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We show how the spin-transfer torque generated by an ac voltage may be used to excite a paramagnetic
resonance of an atomic spin deposited on a metallic surface. This mechanism is independent of the environment
of the atom and may explain the ubiquity of the paramagnetic resonance reported by Baumann et al.
[S. Baumann, W. Paul, T. Choi, C. P. Lutz, A. Ardavan, and A. J. Heinrich, Science 350, 417 (2015)]. The current
and spin dynamics are modeled by a time-dependent Redfield master equation generalized to account for the
periodic driven voltage. Our approach shows that the resonance effect is a consequence of the nonlinearity of the
coupling between the magnetic moment and the spin-polarized current which generates a large second-harmonic
amplitude that can be measured in the current signal.
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I. INTRODUCTION

The interplay between the electronic motion and spin
degrees of freedom is a key ingredient to design atomic-size
magnetic devices. Recently, experimental advances have
allowed a number of remarkable results in nonmagnetic
control over single magnetic molecules and other artificially
fabricated spin structures [1,2]. This progress is significantly
driven by future-technology demands, as single magnetic
atoms have long been viewed as structural elements for
high-density information storage and processing devices
[3–7]. Recently, these structures were shown to preserve
quantum coherence under certain circumstances [8,9],
which triggered a renewed interest in their use for quantum
information processing [10].

Individual addressing of the atomic spin can be achieved
only by nonmagnetic means, using an external current applied
locally at the atomic site [11–13]. The degree of control
over the atomic spin is ultimately determined by the na-
ture of the coupling between the current and the magnetic
moment. Therefore, it is of foremost importance to explore
different coupling mechanisms. Reference [14] reports the
current control of TbPc2 magnetic properties by applying
controlled current pulses via a scanning tunneling microscope
(STM) setup. The physical origin of this effect is a current-
induced molecular conformation. Recently, Baumann et al.
[15] have reported the induction of a paramagnetic resonance
of individual magnetic atoms on a surface by application
of an alternating current. Several proposals have been put
forward to understand this effect [15–17], which involves
coupling the individual magnetic atom to mechanical (orbital)
degrees of freedom that in turn couple to the alternating field.
However, such coupling should be highly dependent on the
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local environment of the atom and thus these scenarios have
difficulties explaining the ubiquity of the observations.

In this paper, we show that a current-induced spin torque
can effectively couple the spin of the magnetic atom to a
locally applied alternating voltage. By modeling the experi-
mental setup of Ref. [15], we argue that this mechanism can
be responsible for the observed paramagnetic resonance and is
compatible with the measured decoherence and decay times.
The dissipative nature of the current-induced spin torque
renders this effect distinct from mechanisms that induce a time
dependence to the Hamiltonian of the local moment.

Baumann et al. [15] deposited a single magnetic atom (Fe
or Co) on a metallic surface, Ag(001), coated with a thin
insulator, an atomically thick MgO layer. A sketch of the
setup is given in Fig. 1. With a STM tip placed on top of
the atom, an alternating voltage (∼2−3 MHz) was applied
between the tip and the metallic substrate, in addition to a
direct voltage component. While swiping the frequency of
the applied ac signal, a peak in the dc current response was
observed marking a single magnetic excitation. The effect was
shown to be present for a spin-polarized tip on Fe atoms and
absent for Co atoms or for a spin-unpolarized tip. The width
of the resonance measured in the current signal was related
with T2 and shown to be much smaller then the measured
relaxation time T1. Similar results were subsequently reported
in Refs. [18,19].

Although we do not intend to reproduce the exact condi-
tions of the experiment, we consider below a minimal model
able to capture the main physical effects.

II. MODEL AND METHOD

A description of magnetic atoms and molecules in terms of
an effective spin Hamiltonian emerges in the presence of large
charge gap that effectively promotes the number of atomic
electrons to a good quantum number. At low temperatures,
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FIG. 1. (a) The sketch of the setup that consists of the magnetic
atom, the metallic substrate coated by the insulating layer, and the
polarized tip. The external magnetic field B acts on the atom, and
the periodically changing voltage V (t ) = V + v sin(�t ) is applied
across the tip. (b) The dc conductance spectrum of the setup. The
sine curve indicates the range of values of the instant voltage.

in the regime of weak hybridization between the localized
orbitals and the nearby itinerant electrons, tunneling arises by
virtual excitations of the localized charge state, giving rise to
an effective exchange interaction between the localized spin
and that of the electronic environment. This situation can
be modeled by the Hamiltonian H = HS + HE + HC , which
includes the atomic subsystem HS , the electronic degrees of
freedom of the environment HE , and the coupling term HC .
Here, the electronic environment consists of two metallic
leads (substrate and tip) in thermal equilibrium with inverse
temperature β and chemical potentials μs = 0 and μt = −V ,
where V is the dc component of the applied voltage, and we
set e = 1 for the electron charge −e. The full voltage across
the device

V (t ) = V + v sin(�t ) (1)

also includes an alternating component with amplitude v and
frequency �. We account for this component by adding a
constant shift −�ν sin(�t ), with �t = v and �s = 0, to the
energies of the lead states, which renders the Hamiltonian of
the tip time-dependent. The leads are also characterized by
spin-polarized density of states (DOS) that account for the tip
polarization and a bandwidth W , much larger than any energy
scale of the system (for further details see Ref. [20]). The
degree of the tip polarization is determined by the parameter
p that ranges from −1 to 1. The atomic system consists of
a single atom with a well-defined total spin S = 1/2 in the
presence of an external magnetic field B,

HS = h · S, (2)

where h = gμBB is proportional to the atomic g-factor and the
Bohr magneton μB. The system-environment coupling Hamil-
tonian is given by the exchange interaction terms [21,22]

HC =
∑
aνν ′

√
Ja
ν Ja

ν ′Sa ⊗ sνν ′
a , (3)

sνν ′
a = 1√

NνNν ′

∑
kk′ss′

c†
νks

σ a
ss′

2
cν ′k′s′ , (4)

where a = 0, x, y, z, the axis z is aligned with the tip polar-
ization, and σ a are the Pauli matrices (with σ 0 = S0 = I).
Therefore, terms with a = 0 correspond to the elastic tunnel-
ing of electrons between the leads. The inelastic coupling is

isotropic, i.e., Ja
ν = Jν . In the following, we use dimensionless

coupling parameters �a
ν = πJa

ν /2W , with W the bandwidth of
the reservoirs, and consider only the isotropic case �a

ν = �ν .
To capture spin-torque effects, we employ a master-

equation description for the evolution of the reduced density
matrix of the local moment that crucially includes the coher-
ences. Therefore, we generalized the Redfield master equation
approach, previously used to model coherent evolution and
transport in engineered atomic spin devices [20,23], to deal
with the ac driving bias.

Following a standard procedure [24], a master equation
∂tρ = Ltρ can be derived for the density matrix of the atomic
system, where Lt is a superoperator of the Redfield type given
by

Ltρ = − i[H ′
S, ρ] −

∑
aa′

[Sa,Λaa′ (t )ρ − ρΛ
†
aa′ (t )]. (5)

Here H ′
S = HS + 1

2 pJt Sz is the renormalized Hamiltonian of
the system, and

Λaa′ (t ) =
∑

νν ′αα′
uνν ′

aa′ κ
t
νν ′ (ωα − ωα′ )|α〉〈α|Sa′ |α′〉〈α′|, (6)

where uνν ′
aa′ =

√
�a

ν�
a
ν′ �a′

ν �a′
ν′

4π
tr[(1 + pνσ

z )σ a(1 + pν ′σ z )σ a′
], and

|α〉 are eigenstates of H ′
S with energies ωα . The time depen-

dence enters Lt via the quantity

κ t
νν ′ (ω) =

∞∑
m=−∞

imeim�t ei
�ν−�

ν′
�

cos(�t )Jm

(
−�ν − �ν ′

�

)

× κ (ω + m� − μν + μν ′ ), (7)

where Jm(x) are Bessel functions, that is the generalization of
the one obtained in the time independent case [20]

κ (ω) = g(βω) + i f (βω)

β
− i

π
ω ln

|ω|
cW

, (8)

where c is a constant of order 1, g(x) = x/(ex − 1), and
f (x) = 1

π
P

∫
dy [g(y) + y�(−y)]/(x − y). The details of the

derivation are given in Appendix and are a generalization of
the method of Ref. [20], obtained for a static voltage (i.e.,
v = 0), when κ t

νν ′ (ω) = κ (ω − μν + μν ′ ) and the operators
Λaa′ (t ) are time independent. For simplicity, the calculations
below do not take into account the imaginary part of κ (ω).
It is worth noting that this term may induce unphysical dy-
namics of the density matrix for large and moderate system-
environment coupling, while it does not qualitatively change
observables for weak coupling [20].

The average value of the current between the leads can be
obtained introducing a counting field in the master equation
(see Ref. [25] and Appendix), or using a charge-specific
formalism [20,26,27] adapted to the time-dependent case, and
is given by

I (t ) = −tr
∑
aa′

[Jaa′ (t )ρ(t )Sa + Saρ(t )J†
aa′ (t )], (9)

where the operators Jaa′ (t ) are defined as

Jaa′ (t ) =
∑

νν ′αα′
uνν ′

aa′ κ
t
νν ′ (ωα − ωα′ )(δνt − δν ′t )|α〉〈α|Sa′ |α′〉〈α′|.

(10)
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The expression Eq. (9) has the same form as the one obtained
for the static case in Ref. [23], except for the explicit time de-
pendence of the density matrix and the operators Jaa′ (t ) due to
the driving. Note that the current obtained in this way assumes
that the ac voltage has been turned on in the infinite past and
that the system has already attained a periodic regime with the
frequency of the drive. In practice, this means that the duration
of the ac pulse is considered to be larger than the characteristic
relaxation times. The average value of the current in Eq. (9)
can be separated into three components [22,28]: (i) the elastic
component I (1) arising from the terms with a = a′ = 0, (ii) the
magnetoresistive component I (2) arising from the terms with
a = 0 and a′ 	= 0, or a 	= 0 and a′ = 0, and (iii) the inelastic
component I (3) arising from the terms with a 	= 0 and a′ 	= 0.
We note that the elastic component has the trivial dependence
on the voltage I (1)(t ) = geV (t ), satisfying the Ohm’s law with
ge = �0

s �
0
t /π .

III. RESULTS

We now apply the developed theory to study the electronic
paramagnetic resonance in magnetic atoms. We first calculate
the ac spectra of the current to demonstrate the appearance of
the resonance peaks observed in Ref. [15]; furthermore, we
investigate how the spin dynamics behaves in the vicinity of
the resonance.

For clarity, we split the average value of the current as

I (t ) = I + i(t ), (11)

where I is the stationary current at constant voltage V , and
i(t ) is the differential response to the ac component. Since the
applied voltage Eq. (1) changes periodically, i(t ) admits the
Fourier series decomposition:

i(t ) = i(0) +
∞∑

m=1

i(m) sin(m�t + φm). (12)

Following Baumann et al. [15], we first study i(0), whose
dependence on the driving frequency for different values of
the dc voltage V and the driving amplitudes v is shown in
Fig. 2. When the spin polarization of the current is perpen-
dicular to the magnetic field applied to the atomic spin, we

FIG. 2. Dependence of i(0) term in the ac component of the
current Eq. (12) on the driving frequency for different values of
the dc voltage and the driving amplitude. We use h = 0.1 meV,
T = 0.05h, �a

ν = 0.1, and (a) V = 0, (b) V = h, (c) V = 5h. Since
i(0) scales as v2, we normalize it appropriately. The insets show
the spectrum of the dc current and the values of V around which
the voltage is driven.

see that in all cases there is a pronounced peak at the resonant
driving frequency � = h. As in the experiment, such peak is
not observed if the current polarization is collinear with the
magnetic field h. Note that i(0) in Fig. 2 is normalized by
v2, therefore, the collapse of these curves near the resonance
frequency, for different driving amplitudes v and different
values of V , indicates that the nonlinear processes generating
the i(0) response are predominantly of second order in v.
Away from the resonance the i(0) response drops sharply for
V = 0 and 5h. However, for V = h one observes a nonzero
i(0) response even off-resonance, this arises since the driving
is done around the dc voltage that corresponds to a highly
nonlinear part of the spectrum as can be seen in the inset of
Fig. 2(b).

We now extend our analysis to the full dynamics of the
current within a driving period for the case (c) of Fig. 2 that
best models the conditions reported in Ref. [15]. We study
current response for driving frequencies � 
 h (adiabatic
case) and � � h (fast case) and compare it with the resonant
case, � = h. For both adiabatic and fast driving we find that

i(t ) � i0(t ) = dI

dV
(V ) × v sin �t, (13)

i.e., the ac response is purely ohmic. The Lissajous curves
depicting the nonohmic part of the response i(t ) − i0(t ) versus
v(t ) = v sin �t are shown in Fig. 3(a) for different amplitudes
and frequencies of the driving.

When the driving is adiabatic, i.e., � 
 h, the instanta-
neous current i(t ) is solely determined by the instantaneous

FIG. 3. (a) Lissajous curves for i(t ) − i0(t ) versus v(t ) =
v sin �t and (b)–(d) over-period trajectories of the average atomic
spin at different amplitudes and frequencies of the driving. Dashed,
solid, and dotted curves correspond to adiabatic (� = 0), resonant
(� = h), and fast (� = 5h) driving cases. We use h = 0.1 meV, T =
0.05h, �a

ν = 0.1, and V = 5h. The values of v(t ) and i(t ) − i0(t ) are
normalized to v and gev, respectively. The inset shows the amplitude
of the second harmonic of the current i(2), normalized by v2, as the
function of the driving frequency for the same h, T, �a

ν , and V . Since
i(2) scales as v2, curves for different amplitudes of the driving v are
indistinguishable.
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voltage at time t , in which case the Lissajous curve shows no
hysteresis and can be determined from the dc curve. On the
other hand, when the driving frequency is large, i.e., � � h,
the internal state of the system has no time to adapt (see be-
low). The magnetic moment thus experiences vanishing time-
averaged torque. The resulting conductivity that is determined
by the state of the magnetic moment also does not depend on
the time resulting in purely Ohmic response i(t ) ∝ v(t ). At
resonance � = h, the i − v characteristic exhibits a hysteresis
loop indicated by the nonvanishing area inside the Lissajous
curve. This shows that the nonlinear processes responsible
for the generation of i(0) also induce higher harmonics whose
amplitudes i(m) increase at resonance. The amplitude of the
second harmonic m = 2, shown in the inset of Fig. 3(a), is
comparable to i(0) and also scales as v2.

To better understand the phenomena reported above, we
investigate the dynamics of the magnetic moment for three
different regimes considered above. Figure 3 shows the orbit
followed by the Bloch vector s = {〈Sx〉, 〈Sy〉, 〈Sz〉} over a
period of the drive. For adiabatic driving, � 
 h, shown in
Fig. 3(b), the spin has time to adapt to the applied voltage and
its trajectory can be obtained by the static master equation.
The magnetization points in the z direction and oscillates
around the static (i.e., v = 0) value with an amplitude that
is proportional to v. In the regime of fast driving, � � h,
shown in Fig. 3(d), the magnetization remains static and
independent of v, acquiring the value obtained in the static
case for v = 0. This can be simply explained by the fact that,
for the time scales experienced by the spin dynamics, the
alternating voltage averages out to zero. The resonant case,
� = h, is shown in Fig. 3(c). The trajectories form circular
orbits almost parallel to the xy plane, centered at the static
value, and with radii proportional to v. This shows that, at
resonance, the perpendicular polarized current exerts a spin-
transfer torque that is able to excite the magnetic moment
of the atom. This process requires quantum coherence, as it
involves the elements of the reduced density matrix of the
magnetic moment that are off-diagonal with respect to the
Hamiltonian.

Finally, we address another point raised by Ref. [15] con-
cerning the quantum coherence of a spin state. In Ref. [15],
the measurements of i(0) were used to indirectly evaluate the
decoherence time T2 by determining the width of the reso-
nance. Such timescale can now be compared with the standard
interpretation of T2 as the decay time of the coherences of the
spin state [29]. The definition of T2 employed in the following
has been established in Ref. [23], where some of the subtleties
of defining a decoherence timescale in the presence of a
spin-polarized environment were addressed. This quantity,
dubbed T dec

2 in the following, is determined by the fastest
decay rate of information in a system perturbed away from the
nonequilibrium steady state that is established in the presence
of a static bias V .

The analog of T2 as measured in Refs. [15,18], that we
denote T res

2 , is obtained from the width of the resonance
curves in Figs. 2(a) and 2(c), assuming that near the resonance
i(0)(�) ∝ e−b(�−h)2

. The half-height width is then computed
as T res

2 = 1
2

√
b

ln 2 . Figure 4 depicts T res
2 , T dec

2 , and their ratio as
a function of the temperature for two values of V . The fact that

FIG. 4. The dependence on the temperature of (a) the decoher-
ence times T res

2 (solid curves) and T dec
2 (dashed curves) estimated

from the width of the resonance and from the decay time of the
coherence between the spin states, correspondingly, (b) their ratio
T res

2 /T dec
2 . The timescales T res

2 are obtained from fitting i(0) resonance
curves for h = 0.1 meV, v = 0.1h, �a

ν = 0.1, and different values
of V .

this ratio is constant at low temperature, and depends mildly
on the V , shows that T res

2 can indeed be used to estimate T dec
2 .

However, both the variation observed at high temperatures and
the dependence on V can yield a difference of the order of
10% in the ratio T res

2 /T dec
2 . This suggests some caution to the

assign a direct physical meaning to T res
2 .

The assumption of a spin-1/2 atom directly applies to
Ref. [18]. Nonetheless, our theoretical treatment and the ef-
fects it predicts generalize to higher magnetic moments, engi-
neered spin structures, and magnetic molecules, providing the
jump operators in Eq. (A5) directly couple the resonant energy
states. To avoid this limitation, a higher order expansion in the
system-bath coupling has to be considered.

IV. CONCLUSION

In this paper, we prove that spin-transfer torque may in-
duce an electronic paramagnetic resonance in single atomic
spins. This mechanism does not appeal to any mechanical or
orbital degrees of freedom and only involves the dissipative
interaction of the polarized current with the atomic spin.
It is therefore independent of the environment of the atom
which may explain the ubiquity of the effect reported in
Ref. [15]. The current and spin dynamics induced by an ac
voltage drive can be well captured by a time-dependent master
equation that generalizes a previous framework [20] based on
a Redfield-like set of approximations. Our approach shows
that the quantum coherence of the atomic spin is crucial to
capture paramagnetic resonance effects resulting from the
generation of second harmonics of the driving signal. This
nonlinear process is enhanced near the resonance condition
and depends on the square of the driving amplitude, which is
compatible with Ref. [19]. The effect is based on a current-
induced spin-torque and does not assume any effective time
dependence of the local moment Hamiltonian. Moreover, the
resonance is not observed for an unpolarized current which
generates no spin-transfer torque.

We showed that the resonance width can reliably be used to
estimate the decoherence timescale T2 once mild temperature
and voltage dependencies are accounted for.
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APPENDIX: REDFIELD EQUATION

In this Appendix, we derive the Redfield equation that was
used in the paper to calculate dynamics of the atom driven
by the current. The driving is included into the Hamiltonian
of the environment as a time-dependent shift to the energies
of the electronic states

HE (t ) =
∑
νks

[ενks − δν (t )]c†
νkscνks, (A1)

where ν = s, t labels the leads, indices k and s enumerate mo-
mentum and spin of the electrons, and �ν (t ) = �ν sin(�t ).
We start by representing the coupling Hamiltonian, see Eq. (3)
of the paper, as HC = ∑

a Sa ⊗ Ea with

Ea =
∑
νν ′

√
Ja
ν Ja

ν ′

NνNν ′

∑
kk′ss′

c†
νks

σ a
ss′

2
cν ′k′s′ , (A2)

which allows us to write the Redfield equation in the well-
known form

∂tρ = −i[HS + �HS, ρ] +
∑
aa′

([Λaa′ (t )ρ, Sa] + H.c.).

(A3)

Here the Hamiltonian shift is given by

�HS =
∑

a

〈Ea〉Sa, (A4)

and the operators

Λaa′ (t ) =
∫ ∞

0
dt ′e−iHSt ′

Sa′eiHSt ′
Caa′ (t, t ′) (A5)

are expressed through the correlation functions of the
environment

Caa′ (t, t ′) = trE
[
(Ea − 〈Ea〉)e−i

∫ t
t−t ′ HE (τ )dτ

× (Ea′ − 〈Ea′ 〉)ei
∫ t

t−t ′ HE (τ )dτ ρE
]
. (A6)

Evaluating the Hamiltonian shift results in

�HS =
∑
νa

Ja
ν

Nν

∑
ks

σ a
ss

2
nF (ενks − μν )Sa. (A7)

We employ spin-polarized DOS of the leads,

�νs(ε) = 1

Nν

∑
k

δ(ε − ενks)

= 1

2W
(1 + pνs)�(|ε − μν | − W ), (A8)

to replace sums over momenta by integrals over energy in this
expression and obtain

�HS = 1

2

∑
ν

∫
dε

[(
J0
ν + JνSz

)
�ν↑(ε) + (

J0
ν − JνSz

)
�ν↓(ε)

]
× nF (ε − μν ). (A9)

In the large bandwidth limit, with constant terms discarded,
one gets

�HS = 1

2

∑
ν

Jν pνSz, (A10)

or �HS = 1
2 Jt pSz for the case when only tip is polarized. Be-

cause of driving, the correlation functions depend on both time
arguments rather than their difference. Substituting Eq. (A2)
into Eq. (A6) results in

Caa′ (t, t ′) =
∑
νν ′

√
Ja
ν Ja

ν ′Ja′
ν Ja′

ν ′

NνNν ′

∑
kk′ss′

σ a
ss′σ

a′
s′s

4

〈
c†
νkscν ′k′s′e−i

∫ t
t−t ′ HE (τ )dτ c†

ν ′k′s′cνkse
i
∫ t

t−t ′ HE (τ )dτ
〉
. (A11)

Introducing DOS of the leads, we replace sums over momenta by integrals over energy in this expression and obtain

Caa′ (t, t ′) =
∑
νν ′

√
Ja
ν Ja

ν ′Ja′
ν Ja′

ν ′
∑
ss′

σ a
ss′σ

a′
s′s

4

∫∫
dεdε′�νs(ε)�ν ′s′ (ε′)ei

∫ t
t−t ′ [ε−vν (τ ])dτ e−i

∫ t
t−t ′ [ε

′−vν′ (τ )]dτ nF (ε − μν )[1 − nF (ε − μν ′ )].

(A12)

We then employ rectangular DOS, introduce dimensionless coupling parameters �a
ν = πJa

ν /(2W ), and use the relation 1 −
nF (ε) = nF (−ε) to rewrite the last expression as

Caa′ (t, t ′) =
∑
νν ′

1

4π

√
�a

ν�
a
ν ′�a′

ν �a′
ν ′ tr[(1 + pνσ

z )σ a(1 + pν ′σ z )σ a′
]ei(μν−μν′ )t ′−i

∫ t
t−t ′ [vν (τ )−vν′ (τ )]dτ 1

π

[∫ W

−W
dεeiεt ′

nF (ε)

]2

.

(A13)
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Let us introduce the definition

uνν ′
aa′ = 1

4π

√
�a

ν�
a
ν ′�a′

ν �a′
ν ′ tr[(1 + pνσ

z )σ a(1 + pν ′σ z )σ a′
] (A14)

and substitute Eq. (A13) into Eq. (A5) using the spectral decomposition I = ∑
α |α〉〈α|. We get

Λaa′ (t ) =
∑
αα′

|α〉〈α|Sa|α′〉〈α′|
∑
νν ′

uνν ′
aa′

∫ ∞

0
dt ′e−i(ωα−ωα′ −μν+μν′ )t ′

e−i
∫ t

t−t ′ [vν (τ )−vν′ (τ )]dτ 1

π

[∫ W

−W
dεeiεt ′

nF (ε)

]2

(A15)

which coincides with Eq. (A5) of the paper, where

κ t
νν ′ (ω) =

∫ ∞

0
dt ′e−i(ω−μν+μν′ )t ′

e−i
∫ t

t−t ′ [vν (τ )−vν′ (τ )]dτ 1

π

[∫ W

−W
dεeiεt ′

nF (ε)

]2

. (A16)

For sinusoidal periodic driving vν (t ) = vν sin(�t ), we may decompose

e−i
∫ t

t−t ′ [vν (τ )−vν′ (τ )]dτ = ei
vν−v

ν′
�

[cos(�t )−cos(�(t−t ′ ))]

= ei
vν−v

ν′
�

cos(�t )
+∞∑

m=−∞
imJm

(
−vν − vν ′

�

)
eim�(t−t ′ ), (A17)

where we used the identity eiz cos ϕ = ∑+∞
m=−∞ imJm(z)eimϕ . Substituting this into Eq. (A16) gives Eq. (7) of the paper with

κ (ω) = 1

π

∫ ∞

0
dt e−iωt

[∫ W

−W
dεeiεt nF (ε)

]2

. (A18)

The evaluation of this integral in the large bandwidth limit W → ∞ results in

κ (ω) = − i

π

(
bW + ω ln

|ω|
cW

)
+ g(βω) + i f (βω)

β
+ O

( |ω|
W

)
, (A19)

where b = 2 ln 2 and c = e/2. We note that DOS with different from rectangular shapes give κ (ω) of the same form but with
other values of b and c, e.g., for �νs(ε) = 1

2W (1 + pνs) exp(−|ε − μν |/W ) one gets b = 1 and c = e−γ . The term proportional
to the bandwidth gives no contribution to the equation and we thus exclude it from κ (ω), as well as O(|ω|/W ) term, and arrive
at Eq. (8) of the paper.
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