k

kF

)4

[a2(θ ) + b2(θ ) cos2(2φ)]

= (1 + y)2[a2(θ ) + b2(θ ) cos2(2φ)].

(E3)

In order to make progress analytically, we shall adopt the
weak-coupling approximation ωD � 1, leading to y � 1 and
allowing us to simplify 1 + y ≈ 1. The integral over y can then
be computed analytically, resulting in

1

λd
=

∫
d�

4π
[a2(θ ) + b2(θ ) cos2(2φ)]

× ln

⎡
⎣ωD +

√
ω2

D + |�d |2(a2 + b2 cos2(2φ))

�d

√
a2 + b2 cos2(2φ)

⎤
⎦. (E4)

Under the assumption of weak coupling, |�d | � ωD, the
numerator under the logarithm can be approximated by 2ωD,
allowing one to make further progress analytically.
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The integration over φ can then readily be performed using
the following two identities:

I0(a, b) ≡ 1

2π

∫ 2π

0
dφ ln(

√
a2 + b2 cos2(2φ))

= ln

(
a + √

a2 + b2

2

)
,

I1(a, b) ≡ 1

2π

∫ 2π

0
dφ cos2(2φ) ln(

√
a2 + b2 cos2(2φ))

= 1

4
+ 1

2
ln

(
a + √

a2 + b2

2

)
− a

√
a2 + b2 − a

2b2
.

Further denoting 〈 f 〉 = 1
2

∫ 1
−1 d (cos θ ) f (θ ) to lighten the no-

tation, we can write down the gap equation as follows:

1

λd
=

(
〈a2〉 + 〈b2〉

2

)
ln

(
2ωD

�d

)
−〈a2I0(a, b)〉 − 〈b2I1(a, b)〉.

Note that the angle average∫
d�

4π
[d̂m(θ, φ)2 + d̂n(θ, φ)2] = 〈a2〉 + 〈b2〉

2
= 2

5
,

since each of the five d-wave harmonics averages to 1/5. This
allows us to finally write down the solution for the gap in a
closed form:

�d = 2ωD exp
[− 5

2 (P0 + P1)
]

exp
(− 5

2λd
)
, (E5)

where P0 ≡ 〈a2I0(a, b)〉 and P1 ≡ 〈b2I1(a, b)〉 are simple c-
numbers that can be computed explicitly for each of the three
choices of the basis, shown in Eq. (E1), yielding

A: P0 = −0.1008, P1 = −0.0199, (E6)

B: P0 = −0.0487, P1 = −0.0326, (E7)

C: P0 = −0.0099, P1 = −0.0181. (E8)

We then arrive at the final expression for the gap amplitudes
for each choice of the basis

�
(A)
Eg

(T = 0) = 2.705 ωd exp

(
− 5

2λd

)
, (E9)

�
(B)
Eg

(T = 0) = 2.451 ωd exp

(
− 5

2λd

)
, (E10)

�
(C)
Eg

(T = 0) = 2.145 ωd exp

(
− 5

2λd

)
. (E11)

As anticipated, different choices of bases result in different
zero-temperature values of the (d + id ) gap, with the basis A
(dx2−y2 + id3z2−r2 ) having the largest gap value and therefore
the lowest energy. However, any d + id paired state from
same basis produces identical nodal structure in the ordered
phase.

We note that the choice of the basis does not however affect
the value of the superconducting transition temperature, with
all three choices resulting in the same value of Tc given by the

solution of the equation similar to Eq. (2.23):

1

λd
= 1

2

∫ ωD

−ωD

dy
(1 + y)

5
2

y
tanh

(
y

2kBTc

)

×
∫

d�

4π

[
d̂2

m(�) + d̂2
n (�)

]
. (E12)

Using the fact that 1 + y ≈ 1 in the weak-coupling approxi-
mation, we obtain

kBT (d+id )
c = 2eγ

π
ωDe− 5

2λ ≈ 1.134 ωDe− 5
λ , (E13)

where γ ≈ 0.577 is the Euler’s number. Therefore, despite
possessing the same transition temperature, dx2−y2 + id3z2−r2

has the lowest energy among three time-reversal broken can-
didates for the d + id paired states in the Eg channel, and thus
always wins at low temperature.

APPENDIX F: s + id PAIRING AND COMPETITION
WITH d + id PHASE

In this section, we provide technical details of the deriva-
tion for the s + id phase, which we studied in Sec. II E.
Our starting point is the system of coupled gap equations
Eqs. (2.29)–(2.30), valid in the weak-coupling approximation
�̂d � ωD � 1. We stress that the weak-coupling approxima-
tion is justified here, since we are concerned with solving
the coupled gap equations in the vicinity of the second-order
phase transition at r = rc1 (r ≡ λd/λs), where �̂d vanishes.
In the following, we consider the most general case when the
Debye frequencies for the s-wave and d-wave components,
ω

(s)
D and ω

(d )
D , respectively, are not necessarily the same. This

would be the case if, for instance, the origin of the s-wave
component is due to electron-phonon coupling, whereas the
d-wave pairing is mediated by electronic interactions.

To avoid the unnecessary complications associated with the
integration over the angle φ, we hereby consider the case of
s + id3z2−r2 pairing, since the form factor only depends on
the polar angle θ . We then have the following coupled gap
equations:

1

λs
= ln

(
2ω

(s)
D

) − 1

2

∫ 1

−1
d (cos θ ) ln

(√
�̂2

s + �̂2
d d̂2(θ )

)
,

(F1)

1

λd
= ln

(
2ω

(d )
D

)− 1

2

∫ 1

−1
d (cos θ )d̂2(θ ) ln

(√
�̂2

s + �̂2
d d̂2(θ )

)
.

(F2)

The integration cannot be completed in the closed form,
however, it is possible to obtain an approximate solution in
the vicinity of the transition rc1 by expanding in the powers of
the small parameter �̂d/�̂s. We then obtain

1

λs
= ln

(
2ω

(s)
D

�̂s

)
− 3

20

(
�̂d

�̂s

)2

+ O
(

�̂d

�̂s

)4

, (F3)

1

λd
= 1

5
ln

(
2ω

(d )
D

�̂s

)
− 27

280

(
�̂d

�̂s

)2

+ O
(

�̂d

�̂s

)4

. (F4)
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From the first equation, we get �̂s � 2ω
(s)
D exp(−1/λs), since

the vanishing d-wave component does not alter the pure s-
wave solution at rc1 to the leading order. Substituting �̂s into
the second equation, we find(

�̂d

�̂s

)2

= 56

27

[
1

λs
− ln

(
ω

(s)
D

ω
(d )
D

)
− 5

λd

]
, (F5)

from which it follows that for �̂d to have a nontrivial solution,
λd must have a lower bound:

λd

λs
> rc1 = 5

1 − λs ln
(

ω
(s)
D

ω
(d )
D

) , (F6)

and the results in Sec. II E are quoted for ω
(s)
D = ω

(d )
D . In

particular, if the two Debye frequencies are the same, we
have rc1 = 5, as verified by direct numerical calculation [see
Fig. 3(a) and Sec. II E]. Equation (F6) also tells us that the
ratio of the Debye frequencies cannot be chosen arbitrarily
and must satisfy ω

(s)
D /ω

(d )
D < e

1
λs in order for the (s + id )

solution to exist. Put alternatively, it requires that the s-wave
coupling constant is not too large

λs < 1/ ln
(
ω

(s)
D /ω

(d )
D

)
, (F7)

otherwise the pure s wave will dominate and the d-wave
component will never have a chance to develop.

As noted in Sec. II E, the mere existence of the s + id
solution does not guarantee that it will be realized in nature,
unless it is lower in energy than the competing d + id phase.
We must therefore compare the free energy of the s + id
solution (which is essentially a pure s-wave in the vicinity of
rc1) to that of the d + id phase from Eq. (3.7), leading to

fs − fN = −
(
ω

(s)
D

)2

2

∫
d�

4π

⎡
⎢⎣
√√√√1 +

(
�̂s

ω
(s)
D

)2

− 1

⎤
⎥⎦

= −�̂2
s

4
+ O

(
�̂4

s

)
, (F8)

fd+id − fN = −�̂2
d+id

10
+ O

(
�̂4

d+id

)
. (F9)

Substituting the zero-temperature gap values �̂s =
2ω

(s)
D exp(−1/λs) and �̂d+id = 2.705 ω

(d )
D exp(−2.5/λd )

from Eq. (3.6) into the free energies, we find

fs − fd+id = −(
ω

(s)
D

)2
e− 2

λs + 0.734
(
ω

(d )
D

)2
e− 5

λd . (F10)

For a nontrivial s + id wave solution to exist, λd must exceed
the minimal value given in Eq. (F6). Substituting it into the
above expression for the free energy, we find

fs − fd+id >
(
ω

(s)
D

)2
e− 2

λs

[
0.734 e

1
λs

(
ω

(d )
D

ω
(s)
D

)
− 1

]
. (F11)

Therefore, for s wave to be more stable than d + id at rc1,
the necessary condition is exp(1/λs) < 1.362 ω

(s)
D /ω

(d )
D or,

equivalently,

1

λs
< 0.309 + ln

(
ω

(s)
D

ω
(d )
D

)
. (F12)

Combining this expression with Eq. (F7), we see that λ−1
s

must belong to a rather narrow interval, given by

ln

(
ω

(s)
D

ω
(d )
D

)
<

1

λs
< 0.309 + ln

(
ω

(s)
D

ω
(d )
D

)
, (F13)

for the (s + id ) phase to have a chance to exist. Substituting
Eq. (F12) into the inequality Eq. (F6), we conclude that for
s + id to be energetically stable, the following lower bound
on λd is necessary

λd > 5
0.309 ≈ 16.2. (F14)

Note that this bound is universal, independent of the ratio of
the Debye frequencies. We reiterate that the above derivation
is rigorous since the weak-coupling approximation is always
justified near the r = rc1 transition (since �̂d vanishes at that
point).

As remarked in Sec. II E, the condition in Eq. (F14) is
extremely unlikely to be realized in nature, and if true, it
would certainly lie outside the realm of weak-coupling ap-
proximation at the apogee of s + id phase (it would imply that
�max

s+id > ω
(d )
D ). Therefore, for all practical applications, we

can safely conclude that (s + id ) order is always energetically
inferior to its rival (d + id ) phase. This conclusion is corrob-
orated by the direct numerical evaluation of the free energies,
an example of which is shown in Fig. 3(b). Invariably, we find
a direct first-order phase transition from a pure s wave into the
d + id phase as the ratio of the coupling constants r = λd/λs

is increased.
We can shed more light on the reason why the s + id

solution is less energetically stable by considering the gap
equations (2.29)–(2.30) in the weak-coupling approximation
�̂ � ωD � 1. The gap equations [see Eqs. (2.29) and (2.30)]
can further be simplified in the vicinity of the second-order
phase transition at r = rc1, where the magnitude of �̂d can
be made arbitrarily small. In this limit, we can approximate
�̂s � 2ωD exp(−1/λs) and the d-wave pairing amplitude can
then be obtained from [follows from Eqs. (F1)–(F5)](

�̂d

�̂s

)2

�
280

27

[
1

5λs
− 1

λd

]
. (F15)

The nontrivial solution for �̂d is only possible provided
λd/λs > 5, explaining the value rc1 ≈ 5 obtained numerically,
see Fig. 3(a). We now must compare the free energy of this
solution (which is essentially a pure s wave in the vicinity
of rc1) to that of d + id from Eq. (3.7). In order for s + id
phase to have lower energy than the d + id , in the vicinity
of rc1, we require that λ−1

s < − ln (C2
d+id/10) ≈ 0.309, where

Cd+id = 2.705, see Eq. (3.7). Substituting this into Eq. (F15),
we see that for a nontrivial s + id solution to exist, one must
ensure the lower bound on the pairing strength λd > 5λs �
16.2. Such a huge value of λd is unphysical, and moreover, the
assumption of the weak coupling would break down in this
case. Even allowing for different Debye frequencies for the
s- and d-wave components—justified if the origin of s-wave
pairing is not the same, for instance, due to conventional
electron-phonon mechanism—does not alter the outcome,
with the lower bound on λd � 16.2 remaining roughly same
as before. This conclusion is corroborated by numerics, where
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we certainly have not been able to find an energetically viable
s + id solution for any λd � 8.

APPENDIX G: NODAL TOPOLOGY OF d + id PAIRING:
COMPETING T2g AND Eg CHANNELS

In Sec. III D, we have highlighted six possible time-
reversal symmetry breaking paired states when the pairing
interaction in the T2g and Eg channels are of comparable
strength. Nodal topology of these paired states were an-
nounced in Table II. In Sec. III E, we have discussed the
nodal topology of dx2−y2 + idxy paired state in details. We here
present the computation of nodal topology of other five paired
states, shown in Table II.

(1) dxy + id3z2−r2 pairing. The location of the nodal points
for this paired state are given in the second row of Table II.
To extract the nodal topology of these isolated points on the
Fermi surface, we first focus on the Weyl node located at kx =
0, ky = kF

√
2/3, kz = kF

√
1/3, and conveniently define a set

of new momentum variables

pz = kz√
3

+
√

2ky√
3

, py =
√

2kz√
3

− ky√
3
, px = kx. (G1)

The Weyl nodes are now located at p = (0, 0, kF ). Expanding
the kinetic energy around the Weyl node, we obtain the
following reduced BCS Hamiltonian:

ĥdxy+id3z2−r2 = τ3vzδpz + vxτ1 px + vyτ2 py, (G2)

where δpz = pz − kF , vx =√
2|�T2g|/kF , vy = |�Eg|/(

√
2kF ),

and vz = kF /m. The above nodal point, as well as
the one located at k = −(0,

√
2/3,

√
1/3)kF are char-

acterized by monopole charge Wn = +1 [follows from
Eq. (3.2)]. By contrast, Wn = −1 for the Weyl nodes
at k = ±(0,

√
2/3,−√

1/3)kF . We denote the above four
Weyl nodes as “(a)”. For the Weyl nodes located at k =
±(kF

√
2/3, 0, kF

√
1/3), the monopole charge is Wn = +1,

and Weyl nodes located at k = ±(
√

2/3, 0,−√
1/3)kF have

Wn = −1. The last four Weyl nodes are denoted as “(b)”.
(2) dxz + idx2−y2 pairing. Let us first focus on the Weyl

nodes located at k = ±(1, 1, 0)kF /
√

2 (see Table II), and
conveniently rotate the momentum axis according to

px = kx + ky√
2

, py = kx − ky√
2

, pz = kz. (G3)

Weyl nodes are now located at p = ±(kF , 0, 0). Expanding
the kinetic energy around the Weyl nodes we obtain the
following reduced BCS Hamiltonian:

ĥdxz+idx2−y2 = ±vxδpxτ3 + vyτ1 pz + vzτ2 py, (G4)

where δpx = px ± kF , vy = √
3|�Eg|/kF , vz = √

3|�T2g|/
(
√

2kF ), and vx = kF /m. Therefore two Weyl nodes lo-
cated at k = ±(1, 1, 0)kF /

√
2 have the monopole charge

Wn = +1. By contrast, the Weyl nodes located at k =
±(−1, 1, 0)kF /

√
2 have monopole charge Wn = −1.

(3) dyz + idx2−y2 pairing. Analysis of the nodal topology for
this paired state is identical to the previous one. We find that
Weyl nodes at k = ±(1, 1, 0)kF /

√
2 have monopole charge

Wn = −1 and Weyl nodes at k = ±(1,−1, 0)kF /
√

2 have
monopole charge Wn = −1.

FIG. 17. Scaling of the function F (x, y), defined in Eq. (H7),
with x for various choices of y. Here, x = μ/E� and y = T/E� are,
respectively, dimensionless chemical potential and temperature, with
E� = �2/(2m), and t ≡ y. The function F determines the strength
of the coupling between the s-wave and d-wave pairing with lattice
distortion or electronic nematicity, determined through f Lutt

str shown
in Eq. (H6).

(4) dxz + id3z2−r2 pairing. Following the analysis of nodal
topology for dxy + id3z2−r2 pairing, denoted as “(a)”, we find
that Weyl nodes at k = ±(0,

√
2/3,

√
1/3)kF have monopole

charge Wn = +1, while Wn = −1 for the ones located at k =
±(0,−√

2/3,
√

1/3)kF .
(5) dyz + id3z2−r2 pairing. From the analysis of nodal topol-

ogy for dxy + id3z2−r2 pairing, denoted as “(b)”, we find
that Weyl nodes at k = ±(

√
2/3, 0,

√
1/3)kF have monopole

charge Wn = +1, while Wn = −1 for the ones located at k =
±(−√

2/3, 0,
√

1/3)kF .

APPENDIX H: COUPLING BETWEEN s-WAVE AND
d-WAVE PAIRINGS WITH ELECTRONIC

NEMATICITY IN DOPED LSM

In Sec. IV of the main paper, we established a nontrivial
coupling between the s-wave and d-wave pairings with elec-
tronic nematicity, which can also be induced by applying a
weak external strain. In Sec. IV, we presented the calculation
upon projecting all these ingredients onto the Fermi surface,
assuming that the external strain is sufficiently weak and that
pairing predominantly takes place in the close proximity of
the Fermi surface. However, such nontrivial coupling does not
depend on this approximation, and we here demonstrate that it
is nontrivial even if we take into account the entire Luttinger
band of spin-3/2 fermions, with the chemical potential (μ)
placed away from the band touching point. The general form
of external strain in the Luttinger model has already been
displayed in Eq. (4.1). The contribution from the Feynman
diagram shown in Fig. 7(a) now takes the form

F Lutt
str = −1

8
� j�

μ

l �ν
0

1

β

∞∑
n=−∞

∫
d3k

(2π )3
Tr[(τμ�l )G(iωn, μ, k)

× (τν�0)G(iωn, μ, k)(τ3� j )G(iωn, μ, k)], (H1)

where

G(iωn, μ, k) = iωn + μ + ĤL

(iωn + μ)2 − E2
⊕ iωn − μ + ĤL

(iωn − μ)2 − E2
(H2)
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is the Green’s function of spin-3/2 fermions in the Luttinger
model, with E = k2/(2m) and

ĤL = k2

2m

5∑
j=1

� j d̂ j . (H3)

First of all note that for nonvanishing Tr, we require j = l and
μ = ν, implying that (1) the component of the d-wave pairing
and of the external strain must break the cubic symmetry
in an identical fashion (since j = l), and (2) external strain

supports a time-reversal invariant superposition of s-wave and
d-wave pairings (since μ = ν). These conclusions are identi-
cal to the one we found by computing the triangle diagram
[see Fig. 7(a)] in the close proximity to the Fermi surface
after the band projection. In what follows, we compute the
above expression from the entire Luttinger band for spin-3/2
fermions.

After some straightforward algebra and completing the
integral over the solid angle, we arrive at the following ex-
pression (setting h̄ = kB = 1):

F Lutt
str = μT

10π2

∞∑
n=−∞

∫ �

0
k2dk

[
E4 + [

(11 − 10π2)ω2
n − (1 + 10π2)μ2

]
E2 + 10π2

(
ω2

n + μ2
)2][

E4 + 2E2
(
ω2

n − μ2
) + (

ω2
n + μ2

)2]2 , (H4)

where � is the ultraviolet momentum cutoff up to which the spectra of conduction and valence band scale quadratically with
momentum. The above contribution to the free energy can now be written compactly as

F Lutt
str = μm3

�3
F

(
μ

E�

,
T

E�

)
, (H5)

where E� = �2/(2m) is the ultraviolet energy cutoff and the two parameters inside the function F are therefore dimensionless.
Also note that in natural units (h̄ = kB = 1), mass (m) is a dimensionless parameter and � bears the dimension of inverse length.
Hence, we can suitably define a free-energy density f Lutt

str associated with F Lutt
str according to f Lutt

str = F Lutt
str �3, where

f Lutt
str = μm3F

(
μ

E�

,
T

E�

)
(H6)

and

F (x, y) = y
∞∑

n=−∞

∫ 1

0

z2dz

10π2

[
z8 + [

(11 − 10π2)�2
n − (1 + 10π2)x2

]
z4 + 10π2

(
�2

n + x2
)2][

z8 + 2z4
(
�2

n − x2
) + (

�2
n + x2

)2]2 , (H7)

with z = k/�, x = μ/E�, y = T/E�, and �n = ωn/E�.
Here, ωn = (2n + 1)πT is the fermionic Matsubara fre-
quency. The scaling of the function F (x, y) with x for various
choices of y are shown in Fig. 17.

Therefore the nontrivial coupling between the s-wave and
d-wave pairings with lattice distortion or electronic nematicity
in a Luttinger semimetal solely arises from the spin-3/2 nature
of the quasiparticles. Note that such coupling exists only in the
presence of a Fermi surface, as f Lutt

str → 0 when μ → 0.
Finally we show that the induced s-wave component (�s)

is finite due to the lattice distortion (�) in the presence of a
dominant d-wave pairing (�d ). To this end, we write down
the phenomenological Landau potential to the quartic order,
given by

fquar = r1�
2
d + u1�

4
d + r2�

2
s + u2�

4
s + u12�

2
s �

2
d

+ a � �s �d , (H8)

where r1, r2, u1, u2, u12, a are phenomenological (and
nonuniversal) parameters. Earlier we showed the scaling of
the coefficient of cubic term, namely, a, with various band
parameters. All the terms appearing in the first line of fquar

are the standard one, while the cubic coupling is very specific
to spin-3/2 fermions in cubic environment. In what follows,
we work in the regime where r1 < 0, but r2 > 0. Hence, the
d-wave pairing is spontaneously developed in the system,
while the s-wave component can only be induced. In this
regime, �s,� � �d and we can obtain analytic solutions for

�d and �s by minimizing fquar, yielding

�d = ±
√

2u1

r1
≡ ±�0

d , �s = − a��0
d

2
[
r2 + U12

(
�0

d

)2] . (H9)

Therefore cubic coupling between the s-wave and d-wave
pairings with lattice distortion or electronic nematicity is
responsible for nontrivial solution of induced s-wave pairing.
By contrast, the standard quartic coupling between two pair-
ing channels, proportional to u12 reduces the strength of the
induced s-wave pairing.

This analysis can immediately be generalized when r1 > 0,
but r2 < 0 so that the s-wave pairing is spontaneously gen-
erated in the system. Under that circumstance, the presence
of an external strain (�) can induce a d-wave pairing as we
argued the main text.

APPENDIX I: NODAL TOPOLOGY
OF s + d-WAVE PAIRINGS

In this appendix, we briefly review the nodal topology
of various d-wave and d + id-type pairings in the presence
of an accompanying s-wave pairing, which can be induced
by lattice deformation (due to dominant d-wave pairings,
see Sec. IV). We show that when the s-wave component is
sufficiently small it only shifts the location of (a) nodal loops
of an individual d-wave pairing or (b) point nodes arising from
d + id-type pairings.
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(1) s + dx2−y2 pairing. The effective single-particle Hamil-
tonian for s + dx2−y2 pairing reads as

H = τ3

(
k2

2m
− μ

)
+ τ1

[
�s −

√
3�d

2k2
F

(
k2

x − k2
y

)]
, (I1)

where �s and �d are, respectively, the amplitude of s-wave
and dx2−y2 pairing, and conveniently we chose the relative
phase between these two pairings to be π (hence preserves
time-reversal symmetry). The spectra of the above single-
particle Hamiltonian are given by

E = ±
⎧⎨
⎩

(
k2

2m
− μ

)2

+
[
�s −

√
3�d

2k2
F

(
k2

x − k2
y

)]2
⎫⎬
⎭

1/2

.

(I2)

The equations for two nodal loops are then given by

2k2
x + k2

z = k2
F , ky = ±

(
k2

x − k2
F

2�s√
3�d

) 1
2

. (I3)

Therefore s + dx2−y2 pairing continues to support two nodal
loop as long as �s/�d <

√
3/4 ≈ 0.43, similar to the sit-

uation in pure dx2−y2 pairing. Following the same strategy,
one can show that s + dxy, s + dxz, s + dyz, and s + d3z2−r2

pairings continue to support two nodal loops as long as the
accompanying s-wave component is sufficiently small.

(2) s + d3z2−r2 + idx2−y2 pairing. Recall the pure d3z2−r2 +
idx2−y2 pairing supports eight Weyl nodes at ±kx = ±ky =
±kz = kF /

√
3. With the addition of the s-wave pairing eight

Weyl nodes get shifted to

±kx = ±ky = kF√
3

(
1 + �s

�d

) 1
2

, kz = ± kF√
3

(
1 − 2

�s

�d

) 1
2

.

(I4)

The reason why s + d3z2−r2 + idx2−y2 pairing continues to
support eight Weyl nodes is the following (see also main
text). Note that individually s + d3z2−r2 and s + dx2−y2 pairing
supports two nodal loops for weak enough s-wave component.
Therefore eight Weyl nodes in the s + d3z2−r2 + idx2−y2 paired
state are located at the intersection points of four nodal loops.
Following the same approach, we find that for a specific phase
locking, namely, (φxy, φxz, φyz ) = (0, 2π/3, 4π/3), among
three d-wave pairings belonging to the T2g representation
supports eight Weyl nodes when accompanied by a small
s-wave component (only shifted from the ones reported in
Sec. III C).

APPENDIX J: INVERSION SYMMETRY BREAKING
AND TWO GAP STRUCTURE

In this Appendix, we present the detailed analysis of the
quasiparticle spectra for the s + d + id type paired state, but
in the absence of the inversion symmetry. We showed in the
previous appendix that addition of a small s-wave pairing
to either d-wave or d + id-type pairing does not change the
nodal topology, only shifts the location of the nodal loops or
point nodes. In this appendix, we will show that if we add an
inversion asymmetric term to the kinetic energy (1) Kramers

degeneracy of the pseudospin degenerate Fermi surface is lost
and we end up with two Fermi surfaces, and then (2) in the
presence of an s-wave component to the dominant d + id-
type pairing, it is conceivable to keep only one of the Fermi
surfaces gapless, while the other one becomes fully gapped.
By contrast, in the absence of s-wave pairing, a pure d + id
pairing continues to support eight Weyl nodes on both Fermi
surfaces. We substantiate this statement by focusing on the
dx2−y2 + id3z2−r2 pairing. Our analysis can be generalized to
other pairings [such as the one with specific phase locking
(φxy, φxz, φyz ) = (0, 2π/3, 4π/3) within the T2g sector], dis-
cussed in Sec. III C.

The noninteracting Hamiltonian in the absence of
the inversion symmetry (with its simplest realization) is
given by

H Inv.
0 =

(
k2

2m
− μ

)
τ3 + τ3v(σ · k), (J1)

where v bears the dimension of Fermi velocity and measures
the strength of inversion symmetry breaking. Three Pauli ma-
trices {σμ} for μ = 1, 2, 3 operate on the pseudospin index.
The spectra of above Hamiltonian is k2/(2m) − μ + τv|k| for
τ = ±1, confirming the lack of Kramers degeneracy (due to
inversion asymmetry).

Now in the presence of dx2−y2 + id3z2−r2 pairing the
quasiparticle spectra of BdG fermions are given by ±Eτ,k,
where

Eτ,k =
[(

k2

2m
− μ

)2

+ v2k2 + 2τvk

(
k2

2m
− μ

)

+ �2

k4
F

{
3

4

(
k2

x − k2
y

)2 + 1

4

(
2k2

z − k2
x − k2

y

)2
}]1/2

, (J2)

for τ = ±. Hence, the Weyl nodes are now located at

±kx = ±ky = ±kz = kτ
0 , (J3)

where for τ = ±

kτ
0 =

√
2mμ + m2v2 + τmv. (J4)

Both Fermi surfaces are gapless (irrespective of the strength
of inversion symmetry breaking) and each of them accommo-
dates eight Weyl nodes. Note that in the above expression,
kF �= √

2mμ due to the presence of two Fermi surfaces. Here
kF should be considered as a large momentum scale such that
kx, ky, kz � kF .

With the addition of the s-wave component the energy
spectra inside the s + dx2−y2 + id3z2−r2 pairing in the absence
of inversion symmetry breaking are given by

E τ
k =

{[(
k2

2m
− μ

)
+ τvk

]2

+ �2
d

4k4
F

(
2k2

z − k2
x − k2

y

)2

+
(

�s −
√

3�d

2k2
F

(
k2

x − k2
y

))2
⎫⎬
⎭

1/2

. (J5)
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The locations of the Weyl nodes on two Fermi surfaces (de-
noted by index τ = ±) are given by (±kτ

x ,±kτ
y ,±kτ

z ), where

kτ
x = 1√

3

[
(
√

2mμ + m2v2 + τmv)2 +
√

3k2
F

�s

�d

]1/2

,

kτ
y = 1√

3

[
(
√

2mμ + m2v2 + τmv)2 −
√

3k2
F

�s

�d

]1/2

,

kτ
z = 1√

3
[
√

2mμ + m2v2 + τmv]. (J6)

Note that real solutions for kτ
x and kτ

z exist for any strength
of inversion symmetry breaking and s-wave components.
However, both k±

y are real-valued only when v < v0,
where

v0 = 1

2m

(√
3k2

F

�s

�d
+ 4√

3

m2μ2

k2
F

�d

�s
− 4mμ

)1/2

. (J7)

On the other hand, for v > v0, only one Fermi surface (the
bigger one, with τ = +1) hosts eight Weyl nodes, while
the other one (the smaller one, with τ = −1) becomes fully
gapped.

Therefore, depending on the strength of the inversion sym-
metry breaking, it is conceivable to realize a situation when
the s + dx2−y2 + id3z2−r2 pairing gives rise to one nodal and
one fully gapped Fermi surfaces. This situation stands as a
possible microscopic origin for the proposed two gap structure
in the penetration depth [see Eq. (6.1) of the main text]. It
must be noted that the accompanying s-wave component in the
presence of dominant d + id type pairing is not induced by the

lack of the inversion symmetry, as both of them are even under
the spatial inversion. The s-wave component is induced by
lattice distortion mediated by the dominant d-wave pairings,
discussed in Sec. IV of the main paper. Nonetheless, once
the s-wave component is established in the system by lattice
distortion (due to dominant d-wave pairing), it can receive
further assistance from electron-phonon interaction which is
always finite in real system.

We note that the actual inversion symmetry breaking term
in YPtBi for example is more complex than the one we
discussed in this appendix [51]. The sole purpose of the
present analysis is to demonstrate that in the absence of
inversion symmetry, s + d + id pairing can give rise to two
gap structure: one of the Fermi surfaces remains gapless, sup-
porting Weyl nodes, while the other one becomes fully gapped.
The last observation provides a microscopic justification for
the two-gap structure we subscribe in Sec. VI to compare
our theoretical predictions with the experimental observation.
However, due to lack of microscopic details in a correlated
system, such as actual strength of inversion asymmetry, and
its renormalization due to electronic interactions and disorder,
strength of electron-phonon coupling and elastic constants
(required to estimate the actual strength of induced s-wave
component), further theoretical justification of our proposed
scenario in a specific material such as YPtBi is very diffi-
cult (a common limitation in any correlated system). Thus
we have to rely on complimentary experiments (apart from
the penetration depth measurement), discussed in depth in
Sec. VI A, to test the validity of the our proposed scenario
in superconducting half-Heusler compounds.
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