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Ab initio calculations of temperature-dependent magnetostriction of Fe and A2 Fe1−xGax

within the disordered local moment picture
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The fully relativistic disordered local moment (DLM) theory is used to perform calculations of the magnetic
torque of tetragonally distorted Fe and fully disordered (A2) Fe1−xGax (0 � x � 0.2) alloys to describe the
temperature dependence of their magnetoelasticity. The finite-temperature magnetoelasticity, in particular the
magnetoelastic constant B1, is obtained within DLM theory by studying the response of the magnetic torque
generated by the magnetocrystalline anisotropy to the application of a tetragonal strain. Calculations of B1

have been performed on bcc Fe across its ferromagnetic temperature range. Our results show good qualitative
agreement with experiment, in particular reproducing the anomalous, nonmonotonic thermal behavior of bcc
Fe’s magnetostriction, which has been largely unexplained for more than 50 years. The method has also been
used to calculate the finite-temperature magnetoelasticity of the A2 phase of Fe1−xGax alloys as a starting
point for further investigations into the giant magnetostriction of Galfenol alloys. Our calculations show that
homogeneously doping bcc Fe with Ga does not produce an enhancement in magnetostriction and that the
nonmonotonic temperature dependence and significant volume dependence are suppressed by increasing Ga
content.
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I. INTRODUCTION

Magnetostriction, the deformation experienced by materi-
als due to the application of a magnetic field, is a phenomenon
potentially useful in sensor and actuator technologies, provid-
ing a method of converting between mechanical and electri-
cal energy [1]. The discovery of the giant magnetostrictive
properties of Tb1−xDyxFe2 (Terfenol-D) in the 1970s [2]
continues to inspire research efforts devoted to both building
magnetostrictive devices [3] and searching for new mag-
netostrictive materials [4]. A relatively recently discovered
class of magnetostrictive materials are the Fe-based alloys
Fe-Ga and Fe-Al (Galfenol and Alfenol) [5,6] which, although
having inferior magnetostrictive properties to Terfenol-D, are
attractive due to their low cost and high mechanical strength
[7]. Fundamentally, it is intriguing that by adding only a small
amount (∼19%) of the nonmagnetic elements Al and Ga, an
alloy is formed whose magnetostrictive properties are greatly
enhanced (∼10× for Galfenol) compared to elemental Fe [5].

For practical applications it is essential to understand how
a material’s magnetostrictive properties vary as a function of
temperature. In systems where the magnetic moments origi-
nate from highly localized electrons, such as the rare earths
[8], the single-ion model established in the seminal works of
Callen and Callen [9,10] provides an excellent description of
finite-temperature magnetostrictive behavior [11]. However,
the magnetism in Fe and its alloys originates from itinerant
electrons, so that it is by no means obvious that the single-ion
model should apply [12]. Indeed, it was recognized by Callen
and Callen in 1963 that the single-ion model was at variance
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with experimental measurements of the magnetostriction of
pure and Si-doped Fe, which showed a nonmonotonic temper-
ature dependence [13,14]. Although proposing an explanation
in that work based on anisotropic magnon-phonon coupling
[14], subsequent experiments [15–17] led E. Callen to write
thirty years later that the temperature dependence of the mag-
netostriction of Fe was still not understood [1], and to the cur-
rent authors’ knowledge this situation remains. An interesting
hint regarding the magnetostriction of Fe has however been
provided by empirical calculations based on a tight-binding
model, which showed that a nonmonotonic temperature de-
pendence could arise as a result of a temperature-dependent
electronic band structure [18]. In order to accurately model
these temperature-dependent magnetic properties, it is key
to describe the effect of fluctuations of magnetic degrees
of freedom. The disordered local moment (DLM) picture
[19] has proven to be an effective approach [20–24] to this
problem. It utilizes the fact that, for many materials, thermally
induced reorientations of local magnetic moments take place
on a far slower timescale than the motion of the electrons.
With a suitable method for determining ensemble averages
over these orientational configurations, the temperature de-
pendence of various magnetic properties can be determined
nonempirically (ab initio). Until now it has not been used to
study a system’s magnetostriction however.

In terms of nonempirical band structure calculations at
zero temperature, the last twenty years have seen significant
progress in the calculation of magnetostriction within density
functional theory (DFT) [25]. Due to the spin-orbit origin of
magnetostriction, such calculations must be performed rela-
tivistically and be able to resolve energy differences of order
0.01 meV/atom [26]. Despite these technical challenges, the
magnetostriction along the [0 0 1] axis calculated within DFT
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for the bulk ferromagnets Fe, Ni, and Co agrees qualitatively
(i.e., having opposite signs for Fe/Co and Ni) and quanti-
tatively (for Co and Ni) with experimental measurements
[27–31]. Fe remains slightly problematic, with the calcula-
tions predicting the opposite sign to experiment for distortion
along the [1 1 1] direction [32] and overestimating the [0 0 1]
magnetostriction by a factor of 2–3 [30]. However given the
smallness of the numbers involved (a fractional distortion of
22 parts per million along the [0 0 1] direction) [17] the level
of agreement in the latter is arguably still good.

In addition to studies of the zero-temperature magnetostric-
tion of elemental Fe, ab initio calculations have also been em-
ployed to investigate the properties of Fe-Ga alloys [33–38],
particularly with regard to the enhanced magnetostriction at
∼19% Ga content [5]. Early calculations employed relatively
small simulation cells to calculate the properties of ordered
phases at particular stoichiometries, e.g., Fe3Ga, where it was
found that the magnetostriction was highly sensitive to the
type of ordering [33]. Larger supercells allowed the investiga-
tion of different stoichiometries, where an increase in magne-
tostriction was observed with Ga content [34]. Most recently,
by using ab initio molecular dynamics simulations of 128-
atom supercells to simulate disordered Fe1−xGax structures, a
peak in magnetostriction was calculated to occur at x = 0.19
[35]. The drop in magnetostriction at larger x was assigned to
the development of D03-type ordering, which (for Fe3Ga) was
previously calculated to have negative magnetostriction [33].
Interestingly, Ref. [35] did not find a particular correlation
between increased magnetostriction and B2-type ordering,
which had previously been proposed [33].

Rather than using supercells, an alternative method of sim-
ulating compositional disorder is to use the coherent-potential
approximation (CPA) [39]. Reference [38] used this approach
to calculate the energetics, electronic structure, and magne-
tizations of different Fe1−xGax phases (A2, B2, and D03).
The advantage of the CPA is its ability to handle arbitrary
compositions [38]. However, the authors of Ref. [38] conclude
that, if the increase in magnetostriction with Ga content is
a consequence of the local Fe environment being modified,
i.e., short-range ordering or clustering, the CPA calculations
(which treat disorder through a single-site effective medium
approach neglecting short-range order) will not capture such
an effect.

It is important to note that an alternative explanation exists
for the magnetostriction behavior of Fe1−xGax in terms of
extrinsic effects. References [40,41] establish a model where
tetragonal nanoheterogeneities rotate under the application of
a magnetic field and enhance the magnetostriction. Although
a number of experimental studies have reported the presence
of such tetragonal nanoheterogeneities [42–44], others have
argued that they do not play a key role [45,46]. Given this
uncertainty it is essential to fully characterize the intrinsic
contribution to the magnetostriction.

In this paper we present ab initio calculations of the
intrinsic magnetostriction of elemental Fe and A2 Fe1−xGax.
Unlike previous DFT-based calculations of magnetostriction
in the literature [26–30,33–35], finite-temperature effects are
included within the DLM picture [19] in which the averaging
over orientational configurations of the local moments is also
handled using the CPA. We focus on the tetragonal [0 0 1]

distortion, which for elemental Fe has an anomalous tempera-
ture dependence [17]. While our method could in principle be
applied also to study a [1 1 1] distortion, we do not address it
in this current study owing to the greater difficulty in obtain-
ing an accurate description of this by T = 0 K DFT calcul-
ations [32].

Our calculations show a high sensitivity of the magne-
tostriction to the Fe lattice parameter and a strongly nonmono-
tonic temperature dependence. For Fe1−xGax we consider the
fully disordered A2 phase, treating Ga doping within the CPA.
Such calculations do not reveal any large enhancement in the
magnetostriction with increased Ga doping. Furthermore the
increase in Ga content suppresses the nonmonotonic temper-
ature dependence observed in elemental Fe.

The rest of our paper is ordered as follows. In Sec. II
we describe our method of calculating the finite-temperature
magnetostriction. In Sec. III we present the results of our
calculations on elemental Fe (Sec. III A) and A2 Fe1−xGax for
0 � x � 0.2 (Sec. III B). Finally in Sec. IV we summarize our
results.

II. THEORY

A. Magnetoelastic coupling

A cubic, magnetized material placed under a strain quan-
tified by the tensor εi j will acquire two additional contri-
butions to its total energy [47]. The first contribution is a
magnetization-independent elastic energy Eel characterized by
the elastic constants ci j :

Eel = 1
2 c11

(
ε2

xx + ε2
yy + ε2

zz

) + 1
2 c44

(
ε2

xy + ε2
yz + ε2

zx

)
+ c12(εxxεyy + εyyεzz + εzzεxx ). (1)

The second contribution is the magnetoelastic energy, which
depends both on the strain and also on the magnetization
direction n̂, which is written in terms of the direction cosines
αi [n̂ = (αx, αy, αz )]. The contribution linear in strain is char-
acterized by the magnetoelastic constants B1 and B2:

Eme = B1
(
α2

x εxx + α2
y εyy + α2

z εzz
)

+ B2(αxαyεxy + αyαzεyz + αzαxεzx ). (2)

In principle Eme also contains a contribution independent
of magnetization direction with magnetoelastic constant B0,
which vanishes for volume-conserving deformations (εxx +
εyy + εzz = 0) [48].

The form of the magnetoelastic energy Eme arises from
basic symmetry considerations, irrespective of the underlying
physical mechanism [47]. In the systems studied here it is
the spin-orbit interaction which couples the total energy of
the system to the magnetization direction n̂, generating the
magnetocrystalline anisotropy (MCA). Now specializing to
the case of a volume-conserving tetragonal deformation for
a system magnetized along the [0 0 1] direction (εxx = εyy =
−εzz/2; εi j = 0 for i �= j; αz = 1; αx = αy = 0), the contribu-
tion to the energy is

E ([001]) = 3
4ε2

zz(c11 − c12) + B1εzz. (3)

Minimizing E ([001]) with respect to the strain εzz, and label-
ing the equilibrium value of εzz as λ001 (the fractional length
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change in the [0 0 1] direction), gives the standard result [48]:

λ001 = −2

3

B1

c11 − c12
. (4)

The magnetostriction constant λ001 can be determined ex-
perimentally through the use of the strain gauge technique
[49], which along with experimental determinations of the
elastic moduli and Eq. (4) can be used to deduce the mag-
netoelastic constant B1.

B. Magnetic torque and magnetoelasticity

To calculate B1, we consider a system strained along the
[0 0 1] direction (εzz = u) with all other strain components set
to zero. The angular-dependent magnetoelastic contribution to
the energy is then simply

E (u, αz ) = B1uα2
z . (5)

Rotating the magnetization away from its preferred direction
yields a torque, whose azimuthal component Tθ = −∂E/∂θ

where cos θ = αz, sin θ cos φ = αx, and sin θ sin φ = αy. Fix-
ing θ = 45◦ gives

Tθ=45◦ = B1u. (6)

The magnetoelastic constants can thus be understood as the
linear response of the magnetic torque to the structural dis-
tortion. A distinction should be drawn between the artificial
strain that is used here to determine B1 and the real strain
that is observed in experiment. The latter is governed by the
system’s Poisson ratio ν, meaning that a strain in the z axis is
coupled with perpendicular strains such that ν = −εxx/εzz =
−εyy/εzz. It is not required that the simulated strain maintain
Poisson’s ratio however, as its purpose is only to deter-
mine B1.

The torque method introduced in Ref. [50] allows Tθ to
be calculated within a zero-temperature DFT framework. The
method was extended to finite temperature in Refs. [20] and
[21] within the DFT-DLM picture and has since been used to
calculate the MCA of various materials [22,23]. By calculat-
ing the torque as a function of strain at different temperatures,
we can obtain the temperature dependence of the magnetoe-
lastic constant B1. For convenience we summarize the key
concepts of the DFT-DLM picture in the following section. A
more thorough description can be found in Refs. [19,21,51].

The form of the dependence of the magnetoelastic torque
on magnetization direction calculated by our method is in-
vestigated in the Supplemental Material [52], where it is
confirmed that the form derived from Eq. (5) is sufficient.

C. The disordered local moment picture

1. Overview

DLM theory can be applied if one is able to establish that
a system’s magnetic temperature dependence is controlled
primarily by the thermally induced disorder of “good” local
moments emerging from the systems’ interacting electrons,
which maintain their magnitudes as temperature is increased.
(This approach can be extended to systems where local mo-
ments emerge cooperatively on clusters of sites [53].) The
system is treated as a lattice with each unit cell having its

own magnetic orientation and with the orientations distributed
according to appropriately determined statistical mechanics.

This picture is rigorous in many materials as the timescale
τ on which electrons arrive at and leave a site is much faster
than the fluctuation of the spin orientation on that site. It is
thus possible for that site i to have a nonzero magnetization
when it is time-averaged over τ , the direction of which is
êi = (sin θ ′

i cos φ′
i, sin θ ′

i sin φ′
i, cos θ ′

i ). The average direction
of magnetization is denoted n̂.

The thermodynamic grand potential 
 is the system
Hamiltonian that could in principle be determined within
constrained DFT on an appropriately large unit cell, which
provides the probability distribution

P({êi}) = 1

Z
exp [−β
({êi})], (7)

where Z is the corresponding partition function [19]. Due to
the inherent complexity of the electronic grand potential, it is
necessary to devise a trial Hamiltonian 
̄0({ê}). We utilize the
mean-field approximation


̄0({ê}) = −
∑

i

hi · êi, (8)

where hi are denoted the Weiss fields. The Weiss fields
are chosen to minimize the quantity F = F0 + 〈
〉T − 〈
̄0〉T

which is an upper bound to the exact free energy [19], where
F0 is the free energy associated with 
̄0 and the thermal
averages 〈〉T at a temperature T are performed with respect
to the trial Hamiltonian. As emphasized in studies which
have looked at magnetic phase diagrams [54,55] and magnetic
anisotropy [21] using DLM theory, at no stage is there any
assumption of pairwise-only interactions among the local
moments. All higher-order terms such as bilinear quartic
terms are included within this description. Performing the
minimization yields the expression for the Weiss fields,

hi = 3

4π

∫
êi〈
〉êi d êi. (9)

The notation 〈X 〉êi represents a partial average, which in this
context means to take an ensemble average that excludes the
specified orientation êi. With the trial Hamiltonian probability
distribution reducing to a product over single-site probabili-
ties,

P0({êi}) = 1

Z0
exp [−β
̄0({êi})] =

∏
i

P0
i (êi ), (10)

one can determine analytical expressions of ensemble aver-
ages, the most important of which being the magnetic order
parameter

mi =
∫

êiP
0
i (êi )d êi = ĥiL(βhi ), (11)

where L(x) = 1/ tanh(x) − 1/x, which is proportional to the
magnetization and aligns with the local Weiss field (β =
1/kBT ). In ferromagnetic systems m(T ) is equivalent to the
reduced magnetization M(T )/M(0), and we shall refer to this
quantity extensively in what follows.
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2. Calculation of magnetic torques

The temperature-dependent magnetic torque is calculated
in DLM theory as the angular derivative of F , i.e., Tθ =
−∂F/∂θ [21]. By writing F as

F = 〈
〉T + 1

β

∑
i

∫
P0

i (êi ) ln P0
i (êi )d êi, (12)

and noting that only the grand-potential term varies with
respect to the direction of magnetization, we have

Tθ = − ∂

∂θ

[∑
i

∫
P0

i (êi )〈
〉êi d êi

]
. (13)

A more complete description of the torque method in the
context of DLM theory is provided in Ref. [21].

3. Coherent-potential approximation

The essential ingredient required to calculate the torque
and Weiss fields is the partial average of the grand potential
〈
〉êi [Eqs. (9) and (10)], which can be calculated using the
coherent-potential approximation (CPA) alongside Korringa-
Kohn-Rostocker (KKR) multiple-scattering theory [39,56].
Here the CPA is used for both treating the chemical disorder
in Fe1−xGax and the magnetic disorder at finite temperature.
The requirement upon which the system is solved is that
an average of all substituted ê’s reproduces the scattering of
the disordered system as a whole. KKR multiple-scattering
theory naturally builds these disordered (rotated) single-site
scattering t matrices via unitary rotation operators.

D. Computational details

The steps taken to calculate the magnetoelastic constant
B1 at finite temperature within the DFT-DLM picture are as
follows:

(1) Perform a self-consistent, scalar-relativistic calcula-
tion on the unstrained (cubic) system with all magnetic
moments ferromagnetically aligned, including compositional
disorder (for Fe1−xGax) at the level of the CPA.

(2) Using the “frozen” atom-centered potentials generated
in the first step, perform a non-self-consistent, fully relativistic
calculation on a strained structure where the magnetic dis-
order is characterized by the order parameter m [Eq. (11)]
magnetized along the direction n̂ = (1, 0, 1)/

√
2. We choose

strains in the range −0.01 � u � 0.01.
(3) Repeat the second step for a set of strains in order to

calculate the torque Tθ=45◦ as a function of u, and extract B1

as the linear coefficient [Eq. (6)].
(4) Repeat steps 2 and 3 for different degrees of magnetic

disorder m.
The scalar-relativistic calculations in step 1 are performed

using the KKR-CPA HUTSEPOT code [57]. We treat the DFT
exchange correlation at the level of the local spin-density
approximation (LSDA) [58] and use the muffin tin approxi-
mation for the potential. The Brillouin zone was sampled on
a 30 × 30 × 30 grid and the angular momentum expansions
were truncated at lmax = 3. In step 2 we use our own code to
solve the Kohn-Sham-Dirac and CPA equations to obtain the
Weiss fields and torques [21]. We use an adaptive Brillouin
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FIG. 1. Torques Tθ calculated for bcc Fe magnetized along the
direction n̂ = (1, 0, 1)/

√
2 with a strain applied along the [0 0 1]

direction, for different magnetic order parameters m.

zone sampling scheme [59], with the magnetic moment ori-
entations sampled in a 250 × 40 grid that is equally spaced
in cos θ ′ and φ′, in order to obtain the necessary numerical
precision to resolve the magnetoelastic coupling energies, and
perform the energy integrals in the complex plane [60]. Due
to the spin-orbit interaction and also the magnetic disorder, it
is necessary to carefully adjust the Fermi energy between the
scalar ferromagnetic and fully relativistic DLM calculations,
so that integrating the calculated density of states yields the
correct number of electrons per unit cell [22]. The effects of
different approximations, such as the atomic sphere or muffin
tin approximations, the use of potentials from a paramagnetic
DLM state or from the T = 0 K ferromagnetic state, and
whether the potentials in step 1 are generated in the strained
system rather than the cubic one are described in the Supple-
mental Material [52].

III. RESULTS AND DISCUSSION

A. bcc Fe

1. Extracting B1

We begin by illustrating our method of extracting B1 from
the torque calculations. Figure 1 shows Tθ=45◦ calculated as
a function of strain for three values of the magnetic order
parameter m, namely m = 1.0, 0.8, and 0.6; m = 1.0 corre-
sponds to the fully ordered, zero-temperature state. We show
data calculated with the cubic lattice parameter a set to 5.20 or
5.40 bohr radii (atomic units, a.u.). 5.20 a.u. (squares in Fig. 1)
corresponds to the zero-temperature bcc Fe lattice constant
obtained from the scalar-relativistic KKR calculations within
the LSDA and muffin tin approximation, while 5.40 a.u.
(triangles) corresponds to the low-temperature lattice constant
measured experimentally [61].

The straight line fits of the data of Fig. 1 confirm the linear
relation between torque and strain described by Eq. (6). The
negative gradient implies a negative value of B1, and therefore
a positive magnetostriction through Eq. (4). However, clearly
both the zero-temperature (m = 1) value of B1 and its evolu-
tion with temperature depend strongly on which cubic lattice
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FIG. 2. Top: The variation in the (negative) magnetoelastic con-
stant B1 with respect to reduced magnetization m for lattice param-
eters between 5.20 a.u. and 5.50 a.u. in bcc Fe. Bottom: The exper-
imentally measured magnetoelastic constant B1 of bcc Fe, extracted
from magnetostriction [13,17] and elastic constant [62,63] data and
plotted in terms of the reduced magnetization m = M(T )/M(0) (cf.
Appendix A). Blue triangles correspond to magnetostriction data
from Ref. [17] and red circles from Ref. [13].

constant is used. Using the theoretical lattice constant of 5.20
a.u. finds B1 to decrease in magnitude as the moments become
more disordered, while at the experimental lattice constant
of 5.40 a.u. the magnitude of B1 undergoes a peak (steeper
gradient) at m = 0.8 compared to m = 1 and 0.6.

2. Volume dependence of B1

To further investigate the dependence of B1 on the bcc
lattice constant, we extend the calculations shown in Fig. 1 to
cover the full range of magnetizations 0 � m � 1 and lattice
parameters 5.20–5.50 a.u. This range includes the lattice pa-
rameter measured at the Curie temperature 1040 K of 5.47 a.u.
[61]. The data are plotted in Fig. 2.

Considering the zero-temperature (m = 1) data first, we
calculate a monotonic shift in B1 to more positive values as the
lattice parameter is increased from 5.20 to 5.45 a.u. Expanding
the lattice further to 5.50 a.u. results in a reduction in B1.
The dependence of B1 on volume is very strong, particularly
around the experimental lattice parameter of 5.40 a.u. Be-
tween a = 5.40 and 5.45 a.u. B1 changes sign, i.e., going from
positive to negative magnetostriction.

As the temperature increases (decreasing m) the behavior
of B1 is also dependent on volume. At the theoretical lattice
constant the magnitude of B1 decreases monotonically. As
the lattice parameter is increased beyond 5.35 a.u. a second
feature develops, which is a peak in the magnitude of B1 at
values of m between 0.7–0.8. This peak remains even at larger
lattice spacings when the zero-temperature magnetostriction
has changed sign. At higher temperatures (m < 0.6) the data
for the various lattice parameters effectively coalesce, vanish-
ing at the Curie point m = 0.

3. Comparison to experiment and previous calculations

As discussed in Sec. II A, experiments do not provide
direct access to B1 but rather measure the fractional change
in length λ001. In Appendix A we describe the conversion
of reported λ001 [13,17] and elastic constant [62,63] values
into B1, and also the conversion of temperature into reduced
magnetization [64,65]. The bottom half of Fig. 2 shows the
resulting values of B1, derived from two different sets of
magnetostriction measurements reported in Refs. [13] and
[17]. The experimentally measured values of B1 show an
initial decrease in magnitude with temperature, followed by an
increase to a maximum value at m = 0.85 before decreasing
again. As described in the Introduction, the origin of this
nonmonotonic behavior has been debated for well over 50
years [1,14,18]. Although there is disagreement among ex-
perimental studies about the presence of another peak in B1

at much lower temperature [13,16,17], the peak at m = 0.85
is consistently observed, and results in an enhancement in
the magnetostriction λ001 of ∼50% at 800 K compared to its
zero-temperature value [17].

Now considering our calculations, concentrating on zero
temperature first, we note that calculations at both the theoret-
ical and experimental lattice parameters (5.20 and 5.40 a.u.)
yield a negative B1 as in experiment. Indeed the calculated
values of B1 are reasonably close to experiment, ranging
between −15.0 and −2.5 MJ m−3 compared to the experi-
mental values of −3.3 [13] and −4.4 MJ m−3 [17]. Previous
zero-temperature calculations based on the LSDA but using
different methodologies (e.g., full potential rather than the
muffin tin approximation) also found values for B1 in the
range between −7.4 and −10.1 MJ m−3 when using theoret-
ical lattice parameters [28,29], while Ref. [30] found that at
the experimental lattice parameter B1 = −8.3 MJ m−3. Our
study investigates the effect on B1 of systematically varying
the lattice constant.

Going beyond zero temperature, we compare the temper-
ature dependence of B1 calculated ab initio to experiment
(Fig. 2). It is very encouraging to observe that the anoma-
lous peak in the magnitude of B1 observed experimentally
appears also in the calculations, for a wide range of lattice
constants (±2% of the experimental value of 5.40 a.u). Given
that the calculations are performed with static ions and no
impurities, our results support the idea that the nonmonotonic
behavior of B1 in bcc Fe is an intrinsic effect distinct from
magnon-phonon coupling [14], and instead can be explained
in terms of the finite-temperature magnetic disorder inducing
changes in the electronic structure [18] and enhancing the
magnetoelastic coupling.
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lattice constants 5.40, 5.45, 5.50 a.u. (cf. Fig. 2) are also shown as
gray symbols.

4. Consideration of thermal expansion

As noted already, the lattice parameter of bcc Fe expands
from 5.40 a.u. close to 0 K to 5.47 a.u. at the Curie point
[61]. Indeed, as shown in Appendix B a decrease in m from
1.0 to 0.8 corresponds to an increase in lattice constant of
0.05 a.u. which, as shown in Fig. 2, will have a major effect
on B1. We can attempt to account for this thermal expansion
by interpolating the values of B1 calculated at a = 5.40,
5.45, 5.50 a.u. to match the experimentally measured lattice
constants (Appendix B), making sure to also account for the
volume dependence of the magnetization.

Figure 3 shows the result of this interpolation. The main
difference compared to the fixed-lattice calculations in Fig. 2
is an initial rapid decrease in the magnitude of B1 as m
decreases from 1.0 to 0.95. We note that this modest de-
crease in m corresponds to a temperature interval of 0–450 K
and increase in lattice parameter of 0.02 a.u. Accordingly
the interpolated value of B1 at m = 0.95 lies approximately
halfway between the values calculated for lattice constants of
5.40 and 5.45 a.u, −1.2 MJ m−3, which is smaller than the
zero-temperature value of −2.5 MJ m−3. Increasing the tem-
perature further leads to the interpolated value coinciding with
the 5.45 a.u. calculation at m = 0.8 and then subsequently
tracking the 5.45 and 5.50 a.u. calculations.

Considering again the experimental data in Fig. 2 we
see that the calculations including thermal expansion effects
provide an explanation for the initial decrease in B1 at low
temperature. According to the zero-temperature calculations,
increasing the cubic lattice parameter pushes B1 towards a
more positive value, favoring negative magnetostriction. This
sensitivity is particularly large around the experimental zero-
temperature lattice parameter (Fig. 2). Therefore, as the lattice
constant increases due to thermal expansion while the magne-
tization is effectively constant, the magnitude of B1 decreases.
At higher temperature (m ∼ 0.8) the peak in B1 calculated
for the wide range of lattice parameters dominates. Finally, as
the temperature further increases the magnetoelastic constant

 0.0001

 0.001

 0.01

 0.1

 1

 10

0.01 0.02 0.03       0.1 0.2 0.3 0.4   0.65

-B
1 

(M
J/m

3 )

m

Single ion theory: B  m2, m<0.65
5.20 a.u.: B  m2.6, m<0.25
5.30 a.u.: B  m2.3, m<0.25
5.40 a.u.: B  m2.2, m<0.25
5.50 a.u.: B  m2.2, m<0.25

5.20 a.u.
5.20 a.u. ( t)

5.30 a.u.
5.30 a.u. ( t)

5.40 a.u.
5.40 a.u. ( t)

5.50 a.u.
5.50 a.u. ( t)

FIG. 4. The high-temperature variation in magnetoelastic con-
stant B1 with respect to reduced magnetization for lattice parameters
between 5.20 a.u. and 5.50 a.u. for bcc Fe, plotted on a logarithmic
scale and fitted to a power law Axγ .

reduces to zero with the magnetic order parameter, which we
consider further in the next section.

At this point it is natural to ask whether experiments also
observe a strong sensitivity of the magnetostriction to lattice
parameter a. Experimentally, Franse et al. [66] determined
that the application of pressure to bcc Fe increases λ001 at a
rate of 0.8 × 10−6 kbar−1. In order to calculate the rate of
change of B1 with respect to lattice parameter a we apply
the chain rule to Eq. (4), deriving the expression [introducing
c′ = (c11 − c12)/2]

∂B1

∂a
= −3

(
λ001

∂c′

∂P
+ c′ ∂λ001

∂P

)/
∂a

∂P
. (14)

The pressure derivatives ∂c′/∂P [67] and ∂a/∂P [68] are
1.07 and 1.1 × 10−3 a.u. kbar−1, respectively. Therefore ex-
perimentally, ∂B1/∂a = −680 MJ m−3 a.u.−1. This value is
indeed consistent with our calculations, which at the theo-
retical lattice parameter (a = 5.20 a.u.) give ∂B1/∂a = −360
MJ m−3 a.u.−1, while at a = 5.40 a.u. they give ∂B1/∂a =
−1100 MJ m−3 a.u.−1.

5. High-temperature power-law behavior

In Fig. 4 we focus on the high-temperature behavior of
the magnetoelastic constant, plotted on a logarithmic scale
for lattice parameters a = 5.20, 5.30, 5.40, and 5.50 a.u. For
m � 0.25 the data demonstrate good agreement with a power-
law relationship, which we fit in this region as B = Axγ with
γ = 2.2–2.6, as shown in the figure. We recall that the high-
temperature behavior expected from single-ion theory [9] is
γ = 2. There is reasonable agreement between single-ion
theory and the calculations, particularly at a = 5.30, 5.40, and
5.50 a.u., for m � 0.25.

It should be noted however that the m2 behavior predicted
by single-ion theory is expected to hold for m � 0.65, which
is clearly not the case in the calculations. We also point
out that both single-ion theory and the DFT-DLM picture
are mean-field theories, so while there is agreement between
theory and our calculations, they are unlikely to provide a
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FIG. 5. The density of states for the majority and minority spin
channels (positive/negative scales, respectively) in bcc Fe for a =
5.30 (red, solid), 5.40 (blue, dashed), and 5.50 a.u. (green, dotted),
where zero energy corresponds to the Fermi energy.

full description of magnetic properties close to the Curie
temperature.

6. Band-filling analysis

In order to investigate the dramatic volume dependence of
B1 at zero temperature, we plot the scalar-relativistic density
of states (DOS) of bcc Fe around the Fermi energy E f at
a = 5.30, 5.40, and 5.50 a.u. in Fig. 5. It is clear that an
increase in lattice parameter represents a positive shift of
features in the minority DOS relative to E f , while their shape
remains largely unchanged (features in the majority DOS also
shift, but noticeably less so). We see this in how E f lies
around the center of the large valley in the minority DOS
when a = 5.30 a.u., whereas at 5.40 a.u. E f is situated at
the left-hand side of this valley and by a = 5.50 a.u. it lies
outside. In terms of magnetostriction, Fig. 2 shows that λ001

changes sign between a = 5.40 and 5.50 a.u., coinciding with
E f exiting this valley. It should also be noted that while E f lies
firmly in the center of this valley, between 5.20 and 5.35 a.u.,
the volume dependence of B1 is far less than it is when E f is
located around the shoulder.

To confirm the importance of the location of the Fermi level
with respect to features in the electronic structure, in Fig. 6 we
plot B1 both as a function of lattice parameter (red) and band
filling (blue). The latter calculations were performed by fixing
a = 5.20 a.u. and varying the Fermi energy. There is a striking
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FIG. 6. The variation in zero-temperature magnetoelastic con-
stant B1 with respect to change in lattice parameter from a =
5.20 a.u. (red line and axes) and shift in Fermi energy (blue line and
axes). The arrows indicate which axes the data belong to.

correlation between the two curves between 5.15 and 5.45 a.u.
Outside this range, it is possible that expanding or contracting
the lattice no longer represents a straightforward energy shift
in the DOS and that more complex changes in the shape of the
band structure become significant.

With this correlation in mind, we now turn our attention to
the DOS of bcc Fe over the same range of lattice parameters at
m = 0.8, plotted in the bottom half of Fig. 5, around which the
peak in magnetostriction occurs and the volume dependence
has been mostly suppressed. Here we can see that onset of
some magnetic disorder has effectively washed out finer fea-
tures of the DOS and introduced new ones [69]. For example,
the shoulder over which E f passes as the lattice expands
when m = 1 is now far less well defined. This means that
the environment around E f has been somewhat homogenized
with respect to different lattice parameters. This could explain
the reduced volume dependence. The origin of the peak in
magnetostriction is less clear however. It is possible that for
a = 5.40 and 5.50 a.u. the local environment around E f more
resembles that seen at 5.30 a.u., where it sits inside the valley
rather than at the edge, which we know corresponds to an
enhancement in magnetostriction at m = 1.

B. A2 Fe1−xGax

1. Zero-temperature magnetoelasticity

We now explore the effect of doping Ga into bcc Fe. We use
the CPA to model the fully disordered A2 structure, i.e., the
Ga atoms are equally likely to occupy all bcc sites. Figure 7
shows the magnetoelastic constant B1 as a function of Ga
concentration, calculated at zero temperature (m = 1). As for
pure iron (Fig. 2) we consider a range of lattice parameters,
from 5.20–5.50 a.u.

The most striking feature of Fig. 7 is that the strong
sensitivity of B1 to the lattice parameter of bcc Fe (x = 0) is
suppressed by the addition of Ga. Indeed, at x = 0.20 the vari-
ation in B1 is less than 1 MJ m−3 between a = 5.20–5.50 a.u.,
compared to 27 MJ m−3 for bcc Fe. At x = 0.20, B1

is ∼−5 MJ m−3 for all considered lattice parameters. This
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FIG. 7. The magnetoelastic constant B1 calculated for fully dis-
ordered (A2) Fe1−xGax as a function of Ga concentration, for differ-
ent lattice parameters.

value represents a reduction in the magnitude of B1 with Ga
concentration for all cases except a = 5.40 a.u.

Similarly to what we did in Fig. 3, in order to account for
the expansion of the lattice at zero temperature as a result of
Ga addition we interpolate our calculations according to the
experimentally measured lattice constant data in Ref. [70],
which we have assumed to behave linearly between 5% and
15%. The result of this interpolation is shown as the dashed
line in Fig. 7. We see that the enhancement in B1 is less
than 2 MJ m−3 even when taking the lattice expansion into
account. Therefore, the zero-temperature calculations do not
show any clear fingerprint of the ∼10× enhancement of the
magnetostriction observed experimentally [5].

2. Effect of Ga on the zero-temperature density of states

In order to investigate the suppression of the volume de-
pendence of B1 with Ga concentration, in Fig. 8 we plot the
scalar-relativistic DOS projected onto the Fe atoms for differ-
ent lattice parameters and Ga concentrations. In bcc Fe (x =
0), as detailed in Sec. III A 6, there are noticeable changes in
the DOS close to the Fermi energy upon varying the lattice
parameter due to a shift in the minority DOS features relative
to E f . The different behavior of these states when magnetized
along different directions generates the MCA and magne-
tostriction [26]. However, increasing the Ga concentration
within the CPA has the effect of smoothing over these fine
features of the DOS, similarly to that seen by increasing
magnetic disorder in Fig. 5. We can therefore draw close
comparisons between the Ga concentration and magnetic
order dependencies of B1 over different lattice parameters.
In both cases there is a decrease in volume dependence with
increasing disorder (chemical and magnetic). Smaller lattice
parameters (5.20–5.30 a.u.) produce a monotonic decrease in
−B1 with increasing disorder, while larger lattice parameters
(5.40–5.50 a.u.) mostly produce an increase in −B1.

3. Fe1−xGax at finite temperature

In Fig. 9 we investigate the temperature dependence of B1

of A2 Fe1−xGax for different Ga concentrations and lattice
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FIG. 8. The scalar-relativistic density of states projected onto the
Fe atoms in A2 Fe1−xGax (x = 0, 0.1, 0.2) for a = 5.30 (red, solid),
5.40 (blue, dashed), and 5.50 a.u. (green, dotted). The energy zero
corresponds to the Fermi energy.

parameters. As already shown for zero temperature, increas-
ing the Ga concentration reduces the volume sensitivity of
B1 compared to pure Fe (Fig. 2). Of particular interest is the
peak in B1 calculated to occur at m ∼ 0.7–0.8 for pure Fe.
While nonmonotonic behavior of B1 with temperature is still
observed at low Ga concentration, the peak in B1 becomes less
discernible for x > 0.10. Indeed, for x = 0.20, B1 undergoes
a monotonic decrease with temperature at all lattice constants.

Exploring the x = 0.20 data further, recalling that single-
ion theory predicts B(T ) approximately ∝ m3 and m2 at low
and high temperatures, respectively [71], in Fig. 9 we compare
the calculations against m3 behavior (dashed line). We see
that the power-law relation gives a reasonable account of the
calculations. Furthermore, in the inset of Fig. 9 we replot B1

versus temperature on a logarithmic scale. In comparison to
pure Fe (Fig. 4), the high-temperature power-law dependence
Axγ holds over a wider range of m (m < 0.6) when a =
5.50 a.u., with γ = 2.2 throughout.

4. Comparison with experimental data

We stress that, in light of the previous theoretical and
experimental studies of Galfenol outlined in the Introduc-
tion, the neglect of short- and long-range ordering effects
in the CPA calculations on the simplest A2 structure will
unlikely provide an accurate description of its properties. In
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FIG. 9. The variation in B1 with respect to reduced magnetization m(T ) = M(T )/M(0) for lattice parameters between 5.20 a.u. and
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predicted by single-ion theory. The inset in the bottom right plot is a log-log plot of B1 against m for x = 0.20 at 5.50 a.u., demonstrating the
m2.2 dependence at low temperatures.

particular, as already noted, our calculations do not show a
large enhancement in the magnetoelastic constant B1 around
19% Ga doping. Nevertheless, we still wish to make a tenta-
tive connection of our calculations to the experimental studies
of the temperature-dependent magnetostriction of Galfenol
reported in Ref. [72]. The authors of that work observed
that the anomalous, nonmonotonic magnetoelastic tempera-
ture dependence of bcc Fe still exists at x = 0.086, but is
no longer observed at x = 0.166. This result is consistent
with our calculations, which show a clear suppression of
the nonmonotonic thermal behavior with increasing Ga con-
centration. Additionally, the data in Ref. [72] show that the
peak in magnetostriction exhibited at x = 0.086 is broader
than that seen in bcc Fe, which again is reflected in our
calculations. It was also observed in Ref. [72] that, at low
temperatures, the temperature dependence of Fe0.834Ga0.166

is well described by the single-ion theory m3 power law.
As described in the previous section, at 20% Ga content
our calculations also show good agreement with the single-
ion description. These comparisons are qualitative at best
and based on a limited set of data. Nevertheless, they do
provide a clear motivation to study the temperature depen-
dence of B1 for other Fe-Ga orderings, to ascertain whether
there is some universal behavior shared across the different
phases.

IV. SUMMARY AND CONCLUSIONS

We have used density-functional theory in the disordered
local moment picture to calculate the temperature dependence
of the magnetoelastic constant B1 for two systems: bcc Fe

and fully disordered (A2) Fe1−xGax. The calculations are
based on the methodology developed previously for calculat-
ing the temperature-dependent magnetocrystalline anisotropy
from the magnetic torque. The current method extracts B1

from torque calculations performed on tetragonally strained
systems.

The calculations on bcc Fe revealed two key features: a
strong dependence of the zero-temperature magnetostriction
on the lattice constant, and a peak in the magnitude of B1 at
a magnetic ordering of m ∼ 0.7–0.8 across a range of lattice
constants. Taken together, these features provide an explana-
tion for the experimentally observed temperature dependence
of B1: a decrease over the 0–500 K temperature range due to
lattice expansion, followed by the peak at m = 0.85 (800 K).
We note that the calculations did not find a peak in B1 at lower
temperatures, which was reported in some earlier experiments
[13] but not found in more recent work [17]. The calcu-
lated sensitivity of B1 to lattice parameter is also consistent
with experimental measurements of magnetostriction under
pressure [67].

The calculations on A2 Fe1−xGax found a weakening of
the magnetoelastic constant with increasing Ga content, and
a suppression of the nonmonotonic temperature dependence
observed for bcc Fe. The well-known enhancement in magne-
tostriction at 19% Ga content was absent from the calculated
results, confirming that some Fe-Ga ordering seems to be
necessary to provide an intrinsic explanation for the strong
magnetostrictive properties of Galfenol. Nonetheless, the cal-
culations did reproduce some experimental observations at
finite temperature, specifically a simple power-law behavior
in terms of m(T ) for a Ga content of 20%.
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FIG. 10. Experimentally measured values of (a) reduced magne-
tization (Ref. [64]), (b) elastic constants (Ref. [62] for 0–300 K and
Ref. [63] for > 300 K), and (c) magnetostriction λ001 (Ref. [13], red
circles; Ref. [17], blue triangles). The line connecting the magnetiza-
tion data in (a) is the function introduced in Ref. [65] as described in
the text. The magnetoelastic constants calculated using Eq. (4), the
elastic constants, and the two magnetostriction data sets are shown
in (d).

Our calculations have shown that the peak in B1 with
temperature of bcc Fe can be explained intrinsically and
correlates with electronic structure features. We have however
been unable to uncover the precise electronic mechanism for
its origin. What is remarkable is that at zero temperature B1

is highly sensitive to the lattice parameter, yet this sensitivity
is sufficiently suppressed by a relatively small amount of
magnetic disorder (m ∼ 0.8; cf. Fig. 2) to yield the peak in
B1 across a range of lattice constants.

The calculation method described here is sufficiently gen-
eral to be applied to a range of systems, where the thermally
induced magnetic excitations are adequately described in
terms of fluctuating local moments and particularly where the
magnetism has an itinerant origin and therefore expected to
be not necessarily described by single-ion theory. Based on
the current work the obvious next steps are to study ordered
Fe-Ga phases, particularly in order to establish whether the
addition of Ga always suppresses the nonmonotonic temper-
ature dependence of B1 in bcc Fe. The giant magnetostrictive
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FIG. 11. Experimentally measured lattice constants of bcc Fe
reported in Ref. [61] as a function of (a) temperature and (b) reduced
magnetization.

Laves phase compounds REFe2 (RE = rare earth), where
the magnetism originates from both itinerant and localized
electrons, also represent key test cases for the ab initio theory.
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APPENDIX A: EXTRACTING B1 FROM EXPERIMENT

In Fig. 10 we show the previously reported experimental
data [13,17,62–65] used to derive the magnetoelastic constant
B1 of bcc Fe shown in Fig. 2 of the main text. B1 is calculated
as a function of temperature from the elastic constants and [0
0 1] magnetostriction shown in Figs. 10(b) and 10(c) using
Eq. (4), and plotted in Fig. 10(d). We then use the reduced
magnetization data in Fig. 10(a) to map the temperature axis
onto m (Fig. 2). For this mapping it is convenient to use
the parametrization of the experimental data introduced in
Ref. [65], m(τ ) = [1 − sτ 3/2 − (1 − s)τ p]1/3 with τ = T/TC ,
s = 0.35, p = 4, and TC = 1044 K. This parametrization is
also shown in Fig. 10(a).

APPENDIX B: THE THERMAL EXPANSION OF BCC Fe

In Fig. 11 we show the lattice constants of bcc Fe re-
ported in Ref. [61]. The data are reported as a function of
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temperature in Ref. [61] [Fig. 11(a)]; we use the experi-
mentally measured magnetization data and parametrization
showed in Fig. 10(a) to replot the data as a function of reduced
magnetization m in Fig. 11(b). This information was used

in the calculations of the magnetoelastic constant accounting
for thermal expansion (Fig. 3 of the main text). The fac-
tor of 1.00202 × 10−10 was used to convert kX units into
meters.
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