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Intersublattice magnetocrystalline anisotropy using a realistic tight-binding method
based on maximally localized Wannier functions

Liqin Ke*

Ames Laboratory, U. S. Department of Energy, Ames, Iowa 50011, USA

(Received 29 October 2018; revised manuscript received 25 January 2019; published 19 February 2019)

Using a realistic tight-binding Hamiltonian based on maximally localized Wannier functions, we investigate
the two-ion magnetocrystalline anisotropy energy (MAE) in L10 transition metal compounds. MAE contributions
from throughout the Brillouin zone are obtained using magnetic force theorem calculations with and without
perturbation theory. The results from both methods agree with each other, and both reflect features of the Fermi
surface. The intrasublattice and intersublattice contributions to MAE are evaluated using a Green’s function
method. We find that the sign of the intersublattice contribution varies among compounds, and that its amplitude
may be significant, suggesting MAE can not be resolved accurately in a single-ion manner. The results are
further validated by scaling spin-orbit-coupling strength in density functional theory. Overall, this realistic tight-
binding method provides an effective approach to evaluate and analyze MAE while retaining the accuracy of
corresponding first-principles methods.
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I. INTRODUCTION

Magnetocrystalline anisotropy (MA) arises from the in-
terplay between spin-orbit coupling (SOC) and crystal-field
effects and is one of the most fundamental intrinsic magnetic
properties [1]. Materials with high MA have been used in
many applications including permanent magnets [2] and mag-
netic recording media. One of the latest examples is the re-
cently realized magnetic two-dimensional (2D) van der Waals
(vdW) class of materials, in which MA is required to stabilize
the long-range magnetic ordering down to atomically thin
dimensions. These materials can be exploited as platforms
for true 2D magnetism and for innovative applications such
as energy-efficient, ultracompact, spin-based electronics. In
general, it is of great interest to evaluate and resolve MA,
and to unravel the underlying mechanisms in a given system.
Ultimately, such understanding will guide the control and
tuning of MA, accelerating the development of new materials
and their applications [3].

Density functional theory (DFT) has proven to be a
valuable tool to investigate and predict MA energy (MAE) in
various systems. The relativistic effects of valence electrons
are often treated using various approximations to reduce
computational complexity and cost. Instead of directly
solving the four-component Dirac equation self-consistently,
one usually treats SOC as perturbation and starts first with
the two-component scalar-relativistic (SR) Hamiltonian [4],
omitting SOC but including all other relativistic effects
such as mass-velocity and Darwin terms. SOC can be
added directly into the SR Hamiltonian or included in a
subsequent step using the basis (often a subset of it) of SR
wave functions (second variation) [5,6]. Because the charge-
and spin-density variations caused by SOC vanish to first
order in the SOC strength [7], the magnetic force theorem
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(MFT) [8–10] is often applied on top of the second-variation
method to calculate MAE as the difference of one-electron
band energies. Finally, perturbation theory (PT) [11–18] is
also often used with the MFT to compute and analyze the
change of band energies due to SOC. Overall, depending on
the system size and approximations used, MAE computation
can be quite demanding because of the enlarged dimension of
Hamiltonian and the reduced symmetry due to SOC, and the
denser k mesh needed for high accuracy.

Empirical or semirealistic tight-binding (TB) methods [14]
were widely used to study MAE long before MAE became
accessible to more sophisticated DFT methods [10]. Pioneer-
ing work [14,15] using TB provided a fundamental under-
standing of MAE in various systems. However, empirical
TB Hamiltonians are generally hard to parametrize and often
have insufficient accuracy to describe band structure, usu-
ally limiting TB to obtaining qualitative results in systems
with large MAE. The recently developed maximally localized
Wannier functions (MLWFs) method [19–21] has been widely
used to effectively construct TB Hamiltonians to compute
many properties such as Fermi surfaces, Berry curvature, and
transport. With a smaller basis, it can describe an isolated set
of bands and/or entangled bands in a given energy window.
Indeed, this method is also very suitable for MAE calcu-
lations, considering that MAE is, after all, a ground-state
quantity, determined by the occupied states. However, due to
the minuteness of MAE, it is not clear how accurately the
realistic TB can describe MAE in systems such as transition
metal bulk compounds. Here, we demonstrate that the realistic
TB framework based on the MLWFs method can produce
accurate MAE in comparison to DFT, thereby providing an
efficient framework to compute and analyze MAE.

Various decomposition schemes have been used to resolve
MAE into k space, atomic sites, orbital, and spin channels,
providing insight and guidance on tuning MAE. The MFT
enables resolution of MAE into individual bands on each
k point in reciprocal space, allowing a band-structure-origin
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analysis of MAE. Site-resolved MAE is often calculated using
methods such as evaluation of the onsite SOC energy [22],
second-order PT, scaling the SOC strength, or others [23,24].
For example, R2Co17 (with R = Y or Ce) compounds have
very small MAE and ab initio analysis found that one par-
ticular Co sublattice, the so-called dumbbell sites, has a large
negative contribution to uniaxial anisotropy [25]. Thus, proper
substituents that preferentially occupy the dumbbell sites and
eliminate the negative contributions will significantly improve
the uniaxial anisotropy, as observed in experiments. Another
interesting example is the oscillating MAE behavior in diluted
nitridometalates Li2[(Li1−xTx )N], with T = Mn, Fe, Co, or
Ni. The MAE can be solely attributed to individual T atoms
and the band-filling effect on MAE can be quantitatively
described in a single-ion MAE model [17,18].

Site-resolved MAE values, together with exchange param-
eters, can also be used as inputs for subsequent large-scale
atomic spin simulations to calculate temperature-dependent
magnetic properties. When interfacing ab initio results with
atomic spin simulation, MAE is usually treated in the single-
ion model in the atomic spin Hamiltonian. However, it has
been found that a two-ion anisotropy model is needed to
properly describe properties such as temperature-dependent
MAE in some systems [26]. Thus, it is of great interest to
resolve MAE into sites and, in particular, beyond the single-
ion model.

In this work, we investigate two-ion MAE in various L10
compounds, one of the most widely studied systems, with
MAE values ranging from several tens of μeV to a couple
of meV per formula unit [27–29]. Our approach is based
on second-order PT using a Green’s function method imple-
mented within the realistic TB framework. We demonstrate
that this approach achieves accuracy similar to DFT and
provides a highly efficient means to compute and analyze the
two-ion anisotropy in transition metal systems.

II. COMPUTATIONAL DETAILS

We first construct the real-space scalar-relativistic TB
Hamiltonian using the MLWFs method. The corresponding
Green’s function is also constructed for use in the PT ap-
proach. MAE is calculated using the MFT in TB, with and
without PT, referred to hereafter as PT and MFT, respectively,
for simplicity. DFT methods, including both VASP [30,31] and
an all-electron full-potential LMTO (FP-LMTO) method [32],
are used to calculate MAE and compare with TB. To compare
with the two-ion MAE values obtained using PT in TB, we
also calculate intersublattice MAE contribution by scaling the
SOC strength in VASP. All DFT calculations are carried out
within the generalized gradient approximation (GGA) using
the functional of Perdew, Burke, and Ernzerhof (PBE) [33]
unless local density approximation (LDA) [34] is specified.

A. TB Hamiltonian and SOC

The MLWFs are constructed through a postprocessing
procedure [19–21] using the output of a self-consistent scalar-
relativistic VASP calculation. For each L10 compound, 18
MLWFs corresponding to s-, p-, and d-type orbitals for
each of the two atoms in the unit cell were generated using
WANNIER90 [35]. The spread functional for entangled energy

bands is minimized by a two-step procedure [21]. An outside
energy window with a larger number of bands was selected to
ensure good description of the band structure of the “frozen”
inner energy window, spanning from the bottom of the va-
lence band to a few eV above the Fermi level. A real-space
Hamiltonian H (R) with dimensions 18×18 is constructed
to accurately represent the band structures in this specified
frozen energy window. Then, H (k) is obtained by Fourier
transformation. The energy bands are recalculated within TB
to ensure that DFT bands can be accurately reproduced before
further MAE calculations.

The TB Hamiltonian is represented in a basis of orthonor-
malized atomic functions |i, l, m, σ 〉, where i labels atomic
sites, l, m angular and magnetic quantum numbers (in cubic
harmonics), and σ the spin. The SOC part of the Hamiltonian,
which can be directly added into H or included using PT, can
be written as

Vso = ξL · S = h̄2

2M2c2

1

r

dV

dr
L · S, (1)

where L · S depends explicitly on the direction of spin quan-
tization axis (details can be found in Appendix A). The
radial part of Vso, the SOC constants ξσσ ′

i,l , are calculated
using FP-LMTO. For simplicity, we ignore the energy and
spin dependence of ξ . Furthermore, the occupation numbers
of the Pt-p orbitals, which have a large SOC constant, are
overestimated in TB in comparison to DFT. We renormalize
the Pt-p occupation numbers based on the DFT value when
adding SOC into the Hamiltonian.

B. MAE

Turning on SOC lowers the system energy. Here, we refer
to this energy change as the SOC energy ESO, which depends
on the spin direction. For uniaxial geometry, MAE can be
defined as K = ESO

110 − ESO
001, with ESO

110 and ESO
001 indicating

the SOC energies along the spin directions [110] and [001],
respectively. We use [110] as the reference direction for the
basal plane. A positive K value indicates the system has
uniaxial anisotropy with the easiest spin direction being out
of plane.

1. Magnetic force theorem

After SOC is added into the TB Hamiltonian, tetrahedron
integration with Blöchl correction [36] is used to determine
the Fermi level εF, band weights, and band sums. MAE is
calculated as

K =
∑
k,b

(
ε110

k,b f 110
k,b − ε001

k,b f 001
k,b

)
, (2)

where b is the band index, k refers to the wave vector in the
first Brillouin zone (BZ), and fk,b is the corresponding band
occupancy. In order to resolve the MAE into k space, Eq. (2)
needs to be modified. A grand-canonical ensemble version
[37] is used:

K =
∑
k,b

((
ε110

k,b − ε0
F

)
f 110
k,b − (

ε001
k,b − ε0

F

)
f 001
k,b

)
, (3)

where ε0
F is the Fermi level calculated without SOC. The

total MAE value does not depend on the reference energy
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because the total number of valence electrons
∑

fk,b is con-
served when spin is along different directions; however, the k-
resolved MAE does depend on the choice of reference energy
[24,38]. We use Eq. (3) to properly decompose MAE because
k resolution of MAE based on Eq. (2) will only reflect the
change of band occupancy � fk,i. The Eq. (2) result will be
dominated by the relaxation effect of the Fermi surface due to
turning on SOC with magnetization along various directions,
and MAE contributions will only be significant near the Fermi
surface.

2. Perturbation theory

Using second-order PT, we can express orbital moment,
SOC energy, and their anisotropies in terms of the susceptibil-
ity [17] calculated using the unperturbed band structure. The
SOC energy ESO due to the spin-orbit interaction VSO can be
written as

ESO = − 1

2π
Im

∫ εF

−∞
dε Tr[G̃(ε)VSO], (4)

where G̃(ε), the full Green’s function, includes SOC and can
be constructed from the nonperturbed Green’s function G(ε).
Using second-order PT (here we consider only systems with a
uniaxial geometry), the SOC energy can be written as

ESO = − 1

2π
Im

∫ εF

−∞
dε Tr [G(ε)V G(ε)V ], (5)

where the Green’s function is constructed using

G(ε) = (ε − H )−1. (6)

A complex contour integration on an elliptical path [39]
is used for the integration. By exploiting the fact that G is
spin diagonal and V is (i, l) diagonal, the SOC energy can be
written as

ESO(n̂) =
∑

il; jl ′,σσ ′
Eσ,σ ′

il, jl ′ (n̂), (7)

where Eσ,σ ′
il, jl ′ (n̂) is the contribution from the sublattice-orbital-

spin pair (ilσ, jl ′σ ′). We have

Eσσ ′
il, jl ′ (n̂) = − 1

2π
Im

∫ εF

−∞
dε

∫
dk Tr Eσσ ′

il, jl ′ (k, ε; n̂) (8)

and

Eσσ ′
il, jl ′ (k, ε; n̂) = Gσ

il, jl ′ (k, ε)V σσ ′
jl ′ (n̂)Gσ ′

jl ′,il (k, ε)V σ ′σ
il (n̂). (9)

V = ξσσ ′
i,l (ε)L · S(n̂) couples states within the same l channel

at the same site. Here, for simplicity, we treat SOC strength as
a constant ξil for each l channel at site i, ignoring its energy
and spin dependence. L · S can be written as a function of
magnetization direction n̂. The MAE can be written as

K =
∑

i j,σσ ′
Kσσ ′

i j =
∑

i j,σσ ′
Eσσ ′

i j (n̂110) − Eσσ ′
i j (n̂001). (10)

We define the isotropic and anisotropic parts of V (n̂) as U
and A, respectively:

2U = V (n̂110) + V (n̂001),

2A = V (n̂110) − V (n̂001). (11)

Then, Eq. (10) can also be written as

K =
∑

i j,σσ ′
K̃σσ ′

i j (12)

with

K̃σσ ′
i j = − 2

π
Im

∫ εF

−∞
dε

∫
dk

× Tr
[
Gσ

i j (k, ε)U σσ ′
j Gσ ′

ji (k, ε)Aσ ′σ
i

]
. (13)

Here, we have K̃σσ ′
i j = Kσσ ′

i j when σ = σ ′. Unlike K↑↓
i j =

K↓↑
i j , we have K̃↑↓

i j �= K̃↓↑
i j , however,

K̃↑↓
i j + K̃↓↑

i j = K↑↓
i j + K↓↑

i j . (14)

According to Eq. (13), the strength of the intersublattice
MAE contribution Ki j depends on the SOC strength of both
sublattices ξi and ξ j (contained in VSO or U and A) and on the
intersublattice Green’s function Gi j . The element types of the
sublattices determine the SOC strength ξ while Gi j is relevant
to the hopping or hybridization between two sublattices and
depends on the detail of electronic structure. If there is no
hybridization between the two sublattices or they are coupled
only through s orbitals (i.e., the angular parts of U and A van-
ish) elements, the corresponding intersublattice contribution
becomes negligible.

3. Scaling SOC strength

Instead of using Eq. (13), the intrasublattice and intersub-
lattice MAE contributions can also be obtained by scaling the
SOC strength ξi on each site i by a factor λi, and by fitting the
MAE as a function of scaling vector λ = [λ1, λ2, . . . , λn]:

VSO(λ) =
∑

i

λiξiL·S, (15)

K (λ) =
∑

i j

αi jλiλ j + O(λ4). (16)

Comparing Eq. (16) to Eqs. (10), (12), and (13), the coeffi-
cients αi j are nothing but the corresponding terms containing
ξiξ j in K . Thus, we have

αi j = Ki j =
∑
σσ ′

Kσσ ′
i j =

∑
σσ ′

K̃σσ ′
i j . (17)

The SOC-scaling procedure is often used in DFT, probably
due to its rather straightforward implementation. Obviously,
the scaling procedure can be generalized from sites to orbitals
to obtain contributions from individual orbitals.

C. Crystal structure of L10 compounds

We chose to focus on L10 magnetic compounds because
they are one of the most widely studied systems [27–29].
Their simple CuAu-type crystal structure is shown in Fig. 1.
The primitive cell is body-centered tetragonal (bct) and con-
tains one formula unit (f.u.) while the conventional cell is
face-centered tetragonal (fct) and contains two f.u. For all L10

magnetic compounds that we study in this work, experimental
lattice parameters have been used. The c/a ratio values (with
respect to the bct primitive cell) are in the range of 1.28–
1.414. Considering that hypothetical bct-FeCo structures with
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FIG. 1. Schematic representation of the CuAu-type L10 structure.

different c/a ratios have received significant attention in the
past few years, we also investigated a hypothetical bct-FeCo
structure with a c/a ratio of 1.1.

III. RESULTS

A. Electronic structure and magnetic moment

For all compounds we investigated in this work, the scalar-
relativistic band structures recalculated in TB are essentially
in perfect agreement with those obtained from DFT, within the
specified energy window. In both TB and DFT, the tetrahedron
integration with Blöchl correction method [36] is used to
determine the Fermi level. Here, we use FePt as an example
to illustrate our implementation of SOC in the realistic TB
framework. The new Fermi level obtained in TB with charge
neutrality deviates from the original DFT Fermi level by less
than 0.01 eV. As shown in Fig. 2, without SOC, the band
structures are nearly identical between TB bands and the
all-electron full potential bands calculated using FP-LMTO.
The VASP bands (not shown) are essentially the same also.
The SOC constants ξil calculated using FP-LMTO are used
as input parameters to construct relativistic TB bands.

TABLE I. Spin-orbit coupling constants ξ
↑↓
i (meV) in various

compounds calculated in FP-LMTO. On the 3d sites (Mn, Fe, and
Co), ξ

↑↑
i /ξ

↑↓
i ≈ ξ

↑↓
i /ξ

↓↓
i varies between 1.07 and 1.13 for the d

channel. SOC energies (isotropic) ESO (meV) calculated in TB are
also listed.

1st element 2nd element

Compound ξp ξd ξp ξd ESO

FePt 197.2 55.0 2626.4 574.9 193.8
CoPt 190.5 72.1 2793.1 580.8 210.6
FePd 168.9 54.7 898.0 200.8 22.4
FeNi 232.9 55.9 218.2 91.6 11.7
MnGa 193.1 41.0 209.6 84.1 5.3
MnAl 203.0 41.3 31.3 0.4 2.7

Directly using the SOC constants calculated in FP-LMTO,
the resulting band structure’s SOC splitting is overestimated
just above and below the Fermi level at R and M points, re-
spectively. By investigating the eigenvectors of the non-SOC
band in FP-LMTO and TB, we found that TB overestimates
the eigenvector component of the Pt-p states, which have
a very large SOC constant of about 2.6 eV. (The site-and-
orbital-resolved charges and moments are listed in Appendix
B.) This is because p orbitals are much more extended than
d orbitals and we do not include the interstitial sites into
the projection, and as a result, the interstitial components
also fold into the atomic sites. Thus, we simply renormalize
the occupation numbers (or, equivalently, renormalize the
SOC constants) of the Pt-p channel using the ratio of atomic
p charge between VASP and TB. This adjustment improves
agreement between DFT bands and TB bands. Correspond-
ingly, the MAE also improves as we discuss later. In com-
parison to a previously reported empirical TB method [40]
that used Slater-Koster parametrization, our TB method shows
significantly better agreement with DFT.

SOC parameters ξ
↑↓
il calculated in FP-LMTO in various

compounds are summarized in Table I. Generally, ξ integra-
tion is only significant near a nucleus where electrons move
fast. As a result, for a given element in various compounds,

X M X R A Z X M X R A Z X M X R A Z

E 
(e

V
)

(a) (b) (c)

FIG. 2. (a) Scalar-relativistic band structure of FePt using a tight-binding Hamiltonian and FP-LMTO (black dotted line). The tight-binding
bands are in color, with blue identifying the s states, red the (Fe-p, Pt-p) states, and green everything else. The band structure with spin-orbit
coupling is calculated with spin along the [001] (b) and [110] (c) directions.
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TABLE II. MAE (μeV/f.u.) in L10 systems calculated in our
tight-binding framework with (denoted as TB-PT) and without (de-
noted as TB) perturbation approach. MAE values calculated using
FP-LMTO with both PBE (denoted as FP) and BH (denoted as FP-
LDA) exchange-correlation functionals, and using VASP with PBE
functional, are also listed for comparison. The SOC constants used
in TB were obtained from FP using PBE functionals.

Compound TB FP TB-PT VASP FP-LDA

FePt 2495 2556 2692 2656 2746
CoPt 836 788 1098 858 1156
FePd 175 164 186 194 173
FeNi 66 68 65 80 68
MnGa 399 381 415 431 421

ξl barely changes, especially for the d channel, enabling
transferability. The d orbitals of 3d elements are more spin po-
larized than those of 5d elements, and the ratio of ξ

↑↑
i /ξ

↑↓
i ≈

ξ
↑↓
i /ξ

↓↓
i of 3d elements varies between 1.07 and 1.13 in

various L10 compounds. For simplicity, we use the value of
ξ

↑↓
il for all spin channels.

The SOC energy ESO is proportional to ξ 2 within second-
order PT. Among the L10 compounds we studied, CoPt has the
largest ξ values as well as the largest ESO. The ESO values are
much larger than MAE, indicating that the isotropic part of
ESO is much larger than the anisotropic part. In comparison
to other compounds, MnGa and MnAl have a rather high
anisotropic/isotropic ratio, suggesting that they have a more
“efficient” band structure, in the sense that the Fermi level is
close to the band-filling position that gives the largest MAE
value, as we show in Sec. III B. On the other hand, it is
challenging to analyze the relationship between MAE and
band structure for FePt and CoPt as each MAE value is only a
small fraction of ESO.

B. MAE and band-filling effect

As shown in Table II, the MAE values calculated using TB
agree well with DFT, especially with those obtained by the
all-electron FP-LMTO method. They are also comparable to
previous DFT calculations using various methods [22,29]. We
found that MAE values calculated using PT generally agree
very well with the MFT results. The largest difference in MAE
is in CoPt, in which PT gives a MAE 20% larger than the MFT
result. Interestingly, the MAE of CoPt also strongly depends
on the exchange-correlation functionals used. LDA increases
the MAE values by 30%. Likely, this is because CoPt has a
large SOC and its MAE depends on the detailed, subtle band
features near the Fermi level. We will study CoPt in more
detail in a later section.

Figure 3 shows the band-filling dependence of MAE in
FePt, CoPt, FePd, and FeNi. The oscillation [41] of MAE
can be associated with the local susceptibility [17,42]. For the
entire band-filling range, MAE values calculated using DFT
and TB agree well. On the other hand, although PT gives a
good description of MAE at the actual electron filling for each
compound, it disagrees with the MFT result in certain band-
filling ranges in FePt and CoPt. Specifically, the disagreement
is pronounced from four to eight electrons in FePt and from
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FIG. 3. MAE in FePt, CoPt, FePd, and FeNi as a function of band
filling. The solid and dashed lines are the results calculated using
the magnetic force theorem and the second-order perturbation theory,
respectively. The blue dots are from FP-LMTO. The vertical dashed-
and-dotted lines indicate the actual number of valence electrons in
each compound.

four to ten in CoPt. A similar finding was reported by a
previous LMTO-ASA study [29]. In comparing results for 3d ,
4d , and 5d compounds, second-order PT is best suited for the
lower SOC strength found in the lighter compounds, and is
where we obtained the best agreement between MFT and PT.
In general, we found that we could not improve agreement by
using a denser k mesh.

Although MnGa does not contain heavier 4d and 5d el-
ements, its MAE is larger than FePd. As shown in Fig. 4,
the Fermi level is located close to the filling with maximum
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FIG. 4. MAE in MnGa as a function of band filling calculated in
TB and FP-LMTO. The vertical dashed-and-dotted line at Ne = 10
indicates the actual number of valence electrons in MnGa. For TB
calculations, we also consider the renormalization of Ga-p and Mn-p
electron occupancy when including SOC (denoted as TB2).

MAE. PT generally agrees well with MFT. We also consider
the renormalization of the p (for both Ga and Mn) charge
when including SOC, and it slightly decreases the MAE. All
TB results are within ±10% of the FP-LMTO results. While
MnGa MAE is about 10% of the SOC energy, the ratio is
much higher than in FePt and CoPt.

C. Reciprocal-space resolved MAE and its correlation
with Fermi surface

As shown in Table II, MAE values calculated using second-
order TB with either MFT or PT generally agree well with
each other and with the corresponding DFT calculations. To
further validate the applicability of PT, we compare the k-
resolved MAE using both methods for a more stringent test.
Remarkably, for all L10 compounds we study, the two meth-
ods produce very similar results, further suggesting that the
overall effect of Fermi surface relaxation is nonsignificant and
that second-order PT is valid. CoPt has the largest difference
of MAE values between MFT and PT among the compounds
we study. Figure 5 shows the kz dependence of MAE contribu-
tions calculated in FePd and CoPt. Although the kz-resolved
MAE in CoPt shows a larger difference, the two methods still
generally agree with each other. The larger difference is likely
due to its rather large SOC for the Pt atom and more complex
Fermi surface, which results in a larger Fermi surface relax-
ation effect. Similar to FePd, the kz-resolved MAE calculated
using MFT and PT in other L10 compounds (not shown) are
also nearly identical. And, the Z-R-A (kz = 0.5) plane has the
largest positive contribution to MAE.

The (kx, ky)-resolved MAE at kz = 0 in CoPt calculated
using both MFT and PT are shown in Fig. 6, which also in-
cludes the corresponding non-SOC Fermi contour. Figure 6(a)
shows the resolved MAE calculated using MFT. Obviously,
the fourfold symmetry is broken due to SOC. The twofold or
mirror symmetry along the [110] direction is simply an artifact
of our choice of [110] as the reference in-plane spin direction.
The Fermi contour plot, as shown in Fig. 6(b), is calculated by
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FIG. 5. kz-resolved normalized MAE of FePd and CoPt calcu-
lated in TB. Calculations are performed with and without using
perturbation theory. For the sake of comparison, MAE is normalized
so that the average contribution from each kz plane is equal to 1.

integrating the electron density at the Fermi level with a width
of 0.02 eV. To better compare with the Fermi surface and
k-resolved MAE, we also symmetrized k-space contributions
with symmetry operations that are compatible with SOC
when the spin quantization axis is along the z direction. The
symmetrized k-resolved MAE calculated in MFT and PT are
shown in Figs. 6(c) and 6(d), respectively.

FIG. 6. k-resolved MAE and Fermi surface contour in CoPt
for kz = 0 calculated in TB. Red (blue) color indicates positive
(negative) contributions to MAE. (a) k-resolved MAE calculated
via the magnetic force theorem. (b) Fermi surface contour plot. (c)
Symmetrized k-resolved MAE. (d) Symmetrized k-resolved MAE
calculated via perturbation theory. The number of k points used
in the full Brillouin zone is ∼108.
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As shown in Figs. 6(b) and 6(d), the correlation between
the (kx, ky)-resolved MAE and the Fermi contour is apparent
and two features stand out. First, large changes of MAE
contributions occur at the Fermi contour. This is because
MAE contributions are obtained by integrating Eq. (13) up
to εF. When the k path crosses the Fermi contour, some bands
become occupied or unoccupied, and their MAE contributions
appear or disappear. Second, from the point of view of PT,
the strongest contributions to MAE are from those virtual
transitions between the unoccupied and occupied states near
the Fermi level that are coupled by SOC [17,43]. As a result,
the largest contributions are located at and near the degenerate
states across the Fermi contour, as expected from PT, and as
shown in Fig. 6(d).

As shown in Figs. 6(c) and 6(d), the overall (kx, ky)-
resolved MAE calculated using the two methods share great
similarity. The largest differences exist around the Fermi
contour, where the relaxation effect is large. The large con-
tributions (near the degenerate states) observed in PT disap-
pear in MFT. Indeed, the MFT results show more complex
features than the non-SOC Fermi contour, which corresponds
to the Fermi surfaces when SOC is on and the magnetization
direction being along in- and out-of-plane directions. The
SOC-induced lifting of band degeneracy, especially near the
εF, is often discussed to explain MAE in various systems
[43–46].

Thus, we demonstrate that MFT and PT give very similar
results for not only total MAE but also for k-resolved MAE.
To achieve this, it is important to use the reference energy
ε0

F as in Eq. (3). Otherwise, if one just resolves MAE using
Eq. (2), a very different dependence can be obtained, and
k-resolved MAE will only manifest the Fermi surface, near
which the change of band occupancy is significant. MAE has
often been resolved into k space along certain line paths be-
tween high-symmetry points. Not surprisingly, using Eq. (2)
to resolve MAE will result in spikes at points where bands
cross the Fermi level. Further resolution of MAE into atomic
sites by projecting eigenvectors of each k point may produce
unphysical results [24,38,47].

D. Two-ion MA: Intersublattice contribution

Site-resolved MAE values, together with exchange param-
eters, can be used to construct an atomic spin Hamiltonian
for subsequent Monte Carlo or spin-dynamics simulations to
calculate the temperature dependence of magnetic properties.
Methods such as evaluating the anisotropy of onsite SOC
energy [22], which is a local quantity, have been used to
resolve the MAE contribution from each individual sublattice.
Here, we use PT in TB to resolve MAE into sublattices and
validate the decomposition using the SOC-strength-scaling
approach in VASP.

As discussed above, PT can well describe the MAE in these
systems. To quantify the single-ion and two-ion contributions
of MAE, we first use PT within TB to resolve MAE into
intrasublattices and intersublattice contribution. Results are
summarized in Table III. Interestingly, all intrasublattice con-
tributions are positive in all elements except for the s-like Al
site in MnAl, where it vanishes. The sign of the intersublattice
contribution varies and its amplitude is generally comparable

TABLE III. Sublattice-resolved MAE (normalized to 1) in L10

systems calculated using perturbation theory in TB. For each com-
pound AB, MAE is resolved into intrasublattice contributions KA-A

and KB-B, and intersublattice contribution KA-B. We also define the
contribution from individual sublattice A as KA = (KA-A + KA-B/2).
The hypothetical FeCo structure with c/a = 1.1 is also included.

AB KA-A KA-B KB-B KA KB

FePt 0.11 − 0.55 1.44 − 0.16 1.16
CoPt 0.17 − 0.77 1.59 − 0.21 1.21
FePd 1.80 − 2.58 1.78 0.51 0.49
FeNi 4.51 − 5.88 2.37 1.57 − 0.57
MnGa 0.66 0.24 0.10 0.78 0.22
MnAl 0.98 0.02 0.00 0.99 0.01
FeCo 0.10 0.63 0.28 0.41 0.59

to or even larger than that of either individual intrasublattice.
For FePt and CoPt, the major contributions are from the Pt
sites. The intersublattice contributions are negative for FePt,
CoPt, FePd, and FeNi. Especially in FeNi, the amplitude of
the negative intersublattice contribution is larger than each
individual intrasublattice contribution. In contrast, the inter-
sublattice contribution is positive in MnGa. An even larger
positive intersublattice contribution is found in hypothetical
FeCo with c/a = 1.1.

To validate TB results, we also investigate the intra-
sublattice and intersublattice MAE contributions by scaling
the SOC strength in VASP. Figure 7 shows the normalized
MAE as a function of the SOC-scaling factors (between 0
and 1) for L10 materials using the second-variation method
in VASP. For all compounds, the sign and relative amplitude
of intrasublattice and intersublattice contributions agrees well
with TB-PT results. Furthermore, we fit MAE as a function of
SOC-scaling factors (with 0.9 < λi < 1.1) using Eq. (16) and
further confirm that the second-order terms agree very well
with TB results listed in Table III. The fourth-order terms are
generally small especially for 4d and 3d compounds. Owing
to stronger SOC, FePt and CoPt have larger and negative
fourth-order contributions: ∼8% of total MAE. A previous
study also found a small and negative high-order contribution
to MAE in FePt [48]. The good agreement between TB and
VASP further validates the accuracy of the PT approach for
those systems. Unlike the scaling procedure, the PT approach
resolves all contributions in a single calculation. Thus, for
the same analysis, once the TB Hamiltonian is constructed,
the TB-PT approach is orders of magnitude faster than the
SOC-scaling approach in DFT.

We further investigate FeNi, in which the intersublattice
MAE dominates. Along each direction, the intrasublattice
SOC energy is large and dominated by the λ2 term while the
intersublattice term is rather small. However, the majority of
intrasublattice terms cancel out between the two directions,
while the intersublattice term does not. Hence, the intersublat-
tice term becomes dominant in the anisotropy of SOC. In other
words, the intrasublattice terms in SOC are large but more
isotropic, while the intersublattice terms are smaller but more
anisotropic with respect to the magnetization quantization
direction.
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FIG. 7. Normalized MAE K (λi, λ j )/K (λi = 1, λ j = 1) in L10

compounds as a function of SOC-scaling factors λi and λ j calculated
using second-variation method in VASP. The SOC strengths are scaled
between 0 and 1.

A large intersublattice MAE contribution may suggest the
need to go beyond the single-ion MAE model when interfac-
ing ab initio methods with atomic spin simulation. To simulate
temperature-dependent MAE or other magnetic properties,
exchange coupling is often included over the first one or two
nearest-neighbor shells while MAE is often included using
the single-ion MAE term ki(sz

i )2. For systems with strong
intersublattice contribution, one may also need to include two-
ion terms such as ki js

z
i s

z
j into the atomic spin Hamiltonian.

IV. CONCLUSIONS

Using L10 systems as a test case, we demonstrate that
the ab initio TB framework, constructed using the maximally
localized Wannier functions method, can be used to efficiently
and accurately compute and resolve MAE in transition metal
systems. With the magnetic force theorem, TB quantitatively
reproduces DFT results over the full band-filling range from
the bottom of valence band to a few eV above the Fermi
level. When calculating k-resolved MAE in TB, the magnetic
force theorem and perturbation theory results agree with one
another, and both yield MAE contour maps that are consistent
with the Fermi surface. We also resolve MAE into intra-
sublattice and intersublattice contributions using perturbation
theory in TB and a scaled spin-orbit strength procedure in
DFT. The results using these two methods are in excellent
agreement. We found that the sign of the intersublattice
contribution differs among compounds, and its amplitude

may be comparable to or even larger than the intrasublattice
contributions, suggesting the need to go beyond the single-ion
MAE model. Depending on the system size, once the TB
Hamiltonian is constructed, it can speed up the calculation
by orders of magnitude, providing an efficient, accurate, and
high-resolution method to calculate MAE. We expect that it
can be applied to more complex compounds and structures to
compute and analyze MAE. Finally, this realistic TB method
can also be interfaced with ab initio methods beyond DFT,
such as the much more expensive self-consistent GW methods
[49,50], to greatly accelerate the calculations and analysis of
MAE or other SOC-related properties using those methods.
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APPENDIX A: SPIN-ORBIT-COUPLING OPERATORS
IN REAL SPHERICAL HARMONICS REPRESENTATION

Note the following:

L · S = 1

2
(J2 − L2 − S2) = h̄2

2

(
Lz L−
L+ −Lz

)
. (A1)

In the presentation of complex spherical harmonics Y m
	 , the

nonvanished matrix elements of Lz, L+, and L− are

〈l, m|Lz|l, m〉 = h̄m,

〈l, m − 1|L−|l, m〉 = h̄
√

l (l + 1) − m(m − 1), (A2)

〈l, m + 1|L+|l, m〉 = h̄
√

l (l + 1) − m(m + 1).

WANNIER90 uses the real spherical harmonics Y	m, also known
as tesseral spherical harmonics, which can be written in terms
of the complex spherical Y m

	 as

Y	m =

⎧⎪⎪⎨⎪⎪⎩
i√
2

(
Y −|m|

	 − (−1)m Y |m|
	

)
if m < 0,

Y 0
	 if m = 0,

1√
2

(
Y −|m|

	 + (−1)m Y |m|
	

)
if m > 0.

(A3)

The angular momentum matrices in the real-spherical-
harmonics representation O(R) can be obtained by directly
evaluating the angular momentum operator on real spherical
functions in Eq. (A3), or transforming O(C), the correspond-
ing operator matrix from complex representation:

O(R) = UR←CO(C)U†
R←C = UR←CO(C)UC←R. (A4)
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TABLE IV. Site-and-orbital-resolved charge q and magnetic moment m(μB/atom) in L10 compounds calculated in TB and VASP. The
moments of s-orbitals are negligible and not shown.

1st element 2nd element Cell

Compound Method qs qp mp qd md q1 m1 qs qp mp qd md q2 m2 q m

VASP 0.41 0.45 −0.01 6.12 2.92 6.98 2.92 0.61 0.50 −0.05 7.73 0.43 8.84 0.36 15.82 3.28
FePt

TB 0.83 0.81 −0.04 6.38 2.95 8.03 2.95 0.98 0.81 −0.09 8.18 0.45 9.97 0.34 18.00 3.29
VASP 0.41 0.44 −0.01 7.20 1.91 8.05 1.89 0.61 0.50 −0.04 7.72 0.46 8.82 0.41 16.88 2.30

CoPt
TB 0.83 0.80 −0.04 7.48 1.92 9.11 1.87 0.96 0.78 −0.06 8.14 0.47 9.89 0.40 19.00 2.26

VASP 0.42 0.41 −0.01 6.09 2.97 6.92 2.96 0.37 0.31 −0.04 7.96 0.42 8.63 0.36 15.55 3.33
FePd

TB 0.81 0.67 −0.04 6.35 3.05 7.83 3.00 0.85 0.70 −0.09 8.63 0.42 10.17 0.29 18.00 3.29
VASP 0.47 0.49 −0.02 6.17 2.69 7.12 2.67 0.51 0.51 −0.07 8.31 0.72 9.33 0.62 16.45 3.29

FeNi
TB 0.80 0.70 −0.05 6.38 2.74 7.89 2.67 0.85 0.73 −0.09 8.53 0.71 10.11 0.57 18.00 3.24

VASP 0.29 0.31 0.02 5.13 2.49 5.73 2.52 1.08 1.31 −0.11 0.16 0.02 2.56 −0.14 8.29 2.39
MnGa

TB 0.55 0.47 0.02 5.45 2.60 6.46 2.64 1.36 1.89 −0.15 0.28 0.03 3.54 −0.15 10.00 2.49
VASP 0.33 0.34 0.02 5.12 2.37 5.78 2.41 0.40 0.42 −0.04 0.00 0.00 0.82 −0.06 6.60 2.35

MnAl
TB 0.56 0.47 0.03 5.49 2.49 6.52 2.55 1.21 1.87 −0.14 0.41 0.03 3.48 −0.17 10.00 2.39

From Eq. (A3), the transfer matrix UC←R can be written
as

UC←R = 1√
2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

i 0 0 0 0 0 1
0 i 0 0 0 1 0
0 0 i 0 1 0 0
0 0 0

√
2 0 0 0

0 0 i 0 −1 0 0
0 −i 0 0 0 1 0
i 0 0 0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (A5)

For p and d orbitals, only the corresponding subblocks of
Eq. (A5) are needed.

Similarly, for quantization along other directions, the ma-
trix can be rotated by using Wigner matrix

Hso(n̂) = ξ

2
U (θ, ϕ)(L · S)U †(θ, ϕ) (A6)

and

U (θ, ϕ) =
(

ei φ

2 cos
(

θ
2

)
e−i φ

2 sin
(

θ
2

)
−ei φ

2 sin
(

θ
2

)
e−i φ

2 cos
(

θ
2

)), (A7)

where θ and ϕ are the angles of the direction of
magnetization when the unit vector is defined by
n̂ = (sin θ cos ϕ, sin θ sin ϕ, cos θ ). When the spin
quantization axis is along [110] direction, the SOC
Hamiltonian can be written as

Hso(n̂110)

= ξ

2

( √
2

2 (Lx + Ly) i
√

2
2 (Lx − Ly) − Lz

− i
√

2
2 (Lx − Ly) − Lz −

√
2

2 (Lx + Ly)

)
.

(A8)

APPENDIX B: CHARGE AND MOMENT CALCULATED
IN TB AND VASP

Table IV lists the site-resolved charge and magnetic mo-
ments in L10 compounds calculated in TB and VASP.
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