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Antiferromagnetic single-layer spin-orbit torque oscillators

Roberto E. Troncoso,1,* Karsten Rode,2 Plamen Stamenov,2 J. Michael D. Coey,2 and Arne Brataas1

1Center for Quantum Spintronics, Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
2CRANN, AMBER and School of Physics, Trinity College Dublin, Dublin 2, Ireland

(Received 31 August 2018; revised manuscript received 13 February 2019; published 27 February 2019)

We show how a charge current through a single antiferromagnetic layer can excite and control self-oscillations.
Sustained oscillations with tunable amplitudes and frequencies are possible in a variety of geometries using
certain classes of noncentrosymmetric materials that exhibit finite dissipative spin-orbit torque. We compute
the steady-state phase diagram as a function of the current and spin-orbit torque magnitude. The anisotropic
magnetoresistance causes the conversion of the resulting AF oscillations to a terahertz AC output voltage. These
findings provide an attractive and novel route to design terahertz antiferromagnetic spin-orbit torque oscillators
in simple single-layer structures.
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I. INTRODUCTION

Modern technologies cannot easily generate and detect ra-
diation in the spectral range between radio waves and infrared
light [1]. Typically, microwaves reach at most 100 GHz while
optical techniques cover frequencies higher than 30 THz [2].
Despite enormous efforts [1], in this ‘Terahertz gap,’ efficient,
cheap, chip-sized, and practical technologies do not exist [2].

Spin dynamics of antiferromagnets (AFs) have the po-
tential to fill the terahertz gap [3,4] as their spin excitation
frequency lie in the required range [1]. They are robust against
external fields since there is no net magnetic moment [4],
but on the other hand, this implies there is no simple way
to control them by magnetic fields [5]. As a result, current-
induced and -controlled AF spin dynamics has emerged [4–6].
To demonstrate their potential as enabling components in
terahertz devices, we must establish how to control ultrafast
switching and oscillations [7–10].

Single-layer spin-orbit torques offer such possibilities
[11–14]. The origin of these torques is the relativistic spin-
orbit interaction. In noncentrosymmetric AFs, where the mag-
netic sublattices form inversion partners, a current induces
a spin polarization with an alternating sign between the in-
version partner lattice sites. There are recent observations
of fieldlike (reactive) SOTs, dubbed Néel spin-orbit torque
(NSOT), in CuMnAs [15] and Mn2Au [16]. The functional
form of SOTs depends on the crystallographic symmetries
[11], and we expect interesting phenomenology in a wide
variety of AFs.

In addition to reactive SOTs, the transfer of angular
momentum from currents to magnetization can compensate
or enhance the magnetic (Gilbert) damping via dissipative
(‘dampinglike’) torques. This can result in steady-state mag-
netic oscillations, also known as self-oscillations [17]. Spin-
transfer torques have a large dissipative component and can
therefore sustain stable, high-frequency oscillations [18–21]
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but generally require an external source of spin currents.
Radically different, single-layer AF-based SOT oscillators
would not need a spin polarizer and have the potential of com-
bining stable oscillations with high speed dynamics, useful for
emitters and receivers of THz radiation.

In this paper, we propose a route to realize current-
controlled SOT oscillators in AFs. First, we determine the
form of the SOTs based on symmetry arguments through a
phenomenological approach. Second, the behavior of self-
oscillations is studied for different ratios of the reactive and
dissipative torques as well as its dependence on the charge
current density.

This work is structured as follows. In Sec. II, we introduce
the phenomenological theory to compute SOTs in AFs. In
Sec. III, the antiferromagnetic dynamics is presented and is
followed by Sec. IV where self-oscillations are calculated.
Finally, we end with conclusions and discussions in Sec. V.

II. SPIN-ORBIT TORQUES

We consider a two-sublattice, noncentrosymmetric AF de-
scribed by unit vectors along the magnetic moments, ma and
mb. A general form of the current-induced torque [11,14] in
the local approximation is τα = mα × Hα[ma, mb, j], where
α labels the sublattices. Hα is the effective field that depends
on the magnetization direction and is induced by the out-
of-equilibrium current density j [11]. In linear response, the
torque is

τα = mα × ηα[ma, mb] j, (1)

where the local second-rank tensor ηα ≡ (∂Hα/∂j)j=0 en-
codes all forms of current-induced torques governed by the
symmetries of ηα . Invoking Neumann’s principle [22], sym-
metries possessed by the point group of the crystal will be
inherited by any physical quantity, we compute SOTs. In
AFs, we consider symmetries that leave the magnetic sublat-
tice site invariant [13,23]. Denoting R a symmetry rotation,
the magnetization and current density obey m′

α = |R|Rmα

and j′ = Rj, respectively, in the transformed frame. The
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FIG. 1. The action of (a) reactive τr
a,b and (b) dissipative τd

a,b

spin-orbit torques on the magnetic moments at bipartite lattices ma

and mb. The torques are driven by an in-plane current density j.

transformation rule for the torque is τ ′
α = |R|Rτα . It follows

from Neumann’s principle that ηα must satisfy, ηα[m′
a, m′

b] =
|R|Rηα[ma, mb]RT . We consider the magnetic sublattices
form inversion partners within each unit cell. This assumption
leads to the additional condition ηb[mb, ma] = −ηa[ma, mb].

To proceed, we simplify the tensor ηα by expanding it
up to leading order in mα , i.e., ηα = �α + �a

αma + �b
αmb

[11,22]. The reactive and dissipative SOTs are captured by
the second- and third-rank tensors �α, �a

α , and �b
α , respec-

tively. The derived symmetry relations for ηα imply that these
tensors obey

[�a,b]i j = −|R|Rii′R j j′ [�b,a]i′ j′ , (2)[
�a

a,b

]
i jk = −Rii′R j j′Rkk′

[
�b

b,a

]
i′ j′k′ , (3)

for a specific symmetry group.
We now focus on three groups of tetragonal noncentrosym-

metric materials. First, we consider systems described by a
linear in momentum Dresselhaus model [13,24]. These are
found in certain Heusler alloys, like the fully-compensated
half-metallic ferrimagnet Mn2RuxGa (MRG) [25–27]. The
large magnetocrystalline anisotropy and the lack of local in-
version symmetry existing in MRG [25] imply a considerable
SOT. To compute the torques we consider that symmetries
belongs to the tetragonal point group 4̄2m [23,25]. The sim-
plest expression for SOTs is obtained when MRG is close to
the cubic phase. As detailed in Appendix A, we find that the
torques on each sublattice are

τa = �ma × j + T {ma × [(�nma + �mmb) × j]},
τb = −�mb × j − T {mb × [(�mma + �nmb) × j]},

for an in-plane charge current j = ( jx,− jy, 0). The operator
T {·} switches the sign of the z component, while x and y
components are unchanged. To derive the simplest expression
for the torques we have assumed ma and mb in MRG form
spin partners (see Appendix A 1 for details). The phenomeno-
logical coefficients �, �n, and �m quantify the strength of
reactive and dissipative SOTs sketched in Fig. 1.

A second example are the AFs, Mn2Au [16] and CuMnAs
[15]. The symmetries of the magnetic sites belongs to the
polar point group 4mm [13]. The SOTs for these materials
are similar to the torques in MRG when the Fermi level is
close to the band gap [12,13,28]. In fact, the result is obtained
under the transformation j → z × j, with j = ( jx, jy, 0), and
T → I , with I the identity. Lastly, the third group of materials
that we consider are part of enantiomorphic crystals [13,23].
As an example we choose systems with point group 422. The

SOTs are found from the torques in MRG under the change
j → j and T → I . Note that in the previous two examples
we also used that the material is approximately cubic. The
expression found for these groups also recovers the results
given in Ref. [13]. Details and the general result for the SOTs
can be found in Appendices A 1–A 3.

III. ANTIFERROMAGNETIC DYNAMICS

The magnetocrystalline anisotropy has two dominant
components—a uniaxial anisotropy perpendicular to the
AF layer and an in-plane fourfold symmetric anisotropy.
Next, we introduce the Néel vector n = (ma − mb)/2 and
the magnetization m = (ma + mb)/2 that satisfy m · n = 0
and m2 + n2 = 1. The free magnetic energy density, in-
cluding the exchange energy, is f = −2ωexn2 − ω

(1)
‖ n2

z /2 −
ω

(1)
⊥ (n4

x + n4
y − 6n2

xn2
y )/4 − ω

(2)
‖ n4

z in the macrospin descrip-
tion and employing the exchange approximation. The coupled
equations of motion are

ṁ = fm × m + fn × n + α(m × ṁ + n × ṅ) + τm (4)

ṅ = fn × m + fm × n + α(m × ṅ + n × ṁ) + τn (5)

with the thermodynamic forces fm ≡ −∂ f /∂m and fn ≡
−∂ f /∂n, and α the Gilbert damping constant. The SOTs
exerted on the magnetization and Néel field are, respectively,
defined as τm,n = (τa ± τb)/2. In the exchange approxima-
tion, Eq. (5) implies that the small magnetization m is a
slave variable obeying m = (ṅ − τn) × n/(4ωex). Inserting
the expression for m into Eq. (4), we obtain the effective
equation of motion that governs the Néel field dynamics,

n ×
[

n̈
4ωex

− fan
n + αeff[n]ṅ + � j + X[n, ṅ]

]
= 0, (6)

with the constraint |n| = 1 and fan
n the effective anisotropy

field. We consider the simplest regime where �n and �m are
comparable. X[n, ṅ] is a field that derives from the dissipative
SOT [29] and it is characteristic of MRG. However, when the
easy-plane anisotropy ω

(1)
⊥ is sufficiently large, this term can

be neglected from Eq. (6). The dissipative torque also modifies
the Gilbert damping by leading to the effective dissipation,

αeff[n] = α − �n

2ωex
j · n, (7)

that depends on the charge current and the Néel vector.
For a comprehensive description of the AF dynamics, we

restrict our analysis to the easy-plane magnetic configuration
(ω(1)

‖ < 0, ω
(2)
‖ ≈ 0 and ω

(1)
⊥ > 0). In this case there are four

in-plane degenerate states. We write n in terms of its polar
(θ ) and azimuthal (φ) angle. Maintaining the assumption of
a dominant easy-plane anisotropy, we use the ansatz θ (t ) =
π/2. Thus, Eq. (6) reduces to the scalar equation

1

4ωex
φ̈ + αeff[φ]φ̇ = F [φ] (8)

that corresponds to a forced nonlinear oscillator. The current
controls the effective damping αeff[φ] of Eq. (7) and the force
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F [φ] = −∂V/∂φ, where the potential

V [φ] = −ω
(1)
⊥
4

cos [4φ] + �[ jx cos φ − jy sin φ]. (9)

At equilibrium, when there is no current, the four degen-
erate ground states have azimuthal angles φ = −π, φ =
−π/2, φ = 0 or φ = π/2.

IV. SELF-OSCILLATIONS

We will now demonstrate the emergence of self-
oscillations. This is presented for MRG, however it is exten-
sible to the other candidate materials under simple rotations
of the charge current. Furthermore, up to leading order in the
amplitude of oscillations, Eq. (8) reduces to the well-studied
Duffing-Van der Pol oscillator [17,30]. Our main result is
that self-oscillations are stable in two scenarios. When the
dissipative SOT �n is negative, self-oscillations emerge when
the charge current is parallel to the y or x axis. In contrast,
when �n > 0, the previous statement holds but stabilization
occurs in a narrow window of currents. Moreover, due to
the fourfold symmetry, the azimuthal angle will behave the
same for currents along x or y. Therefore, the result for
self-oscillations appearing when j ‖ ŷ is replicated when j is
parallel to the x axis by transforming φ → φ + π/2. These
results are detailed in the following.

We now consider a charge current along the y axis. We
first discuss the effects of the reactive torque, disregarding dy-
namical and hence dissipative effects. The (reactive) current-
dependent force Fr = � jy cos φ changes the azimuthal angle
where the potential V (φ) attains its minimum. For positive
current densities 0 � jy < jsw ≡ ω

(1)
⊥ /�, there are four min-

ima of V (φ), corresponding to the steady states as seen in
Fig. 2(c). Among these, there are two degenerate configura-
tions, φa,b

ss , which become unstable when jy > jsw. The other
two states are φ±

ss . However, when the current is sufficiently
large, jy � 4 jsw, the state at φ+

ss is unstable and thus leaving
the only stable steady state at φ−

ss , see Eq. (9). For negative
currents, jy < 0, the steady-state angles reverse their sign,
φss( jy) = −φss(− jy).

We now include the dissipative SOT and show how self-
oscillations emerge from Eq. (8). The essential requirement
for self-oscillations is that the dissipative spin-orbit forces
compensate the magnetization dissipation. To find the onset of
self-oscillations, it is sufficient to evaluate the effective damp-
ing Eq. (7) around the steady state φ−

ss . The damping is then
α

y
eff = α + (�n/2ωex) jy sin [φss( jy)], which is nonlinear in jy

because φss depends on the current. Consequently, in order to
compensate the Gilbert damping, the dissipative strength has
to be negative since φ−

ss > 0 [31]. This result is valid when
the current flows in both directions ±ŷ, since the steady-state
angle is an odd function of the current. Self-oscillations set
in when the current exceeds the threshold j (1)

so = 2ωexα/|�n|,
where the damping satisfies α

y
eff = 0.

We numerically solve Eq. (8) for the azimuthal angle
φ(t ) in two representative cases. In these simulations, the
Gilbert damping constant is α = 0.005 and there is a small
anisotropy field ω

(1)
⊥ /ωex = 10−2 consistent with the ex-

change approximation. The ratio of the dissipative and re-
active SOTs strength is considered in the range |�n|/� ∈

FIG. 2. Time evolution of the azimuthal angle, in units of t0 =
1/(2

√
ωexω

(1)
‖ ), driven by a current along the y direction when the

Gilbert damping is α = 0.005. The dissipative SOT strength and
current are (a) |�n|/� = 0.6 and jy = 4.3 jsw, (b) |�n|/� = 0.2
and jy = 14 jsw, respectively. (c) Steady-state angle as a function of
current density jy normalized in jsw. There is a global minima at
φ−

ss that prevails at any current. When 0 � jy < 4 jsw, three steady
states exist (local minima) at φa,b

ss and φ+
ss , which become unstable at

jy = jsw and jy = 4 jsw, respectively.

[0.1, 1]. Figure 2(a) shows the time evolution of φ(t ) when
there is a charge current jy = 4.3 jsw and |�n|/� = 0.6. As
an initial condition, we slightly perturb the steady state φ−

ss
so that the azimuthal angle starts at φ(t = 0) = φ−

ss + 0.01.
Thereafter, the azimuthal angle oscillates around φ−

ss with
an amplitude that increases until it becomes stable. We find
that the saturated amplitude is independent on the initial
conditions, as long as φ(t = 0) 	= φ−

ss . In a second example,
displayed in Fig. 2(b), we consider the evolution of φ(t ), with
the same initial condition as above, but |�n|/� = 0.2 and
under a larger current jy = 14 jsw. As we see, φ(t ) stabilizes
at an amplitude similar to the previous example but twice of
frequency.

The numerical results can be understood intuitively. In
order to prevent Néel-field oscillations from relaxing into
the current-induced steady state determined by the reactive
torque, a significant dissipative SOT is paramount. Realizing
stable oscillations require a large charge current when the
SOT is small. When jy � j (1)

so , and after the transient features,
the terminal amplitude of the oscillations is a good order
parameter to characterize the stable regimes. We compute
perturbatively the equation of motion for the amplitude of
oscillations A using multiple-scale analysis [32]. Two natural
time scales dominate the evolution of φ(t ), see Fig. 2(a). There
are rapid precessions around φ−

ss . Additionally, the amplitude
of precessions evolves on a slower time scale. Averaging over
the rapid precessions, to leading order in the amplitude A,
we find that the amplitude obeys the well-known Ginzburg-
Landau equation [30],

2Ȧ = A − A3/
[
8
(
1 − j (1)

so / jy
)]

. (10)
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FIG. 3. (a) Terminal amplitude of self-oscillations as a function
of current density jy and dissipative SOT strength |�n|. (b) The
threshold current j (1)

so , defining the border between static and stable
oscillations, for different values of α. For α = 0.005, in (c) is shown
in units of ω0 = 1/t0 the characteristic frequency of self-oscillations
in terms of the current density. At the threshold j (1)

so , the frequencies
drop to zero corresponding to the static regime. At j (2)

so the frequency
reaches a finite value that change in terms of the ratio |�n|/�. For
jy > j (2)

so , the frequency of full oscillations grows strictly with the
current.

At long time scales, Eq. (10) determines the terminal am-
plitude Ā = 2

√
2
√

1 − j (1)
so / jy. Consequently, the amplitude

Ā → 0 when jy � j (1)
so , reproducing the boundary between

static states and self-oscillations. For large current densities
jy � j (1)

so , the amplitude saturates to Ā ≈ 2
√

2. This ana-
lytical result is somewhat smaller than the value reached
by the azimuthal angle in the numerical solution shown in
Fig. 2. This is because an exact description of large-amplitude
oscillations requires the inclusion of higher order terms in the
analytical treatment of A, which is beyond the scope of the
present study.

Additionally, we numerically evaluate the terminal ampli-
tude A[�n, jy], for various charge currents jy and dissipative
torques �n. The phase diagram [Fig. 3(a)] shows three re-
gions: static, self-oscillations, and 2π self-oscillations. The
first two are separated by the threshold current j (1)

so shown
in Fig. 3(b) for different values of damping. When |�n|/�
is sufficiently large, the Néel field dynamics either vanish or
proliferate into complete 2π precessions. As the dissipative
strength decreases, an intermediate window of stable (am-
plitude <2π ) oscillations open up: The lesser |�n| is, the
wider the window is. In this region, the amplitude grows
with increasing dissipative SOT, i.e., increasing |�n| and/or
current density jy. Eventually, when jy is sufficiently large, the
oscillator enters the proliferation phase. The threshold current
j (2)
so separates A < 2π from A = 2π . If this threshold satisfies

j (2)
so < 4 jsw, the terminal amplitude has two possible outcomes
A = 0 or A = 2π . This region in the phase diagram is

delimited by a red dashed line in Fig. 3(a). The color map
therein represents the probability [33] to find: static solutions
(red region) for currents close to j (2)

so and 2π -amplitude oscil-
lations (blue region) when the current is near 4 jsw. This inde-
terminate behavior is due to local minima in V [φ] appearing
at φ+

ss = −π/2 when jsw < jy < 4 jsw, see inset in Fig. 2(c).
When the amplitude of self-oscillations reaches its maximum
value, small increases on the current or small perturbations in
the initial conditions can make the evolution of φ(t ) to decay
into φ+

ss or proliferate in complete oscillations.
In the region j (1)

so < jy < j (2)
so , the oscillator frequency has a

nontrivial dependence on the current, as shown in Fig. 3(c). In
contrast to the 2π -amplitude oscillating phase, the frequency
of the A < 2π phase drops to a finite (nonzero) value at j (2)

so .
Also, a second, deeper drop occurs close to j (1)

so and it is deeper
as the ratio |�n|/� decreases. When full oscillations occur,
marked by jy � j (2)

so , the frequency monotonically grows and
eventually becomes linear for large currents.

In the self-oscillating phase, a dc current controls the
ac output power. This is because the Néel vector precesses
around the direction of the applied dc current, either along the
x or the y direction. Through the anisotropic magnetoresis-
tance (AMR) [16,34], the relative change of the Néel vector
with respect to the direction of current changes the induced
voltage across the device. This transforms the self-oscillations
into an oscillating voltage signal.

We predict that the self-oscillating phase appears for cur-
rents in the order of critical currents required for switching
the magnetic moment. Measurements of the reactive and
antidamping SOTs, predicted using symmetry arguments, will
help to pave the way for self-oscillations in AFs. Recent
measurements on the compensated ferrimagnet Mn2RuxGa
[25–27] indicate a considerable dissipative SOT that enables
the realization of our proposal. While current-induced mag-
netization dynamics studies in Mn2RuxGa are unexplored, we
expect this material to exhibit a self-oscillating regime in the
terahertz gap due to its low Gilbert damping, high anisotropy,
and strong spin-orbit coupling. An additional advantage of
this material is the possibility to tune the sign of the �n/�

ratio by the compensation temperature as well as the prospect
to use the stronger magnetoresistive effects associated with
highly spin polarized materials to convert the dc charge cur-
rent into an oscillating ac voltage.

V. CONCLUSION AND DISCUSSION

In conclusion, we have demonstrated that electrical cur-
rents can control antiferromagnetic self-oscillations. Using
symmetry arguments on tetragonal crystalline antiferromag-
nets, we establish that SOTs contain reactive contributions
and essential dissipative terms. By expressing the SOTs in
terms of phenomenological parameters, we demonstrate that
a nonlinear driven damped oscillator describes the antiferro-
magnetic dynamics. The dissipative SOT controls the effec-
tive damping enabling oscillations. When the charge current
exceeds a threshold, self-oscillations spontaneously develop.
An important feature of the self-oscillating phase is that
the current density controls the ac output power. The Néel
vector precesses around the direction of current. In turn, this
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generates an oscillating voltage signal via the anisotropic
magnetoresistance effect (AMR) [16].

Note added. Recently, we became aware of another paper
[35] that studied auto-oscillations in single permalloy layers
using spin-orbit torques.
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APPENDIX A: PHENOMENOLOGY
OF SPIN-ORBIT TORQUES

In this section we compute current-induced SOTs for three
examples of noncentrosymmetric tetragonal materials. The
first one is the fully-compensated half-metallic ferrimagnet
Mn2RuxGa (MRG) [25], while the second example belongs
to the enantiomorphic crystals. Finally, we consider the anti-
ferromagnetic materials CuMnAs [15] and Mn2Au [16]. We
emphasize that the three classes of materials can be treated in
the same framework by a simple rotation of current direction
as is described below.

In linear response, the effective field induced by the out-
of-equilibrium current density j that is dependent on the local
magnetization direction is Hα = ηαj, where η is a tensor and
α labels the sublattices. Thus, the torques at each sublattice
are

τa = ma × ηaj, (A1)

τb = mb × ηbj. (A2)

Denoting R a symmetry rotation, the magnetization and cur-
rent density obey m′

α = |R|Rmα and j′ = Rj, respectively, in
the transformed frame. Based on the Neumann’s principle [22]
we found that the tensor ηα satisfies the symmetry relations

ηa[m′
a, m′

b] = |R|Rηa[ma, mb]RT , (A3)

ηb[m′
a, m′

b] = |R|Rηb[ma, mb]RT . (A4)

Assuming a series expansion in terms of powers of mi

as [ηa]i j = [�a]i j + [�a
a]i jkma,k + [�b

a]i jkmb,k and [ηb]i j =
[�b]i j + [�a

b]i jkma,k + [�b
b]i jkmb,k , we end up in the set of

equations

[�a,b]i j = −|R|Rii′R j j′ [�b,a]i′ j′ , (A5)[
�a

a,b

]
i jk = −Rii′R j j′Rkk′

[
�b

b,a

]
i′ j′k′ . (A6)

We consider the magnetic sublattices form inversion part-
ners within each unit cell. This assumption leads to the
additional condition

ηb[mb, ma] = −ηa[ma, mb]. (A7)

In the following we apply this result for the aforementioned
example, thus reducing the unknown phenomenological coef-
ficients of [�a,b]i j, [�a

a,b]
i jk

, and [�b
b,a]

i jk
to a simple form.

1. Mn2RuxGa

Here, we compute the SOTs solving Eqs. (A5)–(A7). Let
us consider the fully-compensated ferrimagnet Mn2RuxGa
(MRG). The point group of symmetries that leaves the sub-
lattice site invariant is 4̄2m [36]. The generators of all sym-
metries are

σ (2) =
⎛
⎝−1 0 0

0 1 0
0 0 −1

⎞
⎠, σ (8) =

⎛
⎝0 −1 0

1 0 0
0 0 −1

⎞
⎠.

(A8)

Solving Eqs. (A5) and (A6) for R = σ (2) and R = σ (8) we
get the tensors ηa and ηb. Therefore,

ηa = �

⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠ +

⎛
⎜⎝

0 �n
z ma

z �n
yma

y

�n
z ma

z 0 �n
yma

x

�n
xma

y �n
xma

x 0

⎞
⎟⎠

+

⎛
⎜⎝

0 �m
z mb

z �m
y mb

y

�m
z mb

z 0 �m
y mb

x

�m
x mb

y �m
x mb

x 0

⎞
⎟⎠, (A9)

and

ηb = �̄

⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠ +

⎛
⎜⎝

0 �̄n
z ma

z �̄n
yma

y

�̄n
z ma

z 0 �̄n
yma

x

�̄n
xma

y �̄n
xma

x 0

⎞
⎟⎠

+

⎛
⎜⎝

0 �̄m
z mb

z �̄m
y mb

y

�̄m
z mb

z 0 �̄m
y mb

x

�̄m
x mb

y �̄m
x mb

x 0

⎞
⎟⎠ (A10)

are obtained.
The previous result can be substantially reduced assuming

that the magnetic sublattices ma and mb form spin partners
and that MRG is near the cubic phase. Although the former
assumption is not valid for MRG, we consider it as an ap-
proximation in order to get the simplest expression for the
torques. Finally, using the condition given by Eq. (A7) the
torques acting on each sublattice are simply written as

τa = �ma × j + T {ma × [(�nma + �mmb) × j]}, (A11)

τb = −�mb × j − T {mb × [(�mma + �nmb) × j]},
(A12)

for an in-plane charge current j = ( jx,− jy, 0) and the oper-
ator T switches the sign of the z component, while x and y
components are unchanged.

2. SOTs in enantiomorphic crystals

Let us consider the point group of crystallographic symme-
tries as 422 [13,23]. The generators of symmetries are σ (2) and
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σ (7). The matricial forms of those transformations are [22]

σ (2) =
⎛
⎝−1 0 0

0 1 0
0 0 −1

⎞
⎠, σ (7) =

⎛
⎝ 0 1 0

−1 0 0
0 0 1

⎞
⎠.

(A13)

Solving Eqs. (A5)–(A7) for R = σ (2) and R = σ (7) we
therefore get for the tensors ηa and ηb,

ηa =
⎛
⎝� 0 0

0 � 0
0 0 �zz

⎞
⎠ +

⎛
⎜⎝

0 −�n
z ma

z �n
yma

y

�n
z ma

z 0 −�n
yma

x

−�n
xma

y �n
xma

x 0

⎞
⎟⎠

+
⎛
⎝ 0 −�m

z mb
z �m

y mb
y

�m
z mb

z 0 −�m
y mb

x

−�m
x mb

y �m
x mb

x 0

⎞
⎠, (A14)

and

ηb =
⎛
⎝−� 0 0

0 −� 0
0 0 −�zz

⎞
⎠ +

⎛
⎜⎝

0 �m
z ma

z −�m
y ma

y

−�m
z ma

z 0 �m
y ma

x

�m
x ma

y −�m
x ma

x 0

⎞
⎟⎠

+

⎛
⎜⎝

0 �n
z mb

z −�n
ymb

y

−�n
z mb

z 0 �n
ymb

x

�n
xmb

y −�n
xmb

x 0

⎞
⎟⎠. (A15)

To simplify the previous expressions, we consider that the
tetragonal structure is slightly distorted with respect to the
cubic phase. Therefore,

ηa = �

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ + �n

⎛
⎝ 0 −ma

z ma
y

ma
z 0 −ma

x
−ma

y ma
x 0

⎞
⎠

+�m

⎛
⎝ 0 −mb

z mb
y

mb
z 0 −mb

x
−mb

y mb
x 0

⎞
⎠ (A16)

and

ηb = −�

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ + �m

⎛
⎝ 0 ma

z −ma
y

−ma
z 0 ma

x
ma

y −ma
x 0

⎞
⎠

+�n

⎛
⎝ 0 mb

z −mb
y

−mb
z 0 mb

x
mb

y −mb
x 0

⎞
⎠. (A17)

Next, if we assume an in-plane current j the SOT’s can be
simply written as

τa = �ma × j + ma × [(�nma + �mmb) × j], (A18)

τb = −�mb × j − mb × [(�mma + �nmb) × j]. (A19)

3. SOTs in CuMnAs and Mn2Au

The symmetries that leave the magnetic sites in CuMnAs
and Mn2Au belong to the polar point group 4mm [13,23]. The
generators of symmetries are σ (4) and σ (7), and the matricial

forms of those transformations are [22]

σ (4) =
⎛
⎝1 0 0

0 −1 0
0 0 1

⎞
⎠, σ (7) =

⎛
⎝ 0 1 0

−1 0 0
0 0 1

⎞
⎠. (A20)

Solving Eqs. (A5)–(A7) for R = σ (4) and R = σ (7) we
therefore get for the tensors ηa and ηb,

ηa = �

⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠ +

⎛
⎜⎝

�a
4ma

z 0 �a
1ma

x

0 �a
4ma

z �a
1ma

y

�a
3ma

x �a
3ma

y �a
2ma

z

⎞
⎟⎠

+

⎛
⎜⎝

�b
4mb

z 0 �b
1mb

x

0 �b
4mb

z �b
1mb

y

�b
3mb

x �b
3mb

y �b
2mb

z

⎞
⎟⎠, (A21)

and

ηb = −�

⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠ −

⎛
⎜⎝

�b
4ma

z 0 �b
1ma

x

0 �b
4ma

z �b
1ma

y

�b
3ma

x �b
3ma

y �b
2ma

z

⎞
⎟⎠

−

⎛
⎜⎝

�a
4mb

z 0 �a
1mb

x

0 �a
4mb

z �a
1mb

y

�a
3mb

x �a
3mb

y �a
2mb

z

⎞
⎟⎠. (A22)

Next, if we assume an in-plane current j and redefining the
coefficients as �a,b

4 = −�n,m and �a,b
3 = �n,m + �n,m, the

SOT’s can be simply written as

τa = �ma × (z × j) + ma × [(�nma + �mmb) × (z × j)]

+ ma × [(�nma · j + �mmb · j)z], (A23)

τb = −�mb × (z × j) − mb × [(�mma + �nmb) × (z × j)]

− mb × [(�mma · j + �nmb · j)z]. (A24)

APPENDIX B: MULTIPLE-SCALE ANALYSIS

In this section we apply multiple time-scales analysis [32]
on Eq. (8), in the main text, to describe self-oscillations.
Solutions of Eq. (8) exhibit a two-timing evolution, the slower
and faster dynamics being the amplitude and precession
evolution of the azimuthal angle, respectively. Through this
framework, also extendable to multiple time scales [32], we
can get rid of the faster time scale dynamics using perturbation
theory. Thus, only the slow evolution of the azimuthal angle
is captured by an amplitude and phase equation.

Let us consider the model equation of motion,

φ̈ + φ = εh(φ, φ̇), (B1)

with ε a perturbative parameter and h a nonlinear function of φ

and φ̇. Next, consider the function φ characterized by having
several time scales {T0, T1, . . . , TN }, where N is determined
by the modeling system. Those time scales are defined by
the hierarchy: Tn ≡ εnt where ε is the perturbative parameter.
Thus, the function φ(T0, T1, ..., TN ) and its total derivative
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obeys

φ =
N∑

n=0

εnφn(T0, T1, . . . , TN ), (B2)

dφ

dt
= ∂φ

∂T0
+ ∂φ

∂T1
ε + · · · + ∂φ

∂TN
εN =

N∑
n=0

εn ∂φ

∂Tn
. (B3)

Replacing the two previous expressions for φ and φ̇ on
Eq. (B1), we obtain

(
N∑

m=0

εm ∂

∂Tm

)2( N∑
n=0

εnφn

)
+

N∑
n=0

εnφn

= εh

(
N∑

n=0

εnφn,

N∑
m=0

εm ∂

∂Tm

(
N∑

n=0

εnφn

))
,

which is expanded at different orders in ε, to get

O
(
ε0

) ⇒
(

∂2

∂T 2
0

+ 1

)
φ0 = 0, (B4)

O
(
ε1

) ⇒
(

∂2

∂T 2
0

+ 1

)
φ1 = −2

∂2φ0

∂T0∂T1
+ h

(
φ0,

∂φ0

∂T0

)
,

(B5)

and so on. To order ε0, we find the solution φ0 =
A cos (T0 + ϕ), where the amplitude A = A(T1, ...TN ) and
phase ϕ = ϕ(T1, ...TN ) are constants on time T0 (but not neces-
sarily on the rest of the temporal scales). Setting θ = T0 + ϕ,
we have for the equation to order ε1,

(
∂2

∂θ2
+ 1

)
φ1 = 2

∂A

∂T1
sin θ + 2A

∂ϕ

∂T1
cos θ

+ h(A cos θ,−A sin θ ). (B6)

Although h is unknown, it is periodic on θ , and thus we may
expand it in the Fourier series

h(A cos θ,−A sin θ ) =
∞∑

k=1

αk (A) sin kθ +
∞∑

k=0

βk (A) cos kθ,

(B7)

with the Fourier coefficients αk (A) and βk (A) to be deter-
mined. We now demand that secular terms, those proportional
to sin θ and cos θ in Eq. (B6), must vanish. Therefore, the
above implies

2
∂A

∂T1
+ α1(A) = 0, (B8)

2A
∂ϕ

∂T1
+ β1(A) = 0. (B9)

The previous equations constitute a central result of this
section. Through them, the temporal evolution of both ampli-
tude and frequency are obtained. Next, we focus this analysis
considering the nonlinear oscillator given by Eq. (8) in the
main text. We consider the charge current along the y direction
and thus, the azimuthal angle varies around the steady state
φ−

ss = π/2. For the sake of simplicity, we approximate the
effective potential around φ−

ss to a quadratic one. Therefore,
the equation of motion reads in the form,

d2φ

dt2
− ε[1 + η(1 − cos φ)]

dφ

dt
+ ω2

0φ = 0, (B10)

where the parameters are ε = �n jy/2ωex − α, ω2
0 = � jy +

4ω
(1)
⊥ and η = �n jy/(�n jy − 2ωexα). Here, the azimuthal

angle depends on two time scales, φ = φ(Tf , Ts), where
Tf and Ts are the fast and slow time scales, respectively.
We denote φ0 = A sin θ , with θ = Tf + ϕ, the solution ob-
tained up to ε0 order. Comparing Eqs. (B1) and (B10),
we identify the nonlinear function as given by h(φ0,

∂φ0

∂Tf
) =

−ω0A sin θ [1 − η(1 − cos φ0)]. This function is expanded in
Fourier series as

h

(
φ0,

∂φ0

∂Tf

)
= −ω0

[
A + η

∞∑
n=1

(−1)n A2n+1

(2n)!
αn

1

]
sin θ

−ω0η

∞∑
n=1

∑
k>1

(−1)n A2n+1

(2n)!
αn

k sin kθ. (B11)

From Eqs. (B8) and (B9) we obtain for the amplitude and
phase equations to obey

2
∂A
∂Ts

= A + η

∞∑
n=1

(−1)n A2n+1

(2n)!
αn

1, (B12)

A ∂ϕ

∂Ts
= 0, (B13)

where the Fourier coefficient αn
1 is given by

αn
1 = 2

[
n∏

m=1

2(n − m) + 1

2(n − m) + 2
−

n+1∏
m=1

2(n + 1 − m) + 1

2(n + 1 − m) + 2

]
.

(B14)

Up to leading order in the amplitude of oscillations, we get the
well known Ginzburg-Landau equation with real coefficients

2
∂A
∂Ts

= A − η

8
A3. (B15)

In the stationary limit we find the nonzero solution A =
2
√

2/η. Defining j (1)
so = 2ωexα/�n, we can rewrite the steady-

state solution as A = 2
√

2
√

1 − j (1)
so / jy.
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