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Dynamics and energy landscape of the jammed spin liquid
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We study the low temperature static and dynamical properties of the classical bond-disordered antiferromag-
netic Heisenberg model on the kagome lattice. This model has recently been shown to host a new type of spin
liquid exhibiting an exponentially large number of discrete ground states. Surprisingly, despite the rigidity of the
ground states, we establish the vanishing of the corresponding spin stiffness. Locally, the low-lying eigenvectors
of the Hessian appear to exhibit a fractal inverse participation ratio. Its spin dynamics resembles that of Coulomb
Heisenberg spin liquids but exhibits a new low-temperature dynamically arrested regime, which however gets
squeezed out with increasing system size. We also probe the properties of the energy landscape underpinning
this behavior and find energy barriers between distinct ground states vanishing with system size. In turn the local
minima appear highly connected and the system tends to lose memory of its initial state in an accumulation of
soft directions.
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I. INTRODUCTION

Complex energy landscapes are of interest in a variety of
fields, from (combinatorial) optimization problems [1,2] over
the physics of spin glasses [3–9], jamming [8,10–12], and
amorphous materials [8,13,14], to the folding of biopolymers
[15], chemical reactions [16], and the fitness landscape of
evolution [17–20]. Their phenomenology can be formulated in
terms of the nature of these energy landscapes, their geometric
features, e.g., their ruggedness, the structure of the minima
and barriers between them, in terms of the dynamics of sys-
tems evolving within them, and the relation between the static
and dynamic properties. Here, we study these questions in a
classical frustrated magnet with bond disorder which hosts a
jammed spin liquid, jammed in the sense that in ground states
the number of spin degrees of freedom is exactly balanced
by the number of independent constraints on the system, in
analogy to the critical point of the jamming transition in
granular media [10,14] at which motion is arrested by contacts
between particles at the jamming transition.

Finding energy minima of “glassy” systems is (often) NP
hard [21]. Here, an extensive number of exactly degenerate
ground states with a known minimal energy arises in the
presence of disordered couplings. This allows us to make
a sharp distinction between metastable, excited states, and
ground states. This tends to be more difficult in disordered
systems when the true minimal energy is not known. It also
allows a sharp definition of energy barriers between different
ground states as their energy is known a priori to be the same.

In geometrically frustrated magnets ordering is suppressed
due to competing interactions, which in classical systems
leads to a large number of degenerate ground states [22–25].
A paradigmatic example of geometric frustration in this sense
is the nearest-neighbor Heisenberg antiferromagnet (HAFM)
on the kagome lattice [24–27], with a cooperative regime
extending from T ∼ 0.1J down to T ∼ 0.001J eventually

terminated by an order-by-disordered octupolar regime
[28,29]. Recently, it has been shown that there is an in-
timate connection between this ground-state degeneracy of
the kagome HAFM and topological quantities via general-
ized origami mappings in the case of anisotropic interactions
[30,31].

Interestingly, weak bond disorder in the kagome HAFM
does not produce a spin glass but rather defines a new type of
spin liquid, dubbed a jammed spin liquid [32]. In this case dis-
order removes all zero modes and prevents the entropic order-
by-disorder selection of coplanar states, and the ground state
manifold remains disordered down to the lowest temperatures.
This motivates the current study: We are seeking to understand
in detail the properties of the ground-state manifold and the
resulting dynamics of the jammed spin liquid in the complex
disordered energy landscape.

We find the following phenomenology: The spin dynamics
resembles that of other U (1) Coulomb Heisenberg spin liquids
with exponentially decaying spin-autocorrelation functions
and broad features in the dynamical structure factor showing
no indication of well defined quasiparticle excitations. At
extremely low temperatures, which vanish in the thermody-
namic limit as L−3, the system is dynamically arrested and
trapped close to a single ground state. The low-lying part
of the spectrum of the Hessian, describing nature of local
fluctuations around a given energy minimum, involves modes
whose inverse participation ratio [IPR, Eq. (9)] is the best fit
by a fractal decay with system size, L−5/3. The energy barriers
between different ground states are found to decrease with
system size as L−3. However, it appears that such transitions
between ground states require delocalized changes of the
whole spin configuration, while local perturbations encounter
significantly enhanced energy barriers. Finally, we find that
successive transitions enable states to explore a large part
of the ground state manifold, completely loosing memory
of the initial state in an exponential fashion. Thus, in this
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FIG. 1. Illustration of finite-size kagome lattices with primitive
lattice vectors a1 = (1, 0) and a2 = (1,

√
3)/2. Classical O(3) spins

in triangle α at sites i, j, k are coupled antiferromagnetically via
Ji j > 0. Ground states are defined via local constraints lα = 0, such
that spins on every triangular plaquette form a scalene triangle in the
spin space and produce generically noncoplanar magnetic structures
illustrated on the right-hand side.

disordered frustrated magnet an energy landscape of discrete
degenerate ground states separated by thermodynamically
vanishing energy barriers that appears to be (at least partly)
connected emerges.

The remainder of the paper is structured as follows: We
introduce model and the numerical procedures in Sec. II. We
first discuss the spin stiffness of the ground states in Sec. III.
Then we explore the classical spin dynamics, including the
spin autocorrelation and the dynamical structure factor as well
a transition to a dynamically arrested state, in Sec. IV. We then
address the nature of the energy landscape, first in terms of the
statistical properties of their Hessian matrices in Sec. V. We
continue with a detailed study of the ground states, first their
response to applied fields in Sec. VI, and in terms of a random
walk in the space of ground states in Sec VII. We summarize
our main findings and conclude in Sec. VIII.

II. MODEL

A. Hamiltonian

We consider the classical nearest neighbor Heisenberg
model

H =
∑
〈i j〉

Ji j si · s j , (1)

with disordered antiferromagnetic couplings Ji j > 0 between
O(3) spins (|si| = 1) at site i, j on the kagome lattice as
illustrated in Fig. 1. The Hamiltonian can be rewritten as a
sum of squares

H = 1

2

∑
α

l2
α + const, with lα =

∑
i∈α

γiαsi , (2)

where in every triangle α formed by sites i jk we defined γiα =√
Ji jJik/Jjk . Both forms are completely equivalent if Ji j > 0

allowing to define γiα .
We will mainly work with the second form and restrict the

model further by requiring γi� = γi�, which corresponds to
some short-range correlations of the bond couplings. This is
done mainly to reduce finite-size effects, in particular, for the
ground state energy which is Eg.s. = 0 (ignoring the constant
term) once all constraints are satisfied. The ground states of
these models exhibit different spin-spin correlations, in the

first case being exponentially decaying, and in the second
algebraically decaying. However, the finite temperature and
dynamical behavior appear qualitatively and quantitatively
similar. This modification is not expected to change the results
of this study qualitatively which has been explicitly confirmed
for the dynamics.

B. Ground-state manifold

From Eq. (2) states that satisfy lα = 0 on all triangles are
seen to be ground states. This can be interpreted as the sum
of spins with different length scaling factors γiα vanishing,
i.e., forming a closed triangle in spin space as shown in
Fig. 1. The resulting spin configuration of a single triangle is
coplanar but generally noncollinear, while on the full lattice
it becomes noncoplanar as well. It may be visualized as a
three-dimensional structure with scalene triangles as faces,
see Fig. 1.

The fact that all constraints on the kagome lattice can
be satisfied simultaneously is nontrivial. The resulting set
of ground states of the jammed spin liquid [32] includes
exponentially many exactly degenerate noncoplanar ground
states in the presence of disorder (up to a critical disorder
strength), which are rigid without any zero modes besides
global rotations. In particular, they are not connected to
the coplanar ground states, which are known to determine
the low-temperature properties of the nondisordered model
[24–28] and have an extensive number of zero modes [24,26];
rather they form a disconnected discrete set instead of a
continuous connected manifold [25].

C. Dynamics

The semiclassical spin dynamics, describing precession
of spins around their local exchange fields, is given by the
Landau-Lifshitz equation [33],

dsi(t )

dt
= −si(t ) ×

⎛
⎝∑

j

Ji js j (t )

⎞
⎠ (3)

which conserves the total energy E , magnetization M, as well
as the spin norm.

D. Global symmetries and equivalence classes of states

The Hamiltonians in Eqs. (1) and (2) possess a global O(3)
symmetry. The invariance of the energy under these rotations
results in three global-zero modes of the ground states and the
conservation of the total magnetization under the dynamics.
In defining distinct states it is necessary to take these symme-
tries into account. Formally, one may use equivalence classes
defining distinct states as spin-configurations modulus the
O(3) symmetry. One may transform any spin configuration
to a representative of the equivalence class, e.g., by rotating
the spins such that s1 points in a fixed direction by using a
global rotation of all spins and s2 lies in a fixed plane by
rotating all spins around s1, and compare spin configurations
after rotating into this fixed frame. Alternatively, the gram-
matrix gi j = si · s j uniquely characterizes distinct equivalence
classes accounting for the rotational symmetry automatically.
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In practice, we choose to work with explicit representatives by
rotating into a fixed frame for this study.

E. Details on the numerics

We perform both Monte-Carlo simulations to obtain finite
temperature spin configurations and explicit energy mini-
mization to obtain ground state spin configurations. Both are
combined with molecular dynamics simulations [25,34–37].

For the ground state simulations states are converged to an
energy of E < 10−14, or until the norm of the energy gradient
is smaller than 10−8 (in case we end up in a local minimum).
The Monte-Carlo simulations are performed using heat-bath
updates combined with microcanonical overrelaxation up-
dates. From these we obtain samples from the Boltzmann
distribution ∼exp[−βH] at inverse temperature β.

Taking the samples obtained via Monte Carlo as initial
conditions, the equations of motion Eqs. (3) are integrated
numerically and quantities of interest computed from the
time-evolved spin configuration. Thus, the ensemble averaged
is approximated by an average over different initial states
〈si(t ) · s j (0)〉 ≈ 1/Nstates

∑
states si(t ) · s j (0). Time integration

is performed using a fourth-order Runge-Kutta algorithm with
adaptive time step size such that the error on the conserved
energy, spin length, and magnetization remains below 10−6

per spin.
We study systems up to linear system size L = 24 (corre-

sponding to Ns = 1728 spins) with explicit energy minimiza-
tion, and systems up to L = 96 (Ns = 27 648) and temper-
atures β = 1, . . . , 10 000 with MC. Throughout we work in
dimensionless units with the lattice spacing a = 1. We choose
the couplings γi = 1 + δi with δi uniformly in [1 − δ, 1 + δ]
for disorder strength δ. We also restrict to δ = 0.3 in this work
but have checked that results are qualitatively the same within
the jammed spin liquid regime δ < 1/3. Results are averaged
over 100 disorder realizations for the ground-state simulations
and over a 1000 disorder realizations for the MC simulations.

III. SPIN STIFFNESS

A. Analytical derivation

The spin stiffness is defined via the energy response to
a twist, i.e., via comparing the energy of states obtained
with periodic boundary conditions (PBC) and those with
twisted boundary conditions along one of the lattice direc-
tions. Specifically, we take Si+Lex = R(θ, eθ )Si with a rotation
matrix R depending on the twist angle θ and the rotation
axis eθ . The energy difference between PBC and twisted BC
follows as the minimum over all possible orientations of the
rotation axis eθ .

The vanishing spin stiffness in the jammed spin liquid
regime can be derived from considerations of the constraints
defining the set of ground states, together with the implicit
function theorem. Specifically, we have that for ground states
lα = 0 on all triangles α. Imposing twisted boundary condi-
tions amounts to changing the energy function in the border

triangles in the following way:

(γaSa + γbSb + γcSc)2 → (γaSa + γbSb + R(θ, eθ )γcSc)2.

(4)
Thus, the zero-energy ground states can still be written as a
sum of squares, and we have a mapping

G : R × R3Ns → R3Ns

θ × {Si} 	→
{

S2
i − 1 i ∈ 1, . . . , NS

lα (θ ) α ∈ 1, . . . , 2Ns/3

(5)

where now lα depends on the twisting angle θ . The ground
state configurations for PBC then correspond to the preimage
of the zero vector, e.g., {Sgs

i } = G−1(0).
Given a ground state for PBC, e.g., a point {θ0 = 0, {Si}}

such that G({θ0, {Si}}) = 0, the implicit function theorem
guarantees that the ground state is given by a differentiable
function of the twist angle θ in an open neighborhood of θo

if the Jacobian [ ∂Gi
∂S jd

] is invertible. Here j = 1, . . . , Ns is the
site index and d = x, y, z is the index of the spatial dimension.
Since R(0, eθ ) = 1 and our previous work already established
the nonvanishing of the Jacobian determinant for JSL ground
states [32], we conclude that we can continue these states
over a finite range of twisting angles θ with exactly vanishing
energy, thus establishing the vanishing of the spin stiffness in
the jammed spin liquid.

B. Numerical results

Beyond this proof of vanishing spin stiffness we consider
the response of the system to a twist in more detail numeri-
cally. To do so we obtain a ground state for PBC via energy
minimization starting from a random initial configuration,
then apply the twist and start the energy minimization from
the previously found state.

As a first check on the numerics, and to ensure that the θ

range over which states can be continued is (sufficiently) large
in practice, we compute the average rotation angle between
the spin configuration found for twisted BC and the one for
PBC defined as

ᾱ = 1/Ns

∑
i

arccos
(
SPBC

i · ST BC
i (θ )

)
. (6)

This should stay small and be linear in θ , such that the
twisted state remains close to the initial state, and the energy
difference actually is a measure of the spin stiffness of that
state.

We show the cumulative distribution function of the scaled
twist angle ᾱ/θ obtained from 100 different disorder realiza-
tions and states on a L = 12 system in Fig. 2 for a range of
twisting angles θ = 10−6 up to 10−3. The collapse of the data
confirms the expected linear scaling of the response to the
twist which remains on the natural order of θ . Importantly,
we find the energy difference to vanish within the numerical
accuracy for sufficiently small twist angles, specifically we
checked it for twisting angles θ = 10−6 up to θ = 10−3 for
different initial states and disorder realizations and different
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FIG. 2. Cumulative distribution F (x) = ∫ x
0 p(y)dy of the scaled

mean angle ᾱ/θ between states found for periodic boundary condi-
tions and the one after applying a twist for twist angles θ = 10−3

down to θ = 10−6 obtained from 100 different ground states and
disorder configurations.

system sizes L = 6, 12, i.e., we confirm the vanishing of the
spin stiffness also numerically.

IV. SPIN DYNAMICS

A. Spin autocorrelation

The simplest indicator of the nature of spin dynamics is the
spin autocorrelation function defined as

A(t ) = 1

N

∑
i

〈si(t ) · si(0)〉 , (7)

which may be interpreted as the overlap between the initial
and time-evolved state. In Fig. 3 we show the spin auto-
correlation on a L = 96 system for a range of temperatures
β = 1, . . . , 10 000 as a function of time t .

In the short time regime at large temperatures we observe
an initial quadratic regime, followed at very long times by a
diffusive tail A(t ) ∼ 1/t due to the conservation of the total
magnetization. This is expected at large temperatures and
times [38,39] and has been established for the clean kagome
AFM [36,37]. For lower temperatures the quadratic regime
shrinks (and we do not access sufficiently large times to see
the diffusive tail), and the behavior crosses over into a purely
relaxational exponential decay A(t ) ∼ e−κt .

We extract the decay rate κ from the auto correlation by
fitting an exponential in the time window 0 < t < 5β and for
A(t ) > 10−2. The decay rate κ (T ) is found to be temperature
dependent as seen in the inset Fig. 3 showing the decay rate
extracted for different system sizes versus temperature T .
Whereas the intermediate temperature range 10 < β < 100
is consistent with a linear scaling κ (T ) ∼ T , at the lowest
temperatures 102 < β < 104 the exponent seems to increase
to about κ (T ) ∼ T 1.3. The upper intermediate linear scaling is
consistent with the behavior found for the classical spin liquid
on the nondisordered kagome [36,37] and the pyrochlore lat-
tice [35], as well as the predictions of the large-N calculations
[35,37], whereas the T 1.3 at lowest temperatures deviates from
previously seen behavior. However, we cannot definitely say
that this defines a new regime, or if there is a further crossover
as temperature approaches 0.
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100
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10−1

κ
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FIG. 3. Main: Spin autocorrelation on a L = 96 system at tem-
peratures β = 1, . . . , 10 000 as indicated in the legend. Top on log-
log scale versus time t , bottom on log-linear scale versus scaled
time t/β1.3. Inset: Extracted exponential decay constant A(t ) ∼ e−κt

versus temperature T for different system sizes L = 12, 24, 48, 96 as
in the legend.

B. Structure factor

Spin correlations are captured by the dynamical structure
factor

S (q, t ) = 〈s(q, t ) · s(−q, 0)〉, (8)

where s(q, t ) = ∑
i si(t )e−iRi ·q is the spatial Fourier trans-

form of the spin configuration. Its frequency transformed
version S (q, ω) maps the spectrum of the dynamical spin-pair
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FIG. 4. Quasielastic structure factor S (q, ω = 0) as a function of
momentum for β = 1, 10, 100, 1000 as indicated in the panel.

correlations, while the quasielastic limit S (q, ω = 0) is sensi-
tive to the presence of order in the system.

1. Quasielastic structure factor

The quasielastic structure factor S (q, ω = 0) in momen-
tum space for different temperatures, β = 1, 10, 100, 1000, is
shown in Fig. 4. These temperatures span the regime from
paramagnetic down to the fully established cooperative spin
liquid regime for β � 10.

At the largest temperature β = 1 the structure factor only
has broad features in momentum space due to the strong
thermal fluctuations in the paramagnetic state. In the cooper-
ative regime triangular structures of strong intensity emerge,
and with lowering temperature intensity is transferred to the
centers of these regions, which however do not correspond to
Bragg peaks as there is no long-range order. The quasielastic
structure factor does not change considerably above β = 100,
and does not indicate any long-range order down to β =
10 000, consistent with our previous findings. In particular,
note the absence of the

√
3-satellite peaks which would be

present in the clean model [28].

2. Dynamical structure factor

The dynamical structure factor S (q, ω) only shows broad
features in momentum and frequency space as shown in Fig. 5
at a temperature of β = 100 along a momentum cut from the
BZ center to the edge, q = (h, 0). This suggests that there are
no sharp spin waves present in the disordered model, even at
temperatures where they are seen in the clean system [36].

In addition, some spectral weight is highly concentrated at
small frequencies as seen in the bottom panel of Fig. 5. We
associate this with the large number of soft normal modes

0.0 0.5 1.0 1.5 2.0 2.5

ω
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,ω
)|

q = (h, 0)
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1.25
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10−3

10−2
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FIG. 5. Top: Intensity map of the dynamical structure factor
|S (q, ω|) versus momentum q = (h, 0) and frequency ω at a temper-
ature β = 100. Color map on a logarithmic scale. Bottom: Selected
cuts of the same data S (q, ω) as a function of ω for fixed momenta
q = (h, 0) as indicated in the legend.

discussed below in terms of the Hessian matrix of ground
states.

3. Diffusion

Cuts of the dynamical structure factor S (q, t ) as a function
of time t at fixed momentum q = (h, h) close to the Brillouin
zone center are shown in Fig. 6. We observe an exponential
decay in time S(q, t ) ∼ e−κ (q)t with a momentum dependent
decay rate.

The decay rate itself depends quadratically on momentum
κ (q) = Dq2 (lower panel of Fig. 6), at least for sufficiently
small momenta close to the center of the BZ. This in turn
allows us to obtain the diffusion constant D.

We note that the range of validity of this quadratic depen-
dence shrinks with temperature, a behavior already observed
in the clean kagome magnet [37]. In addition, the functional
form above this threshold momentum changes, flattening into
a plateau of constant decay rate. However, we cannot exclude
that diffusion still takes place at smaller wave vectors or larger
length scales than we can access in the simulations. We also
note that since the decay rate of the autocorrelation function,
which corresponds to some average of the decay rates of the
momentum-resolved structure factor, continues to decrease
with temperature, the range of the quadratic behavior must
decrease and/or the the diffusion constant must decrease at
low temperatures.
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FIG. 6. Top: Cuts of dynamical structure factor S (q, t ) for mo-
menta q = (h, h) close to the Brillouin zone center versus time t for
temperature T = 0.1; dashed gray lines are fits to an exponential de-
cay S (q, t ) ∼ e−κ (q)t . Bottom: Extracted decay constant κ (q) versus
momentum |q| with a quadratic fit κ (q) = Dq2 (dashed line); shaded
area denotes where quadratic fit ceases to be valid.

The extracted diffusion constant D as a function of temper-
ature T is shown in Fig. 7. Upon lowering the temperature,
we first observe an increase, comparable to the one observed
in the clean model on the transition from high-temperature
paramagnetic states to the cooperative paramagnetic regime.

10−2 10−1 100

T

0.10

0.15

0.20

0.25

0.30

0.35

D

FIG. 7. Diffusion constant D as a function of temperature T as
extracted from the quadratic dependence of the decay rate of the
dynamical structure factor.

On further lowering the temperature, the diffusion constant
starts to decrease. This is in stark contrast to the situation of
the clean model for which the diffusion constant after reaching
a “plateau” in the cooperative regime seems to diverge on ap-
proaching the octupolar regime [37]. In any case, the observed
decrease is relatively slow, and the data does not allow us to
conclude if it will continue down to lower temperatures or if
it saturates to a finite value.

C. Finite-size transition to dynamically arrested states

On finite systems we observe a transition into a dynam-
ically arrested state. In the arrested regime the dynamics is
stuck close to a single ground state and does not explore the
full phase space. Dynamics in this regime can be understood
as fast small oscillations around a fixed state in combination
with a slow global precession of all spins.

We characterize the dynamical arrest by considering a
modified spin autocorrelation function Amod(t ) obtained by
globally rotating all spins of the time-evolved state such that
the first spin s1(t ) points in the same direction as s1(t = 0)
and the second spin s2(t ) lies in the same plane as s2(t = 0).
Intuitively, in this way we remove the zero-energy modes due
to the global SO(3) invariance of the Hamiltonian, and the
rather trivial dynamics of a rigid rotation of all spins which
should not be considered to lead to a different state. Since we
globally rotate all spins, and then rotate all other spins around
a single spin S1, this leaves the energy invariant.

This was not required for the dynamics discussed above but
becomes so now for the parameters considered here. At the
low temperatures/energy densities at which we observe the
freezing transition the dynamics has slowed down so much
that a global slow precession of the state masks the internal
dynamics of the spin state, whereas at larger temperatures
the internal dynamics are fast enough to be fully resolved
before the global precession becomes relevant. We either
sample states via MC from the Boltzmann distribution at a
finite (small) temperature or add a (small) energy density to
a GS obtained from numerical minimization of the energy by
rotating all spins slightly in their local exchange fields.

For illustrational purposes we begin by discussing individ-
ual time traces at a fixed disorder realization of the modi-
fied autocorrelation function at low energy densities above a
ground state close to the dynamic arrest in Fig. 8. Note in
particular the extremely large times up to t = 106 over which
we resolve the dynamics here. We emphasize that these are
fixed disorder trajectories at smaller energy densities and on
a different time scale than the disorder-averaged spin-spin
autocorrelation results in Fig. 3, which still would have fully
decayed by these times if the previously observed scaling did
persist down to these energies.

In stark contrast to the previously discussed (exponentially)
decaying autocorrelation, here we observe rapid oscillations
around fixed plateaus for long time periods separated by rapid
and sudden transitions to different plateaus. We interpret this
behavior as the system being stuck close to distinct ground
states as characterized by the distinct plateaus for long times,
around which it performs small normal mode oscillations,
until a sudden and sharp transition to different plateau/state
occurs.
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FIG. 8. Selected individual time traces of the modified spin-
autocorrelation function Amod(t ) for a fixed disorder realization on a
L = 12 system and an added energy density e = 10−6 above different
ground states.

Furthermore, in this regime the system remains close to
the original state, in that we observe transitions out of and
back into the original state, and in some cases repeatedly to
the same distinct plateau/state. This would be exceedingly
unlikely if the dynamics were to explore the full exponentially
large ground-state manifold of the jammed spin liquid.

This behavior is somewhat reminiscent of (finite) spin glass
systems which are stuck for (exponentially) long times in
some part of phase space but may suddenly jump to a distinct
region [40]. These distinct states might also lend themselves
to the interpretation of two-level systems, as observed in
Heisenberg spin glasses [41], and do indicate some form of
clustering of the ground states.

The long-time average of the modified autocorrelation
function averaged over disorder realizations is shown in
Fig. 9, averaged over initial states obtained from MC simu-
lations at a finite temperature (top panel) and as a function
of energy density added to a true ground state (E = 0) by
randomly rotating the spins in their local exchange field
(bottom panel). (We have checked that the same transition
with the same scaling occurs for the random bond model.)

The finite temperature Monte Carlo results display a clear
crossover as a function of temperature between dynamics
which explores (some of) phase space and Amod ≈ 0, and
dynamics at low temperatures which is stuck near a single
ground state with Amod ≈ 1. Similarly, the ground-state simu-
lations show a transition as a function of added energy density
with the same scaling.

We note that the transition to a dynamically arrested state
appears to be a finite size effect, in that the temperature below
which the dynamics is arrested scales as T ∼ L−3 for the
MC simulations and energy density e ∼ L−3 for the ground-
state simulations. This leads us to conclude that the energy
barriers between different JSL ground states vanish in the
thermodynamic limit.

V. HESSIAN

To elucidate the behavior found above, we first investigate
the statistical properties of an individual local extremum,
before turning to their connectivity properties in the following
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FIG. 9. Top: Long time average of the (modified) spin autocor-
relation function Amod versus scaled temperature βL−3 in the MC
simulations. Bottom: Long time average of the (modified) spin auto-
correlation function of ground states with an added energy density e
created by randomly rotating spins in their local exchange fields.

sections. Following on from our original work [32], we inves-
tigate the quadratic energy cost of fluctuations around ground-
state configurations via the Hessian matrix. This provides
insight into the spectrum of fluctuations, potential low-energy
or zero modes, and via the associated eigenvectors also into
the spatial properties of these normal modes.

For a spin configuration {si} we choose an orthonormal
local basis at every lattice site (si, ui, vi ). This allows us
to parametrize fluctuations as s̃i =

√
1 − ε2

i si + εuiui + εvivi

with εi = (εui, εvi ) which takes the spin normalization condi-
tion into account. Around a ground state the energy cost of
fluctuations to quadratic order is then given by E = εT Mε,
which defines the (2Ns) × (2Ns) Hessian matrix M.

Diagonalizing the Hessian matrix M provides eigenvalues
λ and the corresponding eigenmodes. Due to the global ro-
tational invariance of the energy there are three trivial zero
modes which we do not consider below.

We analyze the spectrum by considering the cumulative
distribution function F (λ) = ∫ λ

0 P(x) dx of the Hessian eigen-
values averaged over disorder which is shown in Fig. 10. Note
that this has the advantage of being mostly independent of
system size, with larger systems simply extending the results
down to smaller eigenvalues. We observe a large number of
soft modes with a low energy scaling F (λ) ∼ λ1/2. In that
sense the jammed spin liquid states are marginally stable, as
soft modes extend as a power law to zero energy. Crucially,
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FIG. 10. Top: Cumulative distribution function F (λ) of the
eigenvalues λ of the Hessian matrix of ground states for different
linear system sizes L as indicated in the legend, and λ1/2 power-law
behavior (dashed) line. Middle and bottom: Inverse participation
ratio (IPR) of eigenstate n of the Hessian ordered by eigenvalue,
middle scaled with L2 on log-log scale, bottom scaled with L1.65 on
linear scale focusing on the soft modes.

there are no nontrivial zero modes, in contrast to the coplanar
states of the clean kagome system which hosts an extensive
number of these. Secondly, we study the localization proper-
ties of these modes by considering the inverse participation
ratio (IPR) [42,43] defined as

IPR =
∑

i

(|εi|2)2/
∑

|εi|2, (9)

which is 1 for an eigenmode fully localized on a single site of
the lattice and 1/Ns ∼ L−2 if it is fully delocalized.

The IPR is shown in the bottom panels of Fig. 10 for
different linear system sizes L. We observe a tendency towards
delocalization for most of the spectrum, in particular for the
soft modes, with a best fit fractal exponent IPR ∼ L−5/3.
In contrast, the “hardest” modes at the upper edge of the
spectrum are strongly localized to a few sites. This is notable
since the coplanar states of the clean model have an extensive
number of localized zero-energy modes, in particular the√

3 × √
3 state admits hexagon weatherwane modes involving

only six sites, and the q = 0 state admits modes which involve
L sites.

These results confirm the picture that the ground states of
the jammed spin liquid have no nontrivial zero modes but a
large number of relatively soft modes. Interestingly, these soft
modes appear to be delocalized over the full lattice, rather than
being local excitations like in the clean model.

VI. FORCING/SPECTROSCOPY OF ENERGY BARRIERS

The results on the dynamics indicated that at sufficient
energy/temperatures the system can explore a large part of
phase space, whereas at low energies finite energy barriers
between distinct ground states, which scale to zero in the
infinite system size limit, inhibit dynamics freezing the system
close to one ground state. Furthermore, the study of the
Hessian showed that each local minimum has no nontrivial
zero modes, thus, locally appearing as a quadratic well in con-
figuration space. We now set out to explicitly probe the energy
barriers between distinct close ground-state configurations.

A. Method

To explore the ground-state manifold further and gain
insight into the energy barriers between distinct ground states
we use the following protocol, which we adapt from its
application in the study of spin glasses [41].

(i) Find a ground state GS of original Hamiltonian H
(Eq. (2)).

(ii) Find a ground state/local minimum GS(h) of a
perturbed Hamiltonian Hh [defined in Eq. (10)] with a
force/magnetic field h added starting from GS(0).

(iii) Find a ground state GS∗ of original Hamiltonian H
starting from GS(h).

(iv) Compare the newly obtained ground state GS∗ with
the original state GS.

Intuitively, this protocol can be motivated using a one-
dimensional analogy as illustrated in Fig. 11. Imagine a
particle in a double well potential (corresponding to two
distinct ground states of the jammed spin liquid which act
as quadratically confining wells). Starting with the particle in
one well, one can add a linear force to make it move up the
barrier towards the other well [corresponding to state GS(h)].
As long as the particle does not cross the maximal height
of the barrier between the wells after removing the linear
force it will fall back to the initial state (e.g., GS∗ = GS)
as seen in the middle left panel of Fig. 11. At sufficiently
large applied force the particle reaches the maximum of the
potential between the two minima, at larger applied force it
will then fall into the next well (e.g., GS∗ �= GS) as seen in
the lowest left panel of Fig. 11. The minimal value of the force
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FIG. 11. Illustration of the proposed forcing protocol (see text).
Left panels: One-dimensional double well potential V (x) with an
added linear force E (x) = V (x) + hF (x) proportional to h. Red
circle denotes the state x(h) at the minimal energy of the perturbed
potential. Right panels: Energy versus forcing strength; top for the
one-dimensional toy model, bottom energy E computed from H of
the perturbed state GS(h) for a single realization of the proposed
forcing protocol in the full spin system.

required for this to happen then defines hc and the height of
the barrier corresponds to the energy of the particle at hc. The
right panels of Fig. 11 compare the resulting energy observed
at a certain strength of the forcing for the toy model (top)
to one realization of the forcing protocol for the full spin
model (bottom) demonstrating qualitative agreement with this
analogous model.

We define the Hamiltonian H(h) as

H(h) = H + h
∑

i

si · hi, (10)

where we choose the magnetic fields hi to be orthogonal to
the initial ground state GS, i.e., hi · sGS

i = 0, and normalized
as

∑
i h2

i = 1. (This is to say that the {hi} form a normalized
element in the tangent space of SNs

2 .) By choosing the field
local and in the tangent space we avoid the issue that due to
rotational invariance of the Hamiltonian the main response of
any state to a global field will just be to align with the field
direction.

We consider different scenarios for this forcing: (a) We
choose the direction of the forcing to correspond to the softest
direction of the Hessian matrix of the initial ground state GS,
(b) the hardest direction of the Hessian, and (c) a random
direction in the tangent space of the initial ground state GS.
We emphasize that this protocol inherently goes beyond the
linear response regime which would be fully captured by
the eigenvalues of the Hessian. The purpose is to perturb the
state strongly enough to leave the local basin of attraction of
the initial state resulting in a (potentially sudden) nonlinear
response.

In addition, it allows us to extract (local) information about
the set of ground states which is not accessible from the states
alone. Namely, we will obtain the critical fields and the height
of energy barriers between “neighboring” (those connected by
the protocol above) ground states and the locality of changes
between these “neighboring” states.
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FIG. 12. Comparison of critical force required to leave a ground
state for forcing in the softest direction (blue circles) and the hardest
direction (orange triangles). Dashed line is a guide to the eye power
law ∼L−3.

We note that the perturbed state GS(h) we obtain numeri-
cally is not necessarily a ground state of H(h) but rather only a
local minimum. However, we are actually not interested in the
ground states of H(h) in any case, as we only use it to perturb
the original ground states in a deterministic fashion. Further
starting from GS(h) we are not guaranteed to obtain a true
ground state GS∗ of H with E = 0 but may also end up in a
local minimum. These cases are however easily distinguished
by the nonvanishing of the energy and for the discussion
below we only consider cases for which the minimization
results in a global minimum.

B. Critical forcing strength

To find the critical field hc required to leave the basin of
attraction of a given ground state GS, we follow the protocol
outlined above. Thus, we initialize h at a very small value,
compute the perturbed state GS(h) and associated state GS∗,
and increase h until we encounter a new state GS∗ �= GS for
the first time, as characterized by an overlap with the initial
state unequal to 1.

In practice starting from a ground state obtained via energy
minimization at h = 0, we start with a small field h ∼ 10−7,
increase it in powers of 10 until we find a different state, and
then perform a refined search between the last two values of h
to determine hc. Deciding whether a new state is encountered
during this procedure poses no numerical problems as using
the overlap q proves sufficient given the convergence criteria
put on the states (though the authors have also checked the
results comparing the full gram matrix gi j = si · s j which is
in one-to-one correspondence to spin configurations modulo
global rotations).

The results for forcing in the softest and the hardest di-
rection are shown in Fig. 12 with errors obtained from the
average over 100 different disorder realizations/initial states
as a function of linear system size L. For forcing in the softest
direction we observe a vanishing of the critical field strength
with system size consistent with a L−3 scaling (dashed line).

For forcing in the hard direction the critical force first
decreases but then saturates for system sizes L � 12 at a finite
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FIG. 13. Comparison of energy barriers between ground-state
configurations for forcing in the softest direction (blue circles) and
the hardest direction (orange triangles). Dashed line is a guide to the
eye power law ∼L−3.

value. Note also the order of magnitude difference between
the critical fields.

C. Energy barriers

In addition to the critical force required to leave a GS we
may estimate the energy barrier between the different GS in
the following way: As we increase h we obtain a series of
states GS(h) and associated GS∗, at some critical hc the new
state GS∗ differs from the initial ground state. We estimate
the energy barrier between GS and GS∗ by the bond energy
of the state GS(h), i.e., its energy with respect to H0, for h
just below the critical field hc. The results of this are shown
in Fig. 13 for forcing in the softest direction and forcing in
the hardest direction as a function of system size/number of
spins. We observe that for forcing in the softest direction
the height of energy barriers decreases with system size as
L−3, implying that transitions between states are possible at
thermodynamically vanishing energy cost.

In contrast, forcing in the hardest direction states faces
a finite energy barrier which appears to saturate on larger
systems consistent with the observed behavior of the critical
fields. Whereas we cannot fully exclude any potential bias
stemming from the initial ground states at larger systems
which are harder to converge numerically, both the fact that
the statistical errors actually decrease with increasing system
size and the consistency of the ground state with Monte-Carlo
simulations combined with the orders of magnitude difference
between “soft” and “hard” forcing leads us to believe that this
is a robust effect. Based on the results for the critical force and
the associated energy barriers, it appears that while states on
finite systems have no zero-energy modes, transitions can be
induced by vanishingly small forces and at vanishingly small
energy cost if the force is applied in the right direction, in
keeping with our results above on the stability of the arrested
regime.

D. Response of states to forcing

We can also characterize the response of the state to the
introduced forcing by measuring its magnetization along the
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FIG. 14. Comparison of the response to the applied force, i.e., the
induced magnetization, of a ground state versus forcing strength for
forcing in the softest direction (top panel) and the hardest direction
(bottom panel). Note the different ranges and the differently scaled
axes.

applied magnetic field

m = 〈GS(h)|h〉 =
∑

i

si(h) · hi. (11)

In Fig. 14 we again compare the forcing in the softest direction
with the forcing in the hardest direction for different system
sizes L. Note that as per the observed scaling of the critical
fields above we scale the magnetic field with L3 for forcing
in the soft direction and the resulting response by L−1/3 to
collapse data for different system sizes.

For forcing in the soft direction we observe a continuous
response to the applied field. Because the energy landscape is
extremely shallow in the direction of the smallest eigenvector
of the Hessian, the state shows a strong response to the applied
field as it smoothly moves along the bottom of the local basin
of attraction of the initial state.

In contrast for forcing in the hard direction we observe
two qualitatively distinct regimes: weak response at small
fields and above a crossover field a rapid increase of the
induced magnetization. In addition, the response is smaller in
magnitude than for the soft forcing direction as expected as
now the state moves along a steep direction in energy.

The observation of a “gapped” response for forcing in
the hard direction is consistent with the finite critical forces
and energy barriers observed above. If the field is too small
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FIG. 15. Comparison of overlaps for forcing in the softest di-
rection (blue circles) and the hardest direction (orange triangles).
Average overlap per spin q = 1/Ns

∑
i si · s∗

i .

to leave the initial basin of attraction, responses are weak
along the steeply confined direction in configuration space,
whereas when exceeding a critical field the perturbed state can
escape the initial state, showing an abrupt response. After this
sudden response the spin configuration ends up in a distinct
state for which the forcing direction might not correspond
to a strongly confined direction anymore, and for which the
field direction is also not perpendicular to the state anymore,
thus completely changing it’s response. We conclude that
ground states show a strongly anisotropic behavior with order
of magnitude differences in the response depending on the
direction of the applied force.

E. Overlaps

We next turn to characterize the “neighboring” states in
more detail, beginning with overlaps or distances between
these states, allowing us to draw conclusions on the clustering
of ground states. We compare the original ground state GS
and the first different ground state GS∗ encountered when
increasing the forcing strength via their average overlap q,

q = 1

Ns

∑
i

si · s∗
i . (12)

Again, we define this after rotating both states into a standard
form with s1 = ez, and s2 in the xz plane exploiting the
rotational invariance. This provides a global notion of the total
change required to transition from one GS to another, and
since |si − s∗

i |2 = 2 − 2 si · s∗
i also geometrically corresponds

to the distance between states, providing complementary in-
formation to the physical energy barriers and critical forcing
fields discussed above.

In Fig. 15 we observe that forcing in a soft direction leads
to a state GS∗ with a high overlap with the original state
GS. This increases with increasing system size, converging
towards 1 as q = 1 − c/Ns with a constant c ≈ 24. This
seems to suggest that, on average, only a constant number of
rearrangements is required to transition into a “neighboring”
ground state, but as discussed below these rearrangements are
in fact not localized but rather require a change of all spins
in the spin configuration. Thus, this result only indicates that
there exist many ground states close by.
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FIG. 16. Comparison of localization of changes between ground-
state configurations for forcing in the softest direction (blue circles)
and a random direction (orange triangles).

In contrast, forcing in the hardest direction results in an
overlap q < 1, which actually tends to decrease on larger
systems. However, we note that this is still relatively large
considering that there are exponentially many ground states of
the JSL, and for a random new state we would expect q ≈ 0.
This fits the interpretation that for forcing in the soft direction
the GS smoothly evolves moving along a shallow basin of the
energy landscape with an associated gradual change of the
spins, whereas for forcing in a hard direction the evolution
is along a steep direction with a sudden transition into a new
basin of attraction resulting in a more strongly perturbed final
spin configuration.

F. Localization of changes

Finally, we consider the locality of rearrangements re-
quired to change one ground state into the other. For the
coplanar states of the clean model, in particular the

√
3 × √

3
state, there are local zero-energy normal modes that allow us
to move within the ground state manifold. For the noncoplanar
ground states of the disordered model this is not the case any
longer. However, we have observed above that for forcing in a
soft direction only a small change in the spin configuration
is required. Thus, it is natural to ask how this change is
distributed over the lattice.

We define as the measure of localization

wloc =
∑

i

w2
i /

(∑
wi

)2
(13)

with wi = 1 − si · s∗
i = (si − s∗

i )2/2, analogous to the IPR
discussed for the normal modes of the Hessian. It is 1 if the
change is fully local and only a single spin is changed, and
1/Ns if the change is homogeneously delocalized over all Ns

spins.
We show the results for forcing in the soft and the hard

direction in Fig. 16. In both cases we observe a scaling wloc ∼
1/Ns corresponding to changes of the spin configuration delo-
calized over the full lattice.

We note that this is in agreement with the nature of
the soft modes of the Hessian which we also found to be
delocalized over the full lattice. However, it is in contrast to
the behavior observed in Heisenberg spin glasses, where local
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rearrangements between different low-lying states exist and
have been found using a similar protocol [41].

To reconcile the fact that the overlap suggests on average
only a small number of changes in the spin configuration and
the delocalization of this change over the full lattice recall that
the nondisordered model has localized zero modes and that
the ground states are defined via the set of strict constraints
on each triangle of the lattice. If one now changes one spin
locally, one has to change all spins in the triangles it belongs
to to compensate. In turn all spins in the neighboring trian-
gles have to be adjusted to satisfy the constraint, continuing
throughout the full lattice. It is rather remarkable that in the
clean model this series of changes terminates and can be
localized, whereas for the disordered spin ground states in
the presence of disordered constraints it appears to require a
global but small change in the spin configuration.

G. Local forcing

Finally, we also consider a local perturbation to see
whether the nonlocality of the re-arrangements observed
above might have been due to our globally applied field rather
than an inherent property of the probed states. Specifically,
we choose hi �= 0 only on a single triangle α with a field
direction hi chosen randomly on the unit sphere. Note that
applying a field local to a single spin only would, due to the
rotational invariance of the field-free Hamiltonian, just lead to
a global rotation of the state into field direction, such that at
least two fields are required to induce a nontrivial response.
Further, a single applied field still leaves the zero mode of
rotation around that field, thus even applying two local fields
one encounters a zero mode. Thus, we choose a single triangle
with three spins as the smallest local unit which avoids these
issues.

We again first consider the critical field strength and energy
barriers in Fig. 17. We observe that even though they decrease
with increasing system size, they are substantially larger than
for the globally applied perturbations. Whereas we cannot
make a precise statement on the asymptotic value, the fact that
the Hessian of the ground states did not have localized soft
modes, and the constraints within the ground-state manifold
appear locally rigid, strongly suggests that this energy cost
remains finite.

The induced rearrangements of the spin configurations
after exceeding the critical field again appear to be delocalized
over the full lattice (bottom panel of Fig. 17), in spite of the
local nature of the applied field, lending additional confidence
to the conclusion that such nonlocal changes are in fact
required to transition to a distinct ground state. We note that
this is different from the coplanar states of the clean model,
which are unstable to an infinitesimal out-of-plane local per-
turbation due to the local zero modes. Indeed performing the
same protocol on coplanar states of the clean model with
local zero modes the critical field as well as the energy cost
vanishes, in addition to observing a finite localized response
for infinitesimal applied field (as long as the out-of-plane
component of the applied field is nonzero). Thus, at least
within the protocol described we do not find any local soft
modes of the jammed spin liquid that would allow transitions
between different ground states.
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FIG. 17. Top: Critical force required to leave a ground state when
applying a local field h to a single triangle oriented in a random
direction, middle: Corresponding energy barrier, both versus linear
system size L bottom: wloc of rearrangements between “neighboring”
ground states versus number of spins Ns.

VII. RANDOM WALK IN GROUND-STATE SPACE

The discussion above provided information on the local
properties of the set of ground states, critical fields, and en-
ergy barriers between “neighboring” states. Next, we consider
potential clustering and the size of the basins of attraction of
different ground states and the “connectedness” of the ground
states.

To this end we propose starting from a given initial GS
{Si}0 to repeatedly apply the procedure above to generate a
sequence of states {Si}n, which may either be local minima or
true GS, e.g.,

(i) Find an initial ground state GS0 of H
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FIG. 18. Number of unique encountered states nstates when suc-
cessively forcing the state in a random direction until a transition
takes place versus number of forced transitions n. Light-gray lines
are individual trajectories for different initial states and disorder
configurations; shading is the standard deviation around the mean.

(ii) in step i: Apply a perturbing field h as detailed in
Sec. VI A starting from GSi−1, increasing the field strength
until GS∗

i �= GSi−1, obtaining a new distinct state GSi = GS∗
i

(iii) repeat this n times obtaining a sequence of states
In this case we mainly discuss applying the force in a

random direction. Forcing the states exclusively in the softest
or hardest direction as discussed above, the procedure can
get stuck in a trivial cycle, typically consisting of two states
connected by a steep/shallow direction in phase space, respec-
tively.

Intuitively, we expect this random walk in the space of (lo-
cal) minima to be able to explore all states if the ground states
form a single cluster, or get stuck in some part of the manifold
if there are several disconnected clusters. We emphasize that
this is slightly different to the dynamical freezing transition, as
that was governed by the size of the energy barriers becoming
larger than the available energy at low temperatures, whereas
here we do not restrict the maximally applied field to induce a
transition.

In Fig. 18 we show the number of unique encountered
states nstates versus the number of forced transitions n. Individ-
ual trajectories for different disorder configurations and initial
ground states are shown as light-gray lines, and the average
with standard deviation as the blue line with shading. From
these results it appears that while individual trajectories can
be stuck for some time in a set of “known” states visible in the
plateaus, after a few transitions they do escape and continue
to encounter successively more new states with an increasing
number of transitions. Consequently, the set of ground states
appears to be connected in the sense that successive transitions
through thermodynamically small energy barriers allow us to
explore a large number of distinct states, e.g., that if they do
cluster, that these clusters are relatively large.

Finally, we consider the overlap qin between the initial state
and the state reached after n transitions in Fig. 19. This is
observed to decay exponentially with the number of forced
transitions. Changes in states appear global, i.e., all spins are
changed in every step, but the loss of overlap is incremental,
i.e., we perform a succession of “small” steps in an exponen-
tially large space, ultimately completely decorrelating from
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FIG. 19. Overlap qin of the initial state with the state reached
after n forced transitions. Light-gray lines are individual trajectories
for different initial states and disorder configurations; shading is the
standard deviation around the mean.

the initial state. We emphasize that this is very different to the
situation expected on the basis of replica symmetry breaking
in a spin glass [44] which results in a hierarchical energy
landscape [4,5,7,45], and consequently states stuck in one
local basin in which states have a high overlap, separated
from distinct basins by large energy barriers [7,9,13,40]. Thus,
it appears that the set of ground states remains (at least
partly) connected at finite temperatures and can via finite
perturbations explore a large number of states via successive
transitions reaching states fully unrelated to the initial state.

VIII. CONCLUSIONS

In this work we have studied the dynamics and energy
landscape of the recently identified jammed spin liquid, which
has exponentially many exactly degenerate ground states in
the presence of disordered bond couplings. Since these states
are rigid, e.g., they have no zero-energy modes besides global
rotations, they form a discrete set, in contrast to previously
studied classical spin liquids with continuous ground-state
manifolds with zero modes. Despite the rigidity of the spin
ground state configurations there still exist a large number
of very soft normal modes, which appear delocalized with a
best-fit fractional exponent L−5/3.

In spite of the rigidity of the ground states, we establish
a vanishing spin stiffness. The spin autocorrelation shows
typical classical spin-liquid behavior with an exponential de-
cay rate scaling linearly with temperature in the intermediate
low temperature regime and steepening to T 1.3 at the lowest
temperatures we access. We also find evidence of spin dif-
fusion and obtain a spin diffusion constant D that seems to
decrease in the low temperature regime. However, we are not
able to resolve whether diffusion persists down to the lowest
temperatures on larger and larger length scales with a finite
diffusion constant or disappears completely.

Furthermore, the dynamical structure factor has no sharply
defined features, suggesting that there are no sharp spin waves
present in the disordered model, but shows concentration of
spectral weight at low frequencies, which we attribute to the
large number of soft normal modes of the ground states.
Interestingly, we find a transition (on finite systems) between
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dynamics that is able to explore (some parts) of phase space
and fully decorrelate from the original state, and a dynam-
ically arrested regime, in which the states mostly globally
rotate and perform small oscillations being stuck close to an
initial state.

This in turn motivated the detailed study of the energy
landscape in terms of response to forcing of the ground states.
We find that energy barriers between different ground states
vanish with increasing system size, implying that excitations,
due to finite temperature or perturbations, are able to induce
ground-state transitions. However, there appear to be no local
rearrangements between different ground states, transitions
always requiring a global change in the spin configuration.

We find that the response is “anisotropic” and depends on
the form of the applied force: It is “gapped” for forcing in
a hard direction, defined via the spectrum of the Hessian,
whereas in a “soft” or random direction it smoothly evolves
as a function of the forcing strength. Moreover, local forcing
encounters significantly higher energy barriers and requires
larger forcing fields, which we attribute to the fact that
ground-state configurations are locally rigid and, thus, resist
deformation.

Finally, a random walk via successive transitions is able
to fully decorrelate the resulting spin configuration from the
initial state in an exponential fashion, suggesting that the
set of ground states remains (at least partly) connected, and
that clusters, if they exist, contain a large number of quite
distinct ground states. Summarizing, we find a complex en-
ergy landscape with exponentially many degenerate discrete
locally rigid ground states in a bond-disordered frustrated

magnet, which at finite temperatures or energy densities ap-
pear to be connected within Landau-Lifshitz spin dynamics,
with exponentially decaying spin auto correlations and no
sharply defined features in the dynamical structure factor, and
via applied fields, with vanishing energy barriers between
“neighboring” distinct ground states.

We finish by pointing out avenues for further research and
open questions. Firstly, in the kagome Heisenberg antifer-
romagnet bond disorder does completely eliminate all zero
modes of the ground states. In light of the recent connections
of frustrated magnetism to topology via spin origami in the
case of anisotropic interactions in the kagome HAFM [30,31],
where extensive or subextensive numbers of zero modes were
found protected by topological indices, a study of the (poten-
tial) topological features of the jammed spin liquid, which lifts
these degeneracies completely, might provide further insight
into the interplay of frustration and topology in magnets.

Secondly, the arrested regime, with dynamics observed to
be “stuck” close to a state interrupted by sudden transitions
between distinct states, is reminiscent of the behavior in
Heisenberg spin glasses [40,41]. Whereas this regime van-
ishes in the thermodynamic limit in this model, the presence
of this “glassy” phase in a model with exactly degenerate
states on finite systems might provide further insight into
mechanisms of spin freezing and spin glasses.
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