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Doping dependence of the superconducting state structure and spin-fluctuation pairing mechanism in the
Ba(Fe1−xCox )2As2 family is studied. BCS-like analysis of experimental data shows that in the overdoped regime,
away from the antiferromagnetic (AFM) transition, the spin-fluctuation interaction between the electron and
hole gaps is weak, and Ba(Fe1−xCox )2As2 is characterized by three essentially different gaps. In the three-gap
state an anisotropic (nodeless) electron gap �e(x, ϕ) has an intermediate value between the dominant inner
�2h(x) and outer �1h(x) hole gaps. Close to the AFM transition the electron gap �e(x, ϕ) increases sharply
and becomes closer in magnitude to the dominant inner hole gap �2h(x). The same two-gap state with close
electron and inner hole gaps �2h(x) ≈ �e(x, ϕ) is also preserved in the phase of coexisting antiferromagnetism
and superconductivity. The doping dependence of the electron gap �e(x, ϕ) is associated with the strong doping
dependence of the spin-fluctuation interaction in the AFM transition region. In contrast to the electron gap
�e(x, ϕ), the doping dependence of the hole gaps �1,2h(x) and the critical temperature Tc(x), both before
and after the AFM transition, are associated with a change of the density of states γnh(x) and the intraband
electron-phonon interaction in the hole bands. The nonphonon spin-fluctuation interaction in the hole bands in
the entire Co concentration range is small compared with the intraband electron-phonon interaction and is not
dominant in the Ba(Fe1−xCox )2As2 family.
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I. INTRODUCTION

The high-Tc iron-based superconductors (FeSCs) are
multiband quasi-two-dimensional compounds with strongly
anisotropic Fermi surface and low carrier density in the hole-
like and electronlike bands [1]. The Fermi surface (FS) of
these compounds consists of holelike (h) pockets at the �

point and electronlike (e) pockets centered at the X = (π, 0)
and Y = (0, π ) points of the Brillouin zone. Compared to
strongly correlated high-Tc cuprates, which are similar in
their basic characteristics, electron-electron correlations in
FeSCs are not large (see, for example, Refs. [2,3]).The parent
orthorhombic (Ort) Fe-based compounds are antiferromag-
netic (AFM) metals of spin-density-wave type with the mag-
netic ordering vectors Q = (π, 0), (0, π ). Unlike dielectric
parent high-Tc cuprates, they have free electronic states at
the FS that are not associated with magnetism but can, in
principle, be involved in superconducting (SC) pairing. The
electronic structure of these compounds is very sensitive to
small changes in doping, pressure, and degree of disorder.
When in parent compounds the magnetic atoms Fe (3d6) in
the a-b plane are replaced by atoms with larger number of
d electrons (electron doping) or the nonmagnetic atoms out
of this plane are replaced by atoms with smaller valence
(hole doping), antiferromagnetism is gradually suppressed,
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which leads to the onset of superconductivity. In this regime,
the AFM and SC gaps coexist at the Fermi surface (the
coexistence of antiferromagnetism and superconductivity or
underdoped regime). Maximal critical temperature of SC
transition Tc is reached at the total suppression of magnetism
(the optimal regime). Further increase in doping (overdoped
regime) results in a reduction of Tc down to the total sup-
pression of superconductivity. Close to the optimal doping, an
orthorhombic-to-tetragonal (Ort-Tet) phase transition occurs
in the system. In the hole-doped FeSCs, the structural Ort-Tet
and AFM-nonmagnetic transitions occur simultaneously. The
electron doping, when Fe is substituted with Co, Ni, etc.,
promotes the isotropization of the spin/orbital order in the a-b
plane and an electronic transition to a state analogous to the
nematic phase in liquid crystals, which precedes the structural
transition. Nematic fluctuations and the associated softening
of the shear modulus and Ort structural distortion a �= b reach
a maximum near the Ort-Tet transition and decrease in the
overdoped phase as Tc decreases [4,5]. The gap structure of
FeSCs depends significantly on the composition, the quality
of the samples, and the external parameters. According to var-
ious experiments, SC order parameter can have the s-wave as
well as d-wave (with nodes on some FS areas) symmetry [6].

A strong anisotropy of the SC order parameter is usually
associated with a nonphonon (electron-electron) mechanism
of superconductivity. Although electron-electron correlations
in Fe-based compounds are relatively small, the electron-
electron mechanisms of SC pairing associated with the ob-
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FIG. 1. Schematic phase diagram of iron compounds for both hole (e.g., Ba1−xKxFe2As2, etc.) and electron [e.g. Ba(Fe1−xCox )2As2, etc.]
dopings. The qualitative picture of the superconducting parameter symmetries, which follows from the spin-fluctuation theory [20–22] and
from the leading angular harmonics approximation [23,24] for the two-dimensional system, is shown on symmetrical Fermi surfaces in the
insets above the phase diagram; s and d stand for the predominant and subdominant symmetries of pairing, respectively. Solid lines with an
arrow at both ends (↔) indicate the predominant interaction. Different colors stand for different signs of the gap. Adapted from Ref. [19].

served in FeSCs s-wave spin fluctuations for large wave vec-
tors q ≈ Q (interpocket) [7,8] and quadrupole dx2−y2-wave
charge fluctuations for small wave vectors q (intrapocket)
[9,10], may be important for the superconductivity of these
compounds [11–15]. Also under discussion is the relationship
of superconductivity with the electronic nematic fluctuations
[4,5].

The pairing mechanisms mediated by the spin and orbital
(charge) fluctuations are considered in the spin-fluctuation
theory of superconductivity of FeSCs [11–24]. According to
the spin-fluctuation theory (see, for example, Ref. [18]), in
FeSCs the basic nonphonon pairing channel is the interpocket
electron-hole interaction Veh(ke − kh

′ ≈ Q) = Veh. Because
of the proximity to the AFM phase, this channel is enhanced
by spin fluctuations with the same wave vector Q and al-
ways exceeds intrapocket Coulomb repulsion |Veh| > |Ve;Vh|
in FeSCs with hole and electron pockets. Depending on the
sign of Veh, either a sign-reversed gap on electron and hole
FSs (for Veh > 0, this is the so-called s± state), or conventional
s++ state (Veh < 0) is formed in the system. Schematic phase
diagram of gap structure of FeSCs for Veh > 0 is shown in
Fig. 1.

As is seen in Fig. 1, in the FeSC there is a possible s-wave
(A1g symmetry) gap with nodes whose position is determined
by the pairing interaction anisotropy and does not contradict
symmetry [so-called nodal s-wave symmetry that is usually
associated with d-wave (B1g) superconductivity, and d-wave
(B1g symmetry) gap without nodes]. In the Tet phase (as in
Fig. 1), the s-wave order parameter �(ϕ), symmetrical about
the diagonal of the Brillouin zone �(ϕ) = �(ϕ + π/2), in the
representation of leading angular harmonics can be approxi-

mated on the hole1,2 FSs (centered at k = 0) by the constants
�h1,2(ϕ) = �h1,2. On the circular (centered at X/Y points)
FSs, �(ϕ) = �eX /Y (ϕX /Y ) may be written as �eX/Y (ϕX/Y ) =
�es ± �ed

√
2cos(2ϕX/Y ), with �es the s-wave contribution

and �ed

√
2cos2ϕX/Y the d-wave component of dx2−y2 sym-

metry, ϕX/Y are the angles along electron circular X/Y FSs,
measured relative to kx. Depending on the pairing interaction
V(k,k′), the gap anisotropy �ed/�es may be greater than 1 and
�(ϕ) will have nodes. In the same approximation, the s-wave
BCS pairing interaction V (k, k′) = Vu(k)u(k′) with u(k) =
const on the hole FSs and u(k) = ws ± wd

√
2cos2ϕX/Y on the

X/Y FSs may be written as the hole intrapocket interactions
Vh1,2(ϕ, ϕ′) = Vh1,2, the electron X/Y intrapocket interactions

Veu(ϕX/Y )u(ϕ′
X/Y )

= Vs(1 ± kd cos 2ϕX/Y )(1 ± kd cos 2ϕ′
X/Y ), (1)

and the inter-X-Y-pocket interactions

UXY (ϕX , ϕ′
Y ) = Us(1 + md cos 2ϕX )(1 − md cos 2ϕ′

Y ), (2)

where kd = √
2wd/ws (or md ) is the degree of VX/Y (UXY )

pairing interaction anisotropy. In fact, kd
2 makes sense of the

ratio of the (attractive) Vew
2

d d component to the repulsive
Vew

2
s s component of pairing interaction or coupling con-

stants: kd
2 = 2λd/λs, where λs,d = Ne(0)Vew

2
s,d and Ne(0)

is the density of states at the electron X/Y FSs. In the Ort
phase, s + d symmetry (without phase shift between X and
Y pockets) of the SC order parameter and the pairing VX/Y ,
UXY interactions is possible. Such symmetry of the SC order
parameter may be observed in electron-overdoped FeSCs
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due to structural Ort a �= b distortions induced by nematic
fluctuations.

The angular dependence of the intrapocket Ve(ϕX/Y , ϕ′
X/Y )

interaction minimizes the intrapocket Coulomb repulsion
Ves = Vew

2
s due to the formation of sign-reversed gap on

different FS areas. Anisotropy of pairing in the electron band
is manifested in the electron-overdoped FeSCs away from the
AFM transition and filling the hole bands with doping, when
the interpocket Veh interaction and the hole gaps �h1,2 are
small. In this case, the role of the electron-band superconduc-
tivity increases and it turns out to be an advantageous increase
in the X/Y intrapocket attraction Vew

2
d and to form a sign-

reversed gap with nodes on electron pockets (as nodal s± state
in Fig. 1). The degree of �e(ϕ) anisotropy k̃d = �ed/�es in
the spin-fluctuation theory is determined by the competition of
the pairing in s [mainly by spin interpocket interaction Veh(Q)]
and d (mainly by orbital intrapocket interaction) channels
[16,17]. Electron-phonon attraction reduces repulsion in all
nonphonon channels and can, in principle, transform a sign-
reversed gap with nodes into a sign-preserved gap with min-
ima. In addition, taking into account the electron-phonon
interaction, the influence of the spin-fluctuation mechanism
on superconductivity in the electron and hole bands becomes
unequal.

Dominant mechanism of superconductivity in various
FeSCs and even in various bands is not universal and varies
with composition even within a single family [20]. The spin-
fluctuation theory is indirectly confirmed by the experimental
observation of the spin-resonant peak in the spin excitation
spectrum [8,25] (see also Refs. [26,27]). Direct determina-
tion of the doping dependence of SC order parameters from
experimental data makes it possible to evaluate the role of
nonphonon pairing interactions in the superconductivity of
various FeSCs.

Direct comparison of theoretical models with experimental
data is often rather difficult. In many experiments, one is
able to resolve groups (clusters) of SC gaps in two relatively
narrow energy ranges, rather than individual gaps in the bands
[28]. (Equalization of electron and hole gaps can be a con-
sequence of a strong interband interaction [29].) Analysis of
the properties of such “two-gap” superconductors allows one
to estimate only the interaction between bands from different
clusters. This interaction turns out to be weak, at least, for
samples of sufficiently good quality (see Refs. [30,31]). The
pairing interactions in the ith and jth bands with the closest
gaps (within clusters) cannot be unambiguously determined,
since their SC gaps �i, j (T ) coincide within the experimental
uncertainties. In particular, it is impossible to investigate the
basic interactions (which determine the critical temperature
Tc) in the bands within clusters that combine the maximum
gaps. Two-gap superconductors, within the experimental un-
certainty, are often equally successfully described by various
pairing models, which allow an ambiguous interpretation of
SC mechanism in the compounds under study. A more reliable
estimate of interaction between the electron and hole SC
condensates can be made in superconductors with the signif-
icantly different electron �e(T ) and hole �h(T ) SC gaps, in
particular, in the “three-gap” (e.g., with the gap structure as in
Fig. 2) FeSCs [32]. The subsequent investigation of the doping
evolution of the three-gap state in comparison with the results

FIG. 2. Schematic gap structure for iron-based superconductors
with two hole and one electron significantly different gaps.

of spin-fluctuation theory will make it possible to study basic
interactions in the FeSCs in more detail.

II. ELECTRON-DOPED IRON-BASED
SUPERCONDUCTORS OF Ba(Fe1−xCox)2As2 FAMILY

Here, we present the results of such investigation for
the most extensively studied Ba(Fe1−xCox )2As2 family, for
which there are relevant experimental data. In this fam-
ily, the three-gap state occurs in the overdoped compound
Ba(Fe0.9Co0.1)2As2 with Tc = 20 K. The SC gaps and in-
terband coupling constants of this compound have been de-
termined [32,33] on the basis of the BCS-like analysis of
terahertz and infrared optical experiments. It was shown that
the SC state is characterized by an s-wave SC order parameter
with three essentially different gaps: two isotropic hole gaps
(�1h = 15 cm−1, �2h = 30−35 cm−1) and an anisotropic
(nodeless) electron gap �e(ϕ) with an amplitude of 21 cm−1

and Ve(ϕ, ϕ′) pairing interaction anisotropy kd = 0.5 [see
Eq. (1)], and a weak h2-e interband interaction.

The three-gap structure of the SC state in
Ba(Fe0.9Co0.1)2As2 determined in Ref. [32] is fully confirmed
by the measurements of reflection coefficient [34] and
angle-resolved photoelectron spectroscopy (ARPES) [35].
According to the ARPES data, the gaps with �1h ≈ 15 cm−1

and �2h ≈ 35 cm−1 refer to the outer and inner hole bands,
respectively. The smallness of the interaction of the electron
and hole bands in Ba(Fe0.9Co0.1)2As2 is clearly confirmed
by the non-BCS temperature dependence of the superfluid
density ρs(t = T/Tc) that reveals a pronounced region of
inflection at intermediate temperatures t [32,33]. Such
dependence is characteristic of two-gap superconductors
with a weak interaction of the bands that belong to different
clusters [36]. In the three-gap superconductors, such a
dependence also indicates a weak interaction of the bands with
intermediate and largest gap values [the electron and inner
hole bands in Ba(Fe0.9Co0.1)2As2]. Studying the evolution
with decreasing Co content of the three-gap overdoped state
in Ba(Fe1−xCox )2As2 with a weak interpocket interaction
Veh to an underdoped regime when antiferromagnetism and
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FIG. 3. Normalized temperature dependence of the electronic heat capacity Cs(T ) for compounds with close values of Tc and γn. (a)
Overdoped Ba(Fe0.91Co0.09)2As2, Tc = 20.7 K, γn = 16.4 mJ mol−1 K−2 (circles) and underdoped Ba(Fe0.95Co0.05)2As2, Tc = 19.5 K, γn =
14.7 mJ mol−1 K−2 (squares); adapted from Ref. [37]. The solid line shows Cs(T ) for the overdoped three-gap compound Ba(Fe0.9Co0.1)2As2

(Tc ≈ 20 K) calculated with parameters taken from Ref. [32]. (b) Overdoped NaFe0.95Co0.05As, Tc ≈ 18.1 K, γn = 6.3 mJ mol−1 K−2 (circles)
and underdoped NaFe0.975Co0.025As, Tc ≈ 20.1 K, γn = 7.6 mJ mol−1 K−2 (squares); adapted from Ref. [38].

superconductivity coexist allows one to provide a deeper
understanding of basic interactions in this family.

A systematic experimental study of superconductivity in
the Ba(Fe1−xCox )2As2 compounds within entire range of Co
concentrations, x, was carried out by Hardy et al. [37]. The
authors measured the electronic heat capacity Cs(x, t ) and
determined the density of states γn(x) at the FS which are
available for SC pairing. According to Ref. [37], the doping
dependence γn(x) in Ba(Fe1−xCox )2As2 exhibits a maximum
near the optimal doping and correlates with the concentration
dependence of the critical temperature Tc(x).

Comparison of temperature dependences of normalized
electronic heat capacity cs(x, t ) = Cs(x, T )/γn(x)T for the
compounds with close γn(x) and Tc(x) values in the overdoped
and underdoped regimes [see Fig. 3(a)] provides information
on behavior of the intermediate e gap �e(x) with decreasing
doping. In the underdoped compound, the normalized heat
capacity cs(x, t ) = Cs(x, T )/γn(x)T decreases significantly
(by up to 20–25%) at intermediate temperatures and in-
creases near Tc, in accordance with the entropy conservation:
∫1

0 cs(x, t )dt = 1. A similar difference in the behavior of tem-
perature dependence cs(x, t ) in the overdoped and underdoped
regimes is even more clearly expressed in some other FeSCs
families, for example, the 111 compounds NaFe1−xCoxAs
[38] [see Fig. 3(b)]. Within the two-band α model [39], this
is formally explained by a pronounced redistribution of the
density of states from the cluster of small-value energy gaps
to the cluster with large gap values (see Fig. 2(e) in Ref. [37]).
In the three-gap compounds, in particular Ba(Fe1−xCox )2As2,
this behavior of cs(x, t ) can be explained by a dramatic equal-
ization of the intermediate electron �e and dominant hole �2h

gaps in the coexistence regime under a smooth change in the
density of states in bands γn j (x). Such equalization of the gap
values can be a consequence of an increase in the interband
interaction (see, e.g., Ref. [29]).

To calculate the heat capacity cs(x, t ) of three-band super-
conductors, we used the BCS-like equations [32,40], which
are a correct generalization of the multiband BCS equations
[41,42] for the case of strong coupling in the spirit of the α

model [43].

III. MULTIBAND BCS-LIKE EQUATIONS

The coupling strength is usually characterized by the devi-
ation of the ratio 2�(0)/Tc from the BCS value 2�(0)/Tc

0 =
2α0 = 3.52. Using an empirical recipe known as the α model
[43], the BCS approach successfully describes the proper-
ties of conventional superconductors with strong coupling.
Strong coupling effects reduce Tc due to the smearing of
the SC gap and an increase in the number of quasiparticles
compared to that in the BCS model [44]. In calculating the
temperature dependences of SC gaps in the bands, � j (T ),
this circumstance can be taken into account by redefining the
quasiparticle distribution functions in the BCS equations, with
the condition that the calculated critical temperature is equal
to the experimental value of Tc. For a single band, e.g., this
condition is satisfied by the distribution function of the form
f [(Tc/T 0

c )
√

ε2 + �2(T )/T ] = f [α0

√
ω2 + δ2(t )/t], where ε

is the quasiparticle energy, ω = ε/�(0), δ(t ) = �(t )/�(0) is
the reduced gap, and f is the Fermi function. The BCS-like
equation with such distribution function ensures the equality
of the calculated and experimental Tc, the equality of the α

parameter to the experimental value α = �(0)/Tc, and has the
solution δ(t ) = δ0(t ) as assumed in the α model.

The formal application of the α-model prescription for
the two-band superconductor, δ1(t ) = δ2(t ) = δ0(t = T/Tc),
known as the two-band α model [39], well fits the behavior
of the heat capacity Cs(T ) with any number of bands and in
some cases allows one to determine the gaps �1,2(0) quite
accurately (e.g., for MgB2; see Ref. [45]), but it is absolutely
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unsuitable for analysis of characteristics that are more sensi-
tive to the temperature dependence of the gaps δ1,2(t ) such
as tunnel spectra and superfluid density ρs(t ) [32,33]. This
model does not take into account the fact that the gaps δ1,2(t )
depend on the interband interactions and the strong-coupling
corrections in the bands are not the same (in the band with the
larger gap �2 the correction is always greater than in the band
with a smaller gap �1). A more correct generalization of the α

model is possible on the basis of the two-band BCS equations
[41,42] for reduced gaps δ1,2(t ) = �1,2(t )/�1,2(0):

ln δ1(t ) = −n1(t ) − 12{1 − δ2(t )/δ1(t )}, (3)

ln δ2(t ) = −n2(t ) − 21{1 − δ1(t )/δ2(t )}, (4)

nJ (t ) = 2
∫ ∞

0
dω f [αJεJ (ω)/t]/εJ (ω), (5)

εJ (ω) =
√

ω2 + δ2
J (t ). (6)

Here, αJ = �J (0)/Tc
0, n1,2(t ) is the quasiparticle density

in the bands 1,2. The interband terms proportional to the
constants 12 and 21 have opposite signs and describe the
transfer of pairs from condensate with a large gap �2 to a
condensate with a smaller gap �1. As a result, the gaps δ1(t )
and δ2(t ) approach each other [40]. The interband constants
in (3) and (4),

12 = λ12/θ (0), 21 = λ21θ (0), θ (0) = �1(0)/�2(0),

(7)

depend on the effective coupling constants λ12 and λ21, which
are a combination of all the bare coupling constants of the
usual BCS-type form λ0

IJ = VIJ NJ (0):

λIJ = λ0
IJ/D0, D0 = λ0

11λ
0
22 − λ0

12λ
0
21. (8)

In contrast to λ0
IJ , the effective constants λIJ can reach large

values even for λ0
IJ 	 1 (see examples in Ref. [40]).

For a correct generalization of the BCS equations (3)–(6), it
is necessary to take into account the standard renormalization
of the bare BCS constants λ0

IJ → λ̄IJ = λ0
IJ/(1 + λ0

II + λ0
I �=J )

(<1) and replace the effective constants (7), (8) by their
renormalized values λIJ → λ̃IJ , IJ → ̃IJ and also in the
spirit of the α model, use in (5) the distribution function

of a more general form f [α̃ j

√
ω2 + δ2

j (t )/t], where α̃1,2 are

determined by the self-consistency equation, which follows
from the equality of the critical temperatures in the bands

ln
α̃2

α0
= ̃21

̃12 + ln α0
α̃1

ln
α0

α̃1
(9)

and the fitting parameter α̃1 in the interval from �1(0)/Tc

(weak coupling in the band 1, �1 	 �2) to α0 (strong cou-
pling, �1 ∼ �2) [32,40]. The parameter α̃1 can be approxi-
mately determined from the interpolation relation

α̃1 ≈ �1(0)/Tc + [α0 − �1(0)/Tc]�1(0)/�2(0), (10)

where the ratio of the SC gap values is taken as a measure of
coupling strength. In this case, the number of fitting parame-
ters in the BCS and BCS-like equations is the same.

Equations (3) and (4) are invariant with respect to the
change in the sign of the interband interaction λ0

I �=J → −λ0
I �=J

and the sign of one of the gaps �J and coincide for s± and
s++ pairing.

For superconductors with known characteristic frequencies
of pairing interactions �log in the region of a relatively weak
interband interaction, the BCS-like analysis of experimental
data makes it possible to determine all interaction constants
with sufficient accuracy using a minimal number of fitting
parameters. In particular, all the gaps �J(t ) and the intraband
and interband coupling constants λ0

IJ we found from both
the tunneling spectra of the Mg1−xAlxB2 system [46] and the
temperature dependence of the electronic heat capacity Cs(T )
of MgB2 [40] coincide with the results of first-principles
calculations.

As the interband interactions increase, the determinant
of the BCS-like system D̄ = λ11λ̄22 − λ̄12λ̄21 decreases, the
effective coupling constants ̃IJ increase sharply, and the gaps
δ1(t ) and δ2(t ) become closer in magnitude. In a special case,
when the determinant D̄ vanishes, the solutions of the system
(3)–(6) are linearly dependent:

�1(t )/�2(t ) = λ̄12/ λ22 = λ11/λ̄21, (11)

and the gaps δ1(t ) = δ2(t ) coincide [40,47]. In this re-
gion, small (within the experimental uncertainty) changes of
δ1(t ) ≈ δ2(t ) lead to strong changes in effective constants
̃12, ̃21, and large uncertainty in the definition of bare
coupling constants λ0

IJ , which makes the analysis of the exper-
imental data (both in the BCS-like and Eliashberg approaches)
ambiguous and allows, in general, different pairing scenarios.
[Note that in the region of strong interband interaction δ1(t ) ≈
δ2(t ) and the use of the two-band α model is completely
justified.)

Multiband BCS-like equations can be simplified, given
the smallness of some interband interactions. In partic-
ular, in the three-band superconductor, for example, in
Ba(Fe0.9Co0.1)2As2 with the largest gap �2h, the interband
constants ̃2h(e,1h) are much smaller than in the other two
bands,

̃2h(e,1h)/̃e,1h = (γe,1h/γ2h)(�e,1h/�2h)2 	 1, (12)

and they can be neglected by assuming δ2h(t ) ≈ δ0(t ) and
taking into account only the most significant interband inter-
actions ̃1h2h and ̃e2h of the 1h and e bands, with the 2h
band that determines Tc [32]. For other Co concentrations, due
to the possible increase in the interaction of the electron and
inner hole bands in the region where antiferromagnetism and
superconductivity coexist, it is necessary to take into account
the interaction ̃2he, too.

The BCS-like equations for the reduced gaps δ j (t ) =
� j (t )/� j (0) for hole gaps j = 1h, 2h have the form

ln δ2h(t ) = −ñ2h(t ) − ̃2h,e{1 − δe(t )/δ2h(t )}, (13)

ln δ1h(t ) = −ñ1h(t ) − ̃1h2h{1 − δ2h(t )/δ1h(t )}, (14)

ñ j (t ) = 2
∫ ∞

0
dω f [α̃ jε j (ω)/t]/ε j (ω), (15)

ε j (ω) =
√

ω2 + δ2
j (t ), (16)
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where ñ j (t ) is the quasiparticle density and ε j (ω) is the
reduced spectrum of the jth band.

In the equation for the electron gap in Ba(Fe1−xCox )2As2,
it is necessary to take into account the anisotropy
of the intra-X/Y pocket VX/Y (ϕX/Y , ϕ′

X/Y ) =
Vs(1 ± kd cos2ϕX/Y )(1 ± kd cos2ϕ′

X/Y ) and inter-XY pocket
UXY (ϕX , ϕ′

Y ) = Us(1 + md cos2ϕX )(1 − md cos2ϕ′
Y ) pairing

in the electron band. The X/Y gaps on the electron
FS �eX/Y (ϕX/Y ) = �es[1 ± k̃d cos(2ϕX/Y )] and pairing
interactions VX/Y , UXY differ only in π /2 phase shift. The
equation for the amplitude �es and the anisotropy degree
k̃d of the X/Y gaps do not depend on the phase shift and are
the same for X and Y pockets in both Tet and Ort phases, so
in such calculations we can confine ourselves to the case of
the Ort s + d symmetry (with zero phase shifts) of the VX/Y ,
UXY . It can be shown that the pairing interaction Ve in this
equation is the sum of intrapocket V and interpocket U pairing
interactions. For the same anisotropy kd = md , this interaction
can be written in a simple form: Ve(ϕ, ϕ′) = λesγneu(ϕ)u(ϕ′),
with u(ϕ) = 1 + kd cos2ϕ, λes = (V + U )/γne. When
interacting with the isotropic 2h band, the s component
of the electron gap �es is renormalized due to the transfer
of s pairs from 2h band, the gap anisotropy k̃d does not
coincide with the initial kd and depends on temperature:
k̃d (t ) = λ̄es[λ̃2h − λ̃e2h�2h(t )/�es(t )]kd . [In the special case
of D̄ = 0, the function k̃d (t ) is finite (11).] By implication,
the gap anisotropy k̃d differs from the pairing anisotropy
kd in the ratio of the gap �0(t ) (without Ve2h interaction)
to the gap �es(t ) : k̃d/kd ≈ �0(t )/�es(t ) < 1. For weak
interband interaction k̃d ≈ kd , for the gaps inside the cluster
�es(t ) ≈ �2h(t ), k̃d does not depend on temperature and is
k̃d ≈ kd�es(0)/�0(0).

For the electron gap �e(ϕ, t ) = �es(0)δe(t )β(ϕ, t ), where
β(ϕ, t ) = 1 + k̃d (t )cos(2ϕ), the reduced gap δe(t ) is deter-
mined by the BCS-like equation:

ln δe(t )+〈β̄(ϕ, t ) ln β(ϕ, t )−β̄(ϕ, 0) ln β(ϕ, 0)〉

= −2ñe(t )+ ̃e2h

〈uϕ〉〈β(ϕ, 0)〉
{

δ2h(t )〈β(ϕ, 0)〉
δe(t )〈β(ϕ, t )〉 − 1

}
, (17)

ñe(t ) =
〈
β̄(ϕ, t )

∫ ∞

0
dω

f (α̃eεe(ω, ϕ, t )/t )

εe(ω, ϕ, t )

〉
, (18)

εe(ω, ϕ, t ) =
√

ω2 + δ2
e (t )β2(ϕ, t ), (19)

with the averages 〈F 〉 ⇒ 1
2π

〈∫ 2π

0 uϕFdϕ〉 and β̄(ϕ, t ) =
β(ϕ, t )/〈β(ϕ, t )〉.

IV. RESULTS AND DISCUSSION

The solutions of the system of Eqs. (13), (14), and (17) are
used to calculate the normalized electron entropy s j (x, t ) of
the bands and the heat capacity cs(x, t ):

s j (t ) = 3
α j

π2

∫ ∞

−∞
dω

∫ 2π

0

dϕ

2π
{[α jε j (ω, ϕ)/t] f (α jε j (ω, ϕ)/t )

− ln[ f (−α jε j (ω, ϕ)/t )]}. (20)

Here, α j is equal to the experimental value, α j = � j (0)/Tc,
ε j are the spectra (14), (17), and

cs(t ) = d

dt
[γ1hs1h(t ) + γese(t ) + γ2hs2h(t )], (21)

where γ j = γn j/γn is the fractional density of states (γ1h +
γe + γ2h = 1).

To analyze the doping evolution of the gap structure
and spin-fluctuation pairing, we used the relevant experi-
mental data on the cs(x, t ) for high-quality samples of the
Ba(Fe1−xCox )2As2 family at 0.1 < x < 0.4 [37] for t < 0.95
outside the region of thermodynamic fluctuations near Tc.
Figures 3(a) and 4(a)–4(d) show the results of our calculations
of Cs(T ) within the model (13), (14), (17), which differs from
Ref. [32], where λ2he = 0, α̃2h = α0, δ2h(t ) = δ0(t ).

In Fig. 3(a), the solid line shows the heat capacity Cs(T )
of the three-gap Fe-based superconductor Ba(Fe0.9Co0.1)2As2

(Tc = 20 К), with SC gaps and symmetry �e(ϕ, t = 0)
defined in Ref. [32], a weak 2h − e interaction λ̃2he =
0.12 (λ̃e2h = 0.45, λ̃1h2h = 0.4), and fractional density of
states γe = 0.2, γ2h = 0.5(γ1h = 0.3), in comparison with
the experimental dependence Cs(T ) of the close compound
Ba(Fe0.91Co0.09)2As2 (Tc = 20.7 K). The difference between
the interband constants and Ref. [32] is mainly due to a rather
large experimental uncertainty of optical measurements. De-
spite this difference, this result basically confirms the three-
gap structure with the dominant intraband pairing in the 2h
band in Ba(Fe0.9Co0.1)2As2.

The doping dependence of the gap structure � j (x)
and Tc(x) is related to a change in the intraband pair-
ing λ0

II ≈ V (q → 0)γni(x) and interband interaction λ0
I �=J ≈

V (Q, x)γn j (x). V(Q,x) associated with the strong doping de-
pendence of the spin-fluctuation intensity [48] increases with
decreasing electron doping to reach a maximum near the AFM
transition. As the doping decreases, the density of states γn j (x)
increases in the hole bands and decreases in the electron band.

For small changes in the doping δx = x − x0, a good initial
approximation for superconductor with dominant intraband
pairing is given by � j (x, 0)/Tc = � j (x0, 0)/Tc(x0), with in-
terband constants λ̃(x) = λ̃(x0) and gap anisotropy k̃d (x) =
k̃d (x0), which does not change the reduced gaps δ j (x, t ) =
δ j (x0, t ) [see Eqs. (13), (14), and (17)]. In this approximation,
the doping dependence of the heat capacity cs(x, t ) [see
Eqs. (20) and (21)] is associated only with a change in the
fractional density of states γ j (x) [and, respectively, γn j (x)
and the intraband pairing constants] in the bands. Figure 4(a)
shows the temperature dependence of the heat capacity Cs(T )
for the compound Ba(Fe0.925Co0.075)2As2 (Tc = 22.9 К) with
the same interband constants, parameters α̃ j , anisotropy k̃d ≈
kd = 0.5, as in Ba(Fe0.9Co0.1)2As2, and γ1h = 0.3, γe = 0.15,
γ2h = 0.55 (γn = 19.2 mJ mol−1 K−2). The variations in � j

and interband coupling constants relative to the initial config-
uration that are allowed by experimental uncertainty do not
exceed 5%. An increase in γn j (x) in the hole bands and a
decrease in the electron band correspond to the dependence
of the γn j (x) electron and hole bands in the FeSCs with
decreasing electronic doping.

For the optimally doped compound
Ba(Fe0.9425Co0.0575)2As2 with Tc = 24.3 K, the heat capacity
calculated in the initial approximation agrees well with the
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FIG. 4. Normalized electronic heat capacity Cs(T ) for Ba(Fe1−xCox )2As2. (a) Three-gap overdoped compound Ba(Fe0.925Co0.075)2As2

with x = 0.075, Tc = 22.9 K; (b) optimally doped compound with x = 0.0575, Tc = 24.3 K; (c), (d) Overdoped compounds with x = 0.055,
Tc = 21.5 K and x = 0.05, Tc = 19.5 K, correspondingly. Symbols show the experimental data from Ref. [31]; the lines indicate the results of
approximation according to Eqs. (13), (14), (17).

experimental dependence Cs(T ) only for a very small value
γe � 0.03 (γn = 18.7 mJ mol−1 K−2 [37]), which actually
corresponds to a dramatic equalization of the electron
�es(0) and hole �2h(0) gaps (see Fig. 3 and corresponding
discussion in the text). An analysis of the temperature
dependence Cs(t ) shows that the electron �es(0) and inner
hole �2h(0) gaps that satisfy the condition for a smooth
change in γne (0.1 � γe � 0.15) should have a value in the
range 39 to 43 cm−1 and the gap �e(ϕ) anisotropy �esk̃d

on the order of the e-2h cluster size. The gaps in the cluster
coincide with experimental accuracy �es(t ) ≈ �2h(t ), and,
as a result, the interband e-2h contribution to the system
(13), (17) is small and the reduced gaps δ2h(t ) ≈ δe(t )
weakly depend on the interband e-2h interactions. Within
the limits of experimental uncertainty, superconductivity of
optimally doped Ba(Fe0.9425Co0.0575)2As2 and other similar
two-gap superconductors can be formally explained by
both conventional phonon and nonphonon (for example,
in the optimally hole-doped Ba0.68K0.32Fe2As2 model
[49]) scenarios. The study of the doping dependence of

the SC gap structure in the Ba(Fe1−xCox )2As2 family
in comparison with the results of the spin-fluctuation
theory allows one to clarify the role of the nonphonon
mechanism in superconductivity of optimally doped
Ba(Fe0.9425Co0.0575)2As2 and compounds in the phase of
coexisting antiferromagnetism and superconductivity.

Away from the AFM transition, a basic nonphonon mecha-
nism is possible in superconductors with strongly anisotropic
FS (one-band high-Tc cuprates, KxFe2−ySe2, and multiband
FeSCs with a dominant electron gap �es(0) > �1,2h(0) [see
Fig. 1 and Eq. (12)]. The s-wave superconductivity of over-
doped Ba(Fe1−xCox )2As2 away from the AFM transition with
dominant intraband pairing and weak interaction with the cor-
related electron band cannot be explained by spin-fluctuation
theory with repulsive intraband interaction, without taking
into account the strong electron-phonon interaction. In these
compounds, the correlation effects in the isotropic hole bands
are small as λ̃2he, and clearly manifest themselves only in
the anisotropy of the gap �e(ϕ) in the electron band, for
which the intraband pairing is enhanced by interaction with
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dx2−y2 charge (orbital) fluctuations with small wave vectors
q. Within the limits of error, the e-2h interaction and the
e-gap anisotropy do not change with decreasing doping.
The doping dependence of the critical temperature of the
overdoped Ba(Fe1−xCox )2As2 away from the AFM transition
can be explained by an increase in conventional intraband
pairing in the 2h band due to an increase in the density of
states γn2h(x). Close to the AFM transition, correlation effects
reach a maximum. A dramatic equalization of the electron
�es and �2h hole gaps and the decrease in the electron gap
�e(ϕ) anisotropy in the optimally doped Ba(Fe1−xCox )2As2

can be explained by a sharp increase in the e-2h interband
interaction with the spin fluctuations accompanying the AFM
transition, as is assumed by the spin-fluctuation theory [50].
This scenario is illustrated in Fig. 4(b), which shows the
heat capacity Cs(T ) of Ba(Fe0.9425Co0.0575)2As2 with close
2h and e bands (�2h = 43 cm−1 and �es = 39 cm−1), strong
e-2h interband interaction λ̃e2h = 2.0, γ2h = 0.59, γe = 0.12,
and e-gap anisotropy k̃d ≈ kd�es(t )/�es(x = 0.1, t ) = 0.1.
Superconductivity in the anisotropic e band of this compound
is mainly determined by the spin-fluctuation mechanism;
however, a small increase by ≈ 5% in �2h and Tc during the
transition to the optimal regime shows that this mechanism in
Ba(Fe1−xCox )2As2 is not dominant.

The same two-gap state with close electron and inner hole
gaps is also preserved in the phase of coexisting antiferro-
magnetism and superconductivity. For the two-gap state, it
is possible to determine only the characteristics of the outer
hole band, �1h(x) and γ1h(x), the average characteristics of
the e-2h cluster �2h(x) ≈ �e(x), γ (x) = γ2h(x) + γe(x), and
the interaction of the outer hole band with a cluster λ̃1h2h(x).
The doping evolution of the SC state structure for underdoped

FIG. 5. Evolution of the superconducting gaps in
Ba(Fe1−xCox )2As2 with the doping level x. Calculated values
are shown by circles. The region of the e-2h cluster is between the
solid lines. Squares indicate the experimental density of states γn(x)
available for the SC pairing (arb. units) [37].

Ba(Fe1−xCox )2As2 is well described by the two-gap initial ap-
proximation �1,2h(x, 0)/Tc = �1,2h(x0, 0)/Tc(x0), λ̃1h2h(x) =
0.3 with γ1h(x) = 0.3, γ (x) = 0.7 [Figs. 4(c) and 4(d)].

Over the entire range of Co concentrations 0.1 > x >

0.4, the calculated strong coupling parameters α1,2h =
�1,2h(x)/Tc(x) and fractional density of the states γ1h(x) and
γ (x), within the calculation error of ∼5%, do not depend
on doping [2�1h(x)/Tc(x) = 2, 2�2h(x)/Tc(x) = 5, γ1h(x) =
0.3, and γ (x) = 0.7] and the doping dependence of the den-
sity of states in the 1,2 hole bands γnh(x) with an accuracy of
γe(x)/γ2h(x) 	 1 is proportional to the total density of states
γn(x) in Ba(Fe1−xCox )2As2.

Figure 5 shows schematically the doping dependence of
the SC gap structure of Ba(Fe1−xCox )2As2 calculated on the
basis of experimental data and the doping dependence of the
density of states γn(x) for Ba(Fe1−xCox )2As2 experimentally
determined by Hardy et al. [37].

V. CONCLUSIONS

Variation of the isotropic hole gaps in Ba(Fe1−xCox )2As2

family over the entire range of Co concentrations correlates
with a change in the density of states in the bands γnh(x)[∼
γn(x)] and can be explained by the doping dependence of the
intraband electron-phonon interaction. The complex doping
dependence of the magnitude and anisotropy of the e gap
�e(x, ϕ) is mainly determined by the doping dependence of
the spin-fluctuation mechanism [48]. Away from the AFM
transition in the overdoped regime with a relatively weak
interband e-2h interaction, Ba(Fe1−xCox )2As2 is in the three-
gap state with e gap that is significantly smaller than the
dominant 2h gap. Close to the AFM transition in the op-
timally doped phase and in the phase of coexisting anti-
ferromagnetism and superconductivity, due to the increase
in the e-2h interaction, the electron gap �e(x) sharply in-
creases approaching the dominant internal hole gap �2h(x),
and Ba(Fe1−xCox )2As2 goes into a two-gap state with close
�es(x) and �2h(x) gaps. Strong e-2h interaction with the
isotropic 2h band increases the s component of the electron
gap �e(x, ϕ) and significantly reduces the e-gap anisotropy k̃d

in this region. In the phase of coexisting antiferromagnetism
and superconductivity, the hole gaps and the electron gap
coupled with the inner hole gap by the strong e-2h interac-
tion decrease with decreasing doping, as does the density of
states available for the SC pairing due to competition with
an opening AFM gap. The solid lines in Fig. 5 outline the
range of possible electron gap values in the e-2h cluster.
[When constructing the graph, we took into account that the
intermediate electron gap �e(x) cannot exceed the dominant
inner hole gap �2h(x) only at the expense of increasing the
e-2h interband interaction [29].]

An analysis of the doping dependence of the gap structure
in Ba(Fe1−xCox )2As2 shows that the evolution of the critical
temperature Tc(x)/�1,2h(x) ≈ const is not associated with the
strong dependence of the spin-fluctuation interaction V(Q,x)
on doping and can be explained by the doping dependence of
the density of states γ2h(x) and the electron-phonon interac-
tion in the inner hole band with the dominant gap �2h(x). The
nonphonon spin-fluctuation mechanism significantly affects
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superconductivity in the electron band with anisotropic FS,
but the spin-fluctuation interaction in the inner hole band in
the entire Co concentration range is small compared with the
intraband electron-phonon interaction and has a weak effect
on Tc in the Ba(Fe1−xCox )2As2 family.
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