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Nonlocal spin-charge conversion via Rashba spin-orbit interaction
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We show theoretically that conversion between spin and charge by spin-orbit interaction in metals occurs even
in a nonlocal setup where magnetization and spin-orbit interaction are spatially separated if electron diffusion
is taken into account. Calculation is carried out for the Rashba spin-orbit interaction treating the coupling with
a ferromagnet perturbatively. The results indicate the validity of the concept of effective spin gauge field (spin
motive force) in the nonlocal configuration. The inverse Rashba-Edelstein effect observed for a trilayer of a
ferromagnet, a normal metal and a heavy metal can be explained in terms of the nonlocal effective spin gauge
field.
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I. INTRODUCTION

The objective of spintronics is to manipulate spins by
electrical means and vice versa. For generating spin accumu-
lation and spin current, several methods have been experimen-
tally established in the past two decades, including the spin
pumping effect [1–4], where magnetization precession of a
ferromagnet (F) is used to generate spin current into a normal
metal (NM) in an F-NM junction. For electrical detection of
spin current, the so-called inverse spin Hall effect induced by
spin-orbit interaction of heavy metal is widely used [5].

Another electrical detection of spin is based on interfa-
cial Rashba spin-orbit interaction, called the inverse Rashba-
Edelstein effect. This effect, the reciprocal effect of the
current-induced spin polarization studied theoretically by
Edelstein [6], has been experimentally demonstrated in a
trilayer of a ferromagnet, a normal metal, and a heavy metal
(HM) (Fig. 1) [7]. The Rashba interaction is expected to be
localized at the interface of NM and HM, and the normal
metal works as a spacer to separate the magnetization and
the Rashba interaction. The current observed was argued to
support the spin current picture, in which a spin current
generated by the spin pumping effect propagates through the
normal metal, forming spin accumulation at the NM-HM
interface, finally resulting in a current as a result of inverse
Rashba-Edelstein effect.

Theoretically, current generation indicates the existence of
an effective electric field (motive force). In the present mag-
netic systems, it is the one driving electron spin, namely the
effective spin gauge field or spin-motive force. The effective
spin gauge field has been known to arise for a slowly varying
magnetic texture in ferromagnets, as the texture gives rise to a
phase (spin Berry’s phase) for the electron spin wave function
as a result of the sd exchange interaction [8,9]. The spin
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Berry’s phase generates a current when magnetization has
dynamics besides spatial texture. The concept of effective spin
gauge field was shown to be generalized to include spin-orbit
interactions that are linear in the wave vector, like the Rashba
interaction [10–12]. It was demonstrated that magnetization
M and the Rashba field α give rise to an effective spin gauge
field proportional to α × M, leading to an effective electric
field and current proportional to α × Ṁ. It was also pointed
out that spin relaxation leads to a perpendicular effective
spin electric field, α × (M × Ṁ) [13]. The latter component
leads to a direct current (dc) for a precessing magnetization,
while the former induces only alternating current. The dc is
in the direction perpendicular to both α and the average of
M, which agrees with the geometry of the experimentally
observed inverse Rashba-Edelstein effect. The above theories,
however, do not directly apply to the experimental situations
with a spacer layer, as the coexistence of magnetization and
Rashba interaction is assumed in the theories.

The objective of the paper is to demonstrate theoretically
that the concept of effective electric field can be generalized
to describe nonlocal configurations where the magnetiza-
tion and the Rashba interaction are spatially separated by a
nonmagnetic metal. For charge transport in metals, longer
distance than the electron mean free path is possible due to
electron diffusion; current generation in disordered metals can
therefore occur nonlocally. As far as the diffusion is induced
by elastic-scattering-conserving spin, the spin information is
expected to be equally transported long distance. In fact,
the long-range diffusive component of spin current induced
by magnetization dynamics was studied in Ref. [14]. The
spin-charge conversion effect was briefly mentioned there but
assuming uniform Rashba interaction. It was also pointed out
that long-range spin chirality contributes to the anomalous
Hall effect in disordered ferromagnet if the spatial size is less
than the spin diffusion length [15], indicating that spin Berry’s
phase has long-range components. Moreover, spin Hall and
inverse spin Hall effects were recently formulated in terms
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FIG. 1. Schematic figure of a trilayer of a ferromagnet (F), a
normal metal (NM), and a heavy metal (HM). The Rashba spin-orbit
interaction is localized at the NM-HM interface.

of nonlocal conversion of spin and electric current including
electron diffusion [16]. In this representation, the observed
spin density (or current) in the direct (inverse) spin Hall effect
is directly related to the driving electric field (or spin pumping
field) via a nonlocal response function of spin and electric
current.

In this paper, we calculate electric current generated in
the system of conduction electron with the sd exchange
interaction with a dynamic magnetization and the Rashba
interaction having spatial distributions. Although experiments
are carried out in trilayers with rather sharp interfaces, we
here describe the slowly varying case, which can be accessible
straightforwardly by an expansion with respect to the wave
vectors of the two interactions. The vertex corrections (VCs)
to the correlation function representing the effect turns out to
contain a singular pole at a slowly varying limit, indicating
the diffusive nature. The diffusion propagator arising from this
pole is shown to connect the information of the magnetization
and the Rashba interaction even when they are spatially sep-
arated, resulting in a nonlocal current generation. The effect
is interpreted in terms of the nonlocal component of the spin
electric field.

II. MODEL AND GREEN FUNCTIONS

We consider the following model Hamiltonian, H =
H0 + HR + Hsd (t ), with:

H0 =
∫

dr ψ†(r)

[
− h̄2∇2

2me
+ uV

Ni∑
i=1

δ(r − Ri )

]
ψ (r),

(1a)

HR = − ih̄

2
εi jk

∫
dr αi(r){ψ†(r)σk[∇ jψ (r)]

− [∇ jψ
†(r)]σkψ (r)}, (1b)

Hsd (t ) = −
∫

dr ψ†(r)[M(r, t ) · σ]ψ (r), (1c)

where ψ (r) = t (ψ↑(r), ψ↓(r)) is the spinor form of the anni-
hilation operator of electron with the mass being me and H0

consists of the kinetic term and nonmagnetic impurity poten-
tial with the strength being u. HR is the Rashba spin-orbit
interaction with the spatial-dependent Rashba field denoted
by α(r) = (αx(r), αy(r), αz(r)). The sd exchange interaction
is given by Hsd (t ), where M(r, t ) is the magnetization vector

including the sd interaction strength. We deal with H0 as the
unperturbed Hamiltonian and treat HR and Hsd perturbatively.
Here V is the volume of the system, σ = (σx, σy, σz ) is the
vector form of the Pauli matrices, h̄ is the Planck constant
divided by 2π , and εi jk is the Levi-Civita symbol. We consider
the slowly varying case with weak spatial dependencies of
M(r) and α(r). Our particular interest is the case where M(r)
and α(r) do not coexist, such as a trilayer structure composed
of F, NM, and HM.

The charge current density operator of the system is given
by

j(r) = − eh̄

2mei
{ψ†(r)[∇ψ (r)] − [∇ψ†(r)]ψ (r)}

+ eα(r) × s(r), (2)

the first two terms of which we call the current density for
the normal velocity and the last term is the same for the
anomalous velocity, where e (> 0) is the elementary charge
and s(r) = ψ†(r)σψ (r) is the spin density. In the Fourier
forms, the Hamiltonians of Eqs. (1) are given as

H0 =
∑

k

εkc†
kck + u

∑
k,q

Ni∑
i=1

eiq·Ri c†
k+ q

2
ck− q

2
, (3a)

Hsd (t ) = −
∫

dω

2π
e−iωt

∑
q

S(−q) · M(q, ω), (3b)

HR =
∑
k,q

(αq × h̄k) · c†
k+ q

2
σck− q

2
, (3c)

where εk = h̄2k2/2me and s(q) is the Fourier component of
the spin operator given by

s(q) = 1

V

∑
k

c†
k− q

2
σck+ q

2
. (4)

The current density in the Fourier form is given as

j(q) = − e

V

∑
k

h̄k
me

c†
k− q

2
ck+ q

2
+ e

∑
q′

αq′ × s(q − q′), (5)

where the first and second terms correspond to the currents of
the normal and anomalous velocities, respectively.

We denote the thermal Green function for the Hamiltonian
H0 + HR as Gk,k′ (iεn), which is evaluated up to the first order
with respect to HR as

Gk,k′ (iεn) � gk(iεn)δk,k′ + h̄

2
gk(iεn)

× σ · (αk−k′ × (k + k′))gk′ (iεn), (6)

where εn = (2n + 1)πkBT is the Matsubara frequency of
fermion and gk(iεn) is the thermal Green function for the
Hamiltonian H0 given by

gk(iεn) = 1

iεn − εk + isgn(εn)h̄/(2τ )
(7)

with the signum function sgn(x). The lifetime of electron
evaluated within the Born approximation is given as

h̄

2τ
= πniu

2ν (8)
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FIG. 2. The Feynman diagrams of χ
(1,n)
i j and χ

(1,a)
i j . The solid lines with two arrows denote the Green functions including the Rashba

interaction given by Eq. (6), the filled circle represents the spin vertex, the unfilled triangle describes the normal velocity vertex, and the
dashed wavy line indicates the anomalous velocity vertex without the Pauli matrix.

with ν = ν(εF ) being the density of states (DOS) at the Fermi
energy εF of NM.

III. NONLOCAL EFFECTIVE ELECTRIC FIELDS

By evaluating the nonlocal charge current induced by the
magnetization dynamics, and using the Drude conductivity,
we show that the charge current is driven by the nonlocal
effective electric fields. We consider the exchange interaction
up to the second order and the Rashba interaction in the first
order in this section.

A. Linear response to exchange interaction

For the linear response of the charge current 〈 j(r, t )〉(1) to
the external field n(r′, t ′), where the external Hamiltonian is
given by Hsd (t ′), the current is calculated based on the Kubo
formula [17] (see Appendix A 2) as

〈 ji(r, t )〉(1) = i

h̄

∫ t

−∞
dt ′〈[ ji(r, t ),Hsd (t ′)]〉

=
∫

dr′
∫ ∞

−∞
dt ′χR,(1)

i j (r, r′; t − t ′)Mj (r′, t ′), (9)

where ji(r, t ) is the Heisenberg representation of Eq. (2),
[A, B] = AB − BA is the communicator, 〈· · · 〉 is the thermal
average for H0 + HR, and the linear response coefficient
χ

R,(1)
i j (r, r′; t − t ′) is the retarded correction function between

the charge current density and the spin density,

χ
R,(1)
i j (r, r′; t − t ′) = − i

h̄
θ (t − t ′)〈[ ji(r, t ), s j (r′, t ′)]〉 (10)

with θ (t ) being the Heaviside step function and s j (r′, t ′) being
the Heisenberg representation of the spin density. Note that,
since the Rashba field in the system has the spatial depen-
dence, the linear response coefficient cannot be expressed as
χ

R,(1)
i j (r − r′; t − t ′), which also means that the space transla-

tional symmetry is not assumed in the system.
In the Fourier form, the charge current is given as

〈 ji(q, ω)〉(1) =
∑

q′
χ

R,(1)
i j (q, q′; ω)Mj (q′, ω). (11)

Here χ
R,(1)
i j (q, q′; ω) can be calculated from the following

correlation function in the Matsubara formalism:

χ
(1)
i j (q, q′; iωλ) = −V

∫ β

0
dτeiωλτ 〈Tτ ji(q, τ )s j (−q′, 0)〉,

(12)
by taking the analytic continuation, iωλ → h̄ω + i0, as

χ
R,(1)
i j (q, q′; ω) = χ

(1)
i j (q, q′; ω + i0), (13)

where β = 1/kBT is the inverse temperature with the Boltz-
mann constant kB and ωλ = 2πλ/β (λ = 0,±1, . . .) is the
Matsubara frequency of boson. Note that the Matsubara fre-
quencies are defined as in unit of energy instead of frequency.
By means of the thermal Green function for H0 + HR,
Eq. (12) is expressed as

χ
(1)
i j = χ

(1,n)
i j + χ

(1,a)
i j + χ

(1,n)(df)
i j + χ

(1,a)(df)
i j , (14)

where χ
(1,n)
i j and χ

(1,a)
i j are the contributions from the normal

and anomalous velocities without vertex corrections, which
are given as

χ
(1,n)
i j (q, q′; iωλ) = − e

βV

∑
n

∑
k,k′

h̄ki

me

× tr[Gk+ q
2 ,k′+ q′

2
(iεn+iωλ)σ jGk′− q′

2 ,k− q
2
(iεn)],

(15a)

χ
(1,a)
i j (q, q′; iωλ) = e

βV

∑
n

∑
q′′

εilmαq′′,l

∑
k,k′

tr[σm

× Gk,k′ (iεn + iωλ)σ jGk′−q′,k+q′′−q(iεn)].

(15b)

Figure 2 depicts χ
(1,n)
i j and χ

(1,a)
i j . Contributions χ

(1,n)(df)
i j

and χ
(1,a)(df)
i j contain the diffusion ladder VCs (the superscript

(df) representing the diffusion contribution), whose diagrams
and expressions are given in Appendix B [Figs. 4(d)–4(j)].
In order to evaluate them up to the first order of the Rashba
interaction, we expand the Green functions in Eq. (15a) by
using Eq. (6). As Eq. (15b) is already the first order of
the Rashba interaction, the Green functions there can be
approximated as Gk,k′ (iεn) = gk(iεn)δk,k′ . We take the ana-
lytic continuation, iωλ → h̄ω + i0, and calculate the ω-linear
contribution, which leads to a contribution proportional to
Ṁ. We also expand them up to the second order with re-
spect to q and q′. The details of the calculations are shown
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q
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+
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FIG. 3. The Feynman diagrams of χ
(2,n)
i jk and χ

(2,a)
i jk . The lines and symbols are defined in the caption of Fig. 2.

in Appendix C. Finally, we obtain

χ
R,(1)
i j (q, q′; ω) = eεml jαq−q′,l

[
η

(1)
q,q′,im + iω ϕ

(1)
q,q′,im + · · · ],

(16)

ϕ
(1)
q,q′,im = 2ντ

q′2 [δim(q − q′) · q′ − (qi − q′
i )q

′
m], (17)

where η
(1)
q,q′,im is the static response to the magnetization and

ϕ
(1)
q,q′,im is the dynamical response of our interest. In the real

space, using the Drude conductivity σD = 2e2νεF τ/(3me) =
e2νD0 with ν = ν(εF ) being DOS at the Fermi energy of NM
and D0 being the diffusion constant, we find the linear-order
current as

〈 j(r, t )〉(1) = −el2ντ

3

∫
dr′D(r − r′)((∇r′ · ∇r)[α(r)

× Ṁ(r′, t )] − ∇r{∇r′ · [α(r) × Ṁ(r′, t )]})

(18)

= −el2ντ

3

∫
dr′D(r − r′)

× (∇r′ × {∇r × [α(r) × Ṁ(r′, t )]}), (19)

where

D(r) ≡ 1

V

∑
q

eiq·r

D0q2τ
= 3

4π l2

1

r
(20)

is the diffusion propagator, with l ≡ √
3D0τ being the elastic

mean free path.

B. Second-order response to exchange interaction

For the second-order response to the exchange Hamilto-
nian, the charge current is given by

〈 ji(r, t )〉(2)

=
(

i

h̄

)2 ∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′〈[[ ji(r, t ),Hsd (t ′)],Hsd (t ′′)]〉

=
∫∫

dr′dr′′
∫∫ ∞

−∞
dt ′dt ′′χR,(2)

i jk (r, r′, r′′; t − t ′, t ′ − t ′′)

× Mj (r′, t ′)Mk (r′′, t ′′), (21)

where the second-order response coefficient
χ

R,(2)
i jk (r, r′, r′′; t − t ′, t ′ − t ′′) is expressed as

χ
R,(2)
i jk (r, r′, r′′; t − t ′, t ′ − t ′′)

= 1
2 [Qi jk (r, r′, r′′; t − t ′, t ′ − t ′′)

+ Qik j (r, r′′, r′; t − t ′′, t ′′ − t ′)], (22)

Qi jk (r, r′, r′′; t − t ′, t ′ − t ′′)

=
(

i

h̄

)2

θ (t − t ′)θ (t ′ − t ′′)

×〈[[ ji(r, t ), s j (r′, t ′)], sk (r′′, t ′′)]〉. (23)

Here χ
R,(2)
ik j (r, r′′, r′; t − t ′′, t ′′ − t ′) = χ

R,(2)
i jk (r, r′, r′′; t −

t ′, t ′ − t ′′). In the Fourier form, the current is given as

〈 ji(q, ω)〉(2) =
∑
q′,q′′

∫ ∞

−∞

dω′

2π
χ

R,(2)
i jk (q, q′, q′′; ω,ω′)

× Mj (q′, ω − ω′)Mk (q′′, ω′). (24)
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From Appendix A 3, the nonlinear response coefficient
χ

R,(2)
i jk (q, q′, q′′; ω,ω′) is evaluated from

χ
(2)
i jk (q, q′, q′′; iωλ, iωλ′ ) = V 2

2

∫∫ β

0
dτdτ ′eiωλτ+iωλ′ τ ′

× 〈Tτ ji(q, τ + τ ′)s j (−q′, τ ′)

× sk (−q′′, 0)〉 (25)

by taking the analytic continuations as

iωλ → h̄ω + 2i0, iωλ′ → h̄ω′ + i0. (26)

Note that in order to obtain the precise response coefficient,
the order of the analytic continuations for iωλ and iωλ′ must be
specified; taking iωλ′ to the real frequency h̄ω′ and then taking
iωλ to h̄ω from the upper plane (ωλ(′) > 0). Hence, we have set
Eq. (26). We should emphasize that the thermal quantum field
theory can apply to the nonlinear responses as demonstrated
by Jujo [18] and by Kohno and Shibata [19]. (See Appendix A
for general cases.)

Here we separate Eq. (25) into three components in a way
similar to the calculation of χ

(1)
i j [Eq. (14)],

χ
(2)
i jk = χ

(2,n)
i jk + χ

(2,a)
i jk + χ

(2,n)(df)
i jk + χ

(2,a)(df)
i jk , (27)

where the first two terms are the contributions from the normal
and anomalous velocities without VCs, respectively, given by
Fig. 3, which reads

χ
(2,n)
i jk (q, q′, q′′; iωλ, iωλ′ )

= − e

2βV

∑
n

∑
k,k′,k′′

h̄ki

m
× tr[Gk+ q

2 ,k′+ q′
2

(iεn + iωλ)

× σ jGk′− q′
2 ,k′′+ q′′

2
(iεn + iωλ′ )σkGk′′− q′′

2 ,k− q
2
(iεn)

+ Gk+ q
2 ,k′′+ q′′

2
(iεn)σkGk′′− q′′

2 ,k′+ q′
2

(iεn − iωλ′ )

× σ jGk′− q′
2 ,k− q

2
(iεn − iωλ)], (28)

χ
(2,a)
i jk (q, q′, q′′; iωλ, iωλ′ )

= e

2βV

∑
n

∑
k,k′,k′′

εilm

∑
q′′′

αq′′′,l × tr[σmGk,k′ (iεn + iωλ)

× σ jGk′−q′,k′′ (iεn + iωλ′ )σkGk′′−q′′,k−q+q′′′ (iεn)

+ σmGk,k′′ (iεn)σkGk′′−q′′,k′ (iεn − iωλ′ )

× σ jGk′−q′,k−q+q′′′ (iεn − iωλ)]. (29)

Figure 3 depicts χ
(2,n)
i jk and χ

(2,a)
i jk . The last two terms in

Eq. (27) include the ladder-type VCs of χ
(2,n)
i jk and χ

(2,a)
i jk ,

which are given in Appendix B (see Figs. 6 and 7). We
evaluate them up to the first order of the Rashba interaction.
For χ

(2,n)
i jk , we expand the Green functions in the first term of

Eq. (15) by using Eq. (6). As χ
(2,a)
i jk is already the first order of

the Rashba interaction, the Green functions in the second term
can be approximated as Gk,k′ (iεn) = gk(iεn)δk,k′ . We take the
analytic continuation as shown by Eq. (26) and evaluate the
ω′-linear contribution, which leads to a contribution propor-
tional to M × Ṁ. Then we expand them up to the second order
with respect to q, q′, and q′′. The details of the calculations are

shown in Appendix C. After all, we have the following:

χ
R,(2)
i jk (q, q′, q′′; ω,ω′) = 2ieεolmεm jkαq−q′−q′′,l

× [
η

(2)
q,q′,q′′,io + iω ϑ

(2)
q,q′,q′′,io + iω′ ϕ(2)

q,q′,q′′,io + · · · ], (30)

ϕ
(2)
q,q′,q′′,io = −2iντ 2

h̄

× δio(q − q′ − q′′) · (q′ + q′′) − (qi − q′
i − q′′

i )(q′
o + q′′

o )

(q′ + q′′)2
,

(31)

where η
(2)
q,q′,q′′,io is the static response to the magnetiza-

tion and ϑ
(2)
q,q′,q′′,io is the dynamical response proportional to

d (MjMk )/dt , which are negligible. ϕ
(2)
q,q′,q′′,io is the dynamical

response of our interest, which is proportional to such as
Mjd (Mk )/dt . In the real space, dynamically induced current is

〈 j(r, t )〉(2) = 4el2ντ 2

3h̄

∫
dr′D(r − r′)[∇r′ × (∇r × {α(r)

× [M(r′, t ) × Ṁ(r′, t )]})]. (32)

IV. RESULTS AND DISCUSSION

The generated charge current to the second-order responses
to the exchange interaction is therefore j(r, t ) = 〈 j(r, t )〉(1) +
〈 j(r, t )〉(2). The current is expressed as a response to a nonlo-
cal effective electric field as j(r, t ) = σDEeff (r, t ), where

Eeff (r, t ) = mel2

2eεF

∫
dr′D(r − r′)(∇r′ × {∇r × [α(r)

×{Ṁ(r′, t ) + 4τ

h̄
[M(r′, t ) × Ṁ(r′, t )]}]}). (33)

Note that the magnetization M(r, t ) is defined as including
the sd interaction strength. The linear response term, E (1)

eff , is

written as E (1)
eff = −Ȧ

(1)
eff , where

A(1)
eff (r, t ) = − mel2

2eεF

∫
dr′D(r − r′)

× (∇r′ × {∇r × [α(r) × M(r′, t )]}) (34)

is a nonlocal extension of effective gauge field discussed
in Refs. [10–12]. In contrast, the second-order contribution,
proportional to spin damping, M × Ṁ, does not have the
corresponding gauge field like in the local case [13].

For junctions like a trilayer homogeneous in the xy plane,
the spatial derivative is finite only in the z direction. The in-
plane current, which is of experimental interest, in this case
reads

j‖(r, t ) = mel2

2eεF
σD

∫
dr′D(r − r′)

[∇z
rα(r)

]
×∇z

r′

{
Ṁ(r′, t ) + 4τ

h̄
[M(r′, t ) × Ṁ(r′, t )]

}
. (35)

This result indicates that the spatially inhomogeneity of pre-
cessing spin at the F-NM interface drives an in-plane effective
motive force at the NM-HM interface as a result of electron
diffusion. This motive force is an alternative and direct inter-
pretation of inverse Rashba-Edelstein effect.
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For describing the case of a spacer thicker than spin dif-
fusion length, the spin relaxation effect needs to be included
in the diffusion. As discussed in Ref. [16], the result in this
case becomes Eq. (33) with diffusion D(r) replaced by the
one including spin diffusion length,

Ds(r) ≡ 1

V

∑
q

eiq·r

D0q2τ + γs
, (36)

where γs, proportional to spin relaxation rate, is related to spin
diffusion length ls as ls = l/

√
3γs.

The nonlocal effective electric field found in the present
study is an electric counterpart of the nonlocal effective
magnetic field (nonlocal spin Berry’s phase) discussed in the
context of the anomalous Hall effect [15]. Although the spin
Berry’s phase itself arises from static magnetization textures,
calculation of the nonlocal contribution in the present for-
malism requires including an external field with a finite or
infinitesimal frequency, as the electron diffusion applies to
nonequilibrium situations only.
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APPENDIX A: MATSUBARA FORMALISM FOR
NONLINEAR RESPONSES

Here we show the formulation of the nonlinear re-
sponse theory based on the Matsubara formalism. Some text-
books [20,21] explain that it is not possible. However, by a
careful treatment of analytic continuations, this formulation
can be done and leads to the exact same result from the
Keldysh formalism. In this Appendix, we show the way to
evaluate the responses up to the second order with respect to
the external force. We also discuss briefly the evaluations for
the higher-order responses.

1. Setup

In this Appendix, we assume that the system we consider is
expressed by the Hamiltonian H, and the mechanical external
force is Fμ(t ) (μ is index), which couples to the physical
quantity Âμ, and hence the external Hamiltonian given by

Ĥ′(t ) = −ÂμFμ(t ). (A1)

(One should presume that the dummy index μ sums over all
the external forces.) We introduce η > 0 as an infinitesimal
quantity to ensure that the system is in thermal equilibrium
and the external force is zero at the time t → −∞, and the

external force is turned on adiabatically from the time:

Fμ(t ) = eηt
∫ ∞

−∞

dω

2π
e−iωt Fμ(ω) =

∫ ∞

−∞

dω

2π
e−i(ω+iη)t Fμ(ω).

(A2)

Following the paper by Kubo [17], the response of the phys-
ical quantity B̂ to the external force Fμ is given by 〈B̂〉(t ) =
〈B̂〉0 + Δ1B(t ) + Δ2B(t ) + · · · + ΔkB(t ) + · · · with the kth-
order response

ΔkB(t ) =
(−1

ih̄

)k ∫ t

−∞
dt1

∫ t1

−∞
dt2 · · ·

∫ tk−1

−∞
dtk

× Tr{[Âμ1 (t1), [Âμ2 (t2), [. . . , [Âμk (tk ), ρ̂]] · · · ]]

× B̂(t )}Fμ1 (t1)Fμ2 (t2) · · · Fμk (tk ), (A3)

where 〈B̂〉0 is the expectation value without any external
fields, Â(t ) = eiĤt/h̄Âe−iĤt/h̄ is the Heisenberg representation
of Â, [Â, B̂] = ÂB̂ − B̂Â is the communicator, ρ̂ is the density
matrix operator for Ĥ, and

ρ̂ = e−βĤ/Tr e−βĤ = eβ(�−Ĥ) (A4)

with β = 1/kBT and with � = −kBT ln Tr {e−βĤ} being the
thermodynamic potential. Introducing |n〉 as the eigenstates
of the Hamiltonian, Ĥ |n〉 = En |n〉, Tr { · · · } is given as

Tr {Â} =
∑

n

〈n| Â |n〉 . (A5)

The thermal average 〈· · · 〉 for the system H in the temperature
T is defined by

〈Â〉 = Tr {ρ̂Â} =
∑

n

eβ(�−En ) 〈n| Â |n〉 . (A6)

We also note that the time translational symmetry is held in
thermal equilibrium.

2. Linear response

We first look at the linear response (k = 1). Using the
cyclic relation, Tr {ÂB̂Ĉ} = Tr {B̂ĈÂ} = Tr {ĈÂB̂}, we find

Δ1B(t ) = −1

ih̄

∫ t

−∞
dt ′Tr{[Âμ(t ′), ρ̂]B̂(t )}Fμ(t ′)

=
∫ ∞

−∞
dt ′QR

μ(t − t ′)Fμ(t ′), (A7)

where QR
μ(t ) is the retarded two-point Green function,

QR
μ(t ) = i

h̄
θ (t )〈[B̂(t ), Âμ(0)]〉. (A8)

By using the Fourier transformation,1 Δ1B(ω) =
QR

μ(ω)Fμ(ω), where

QR
μ(ω) = i

h̄

∫ ∞

0
dtei(ω+i0)t 〈[B̂(t ), Âμ(0)]〉. (A9)

Here ω + i0 stands for limη→0+ ω + iη.

1As we have introduced the convergence factor η as in
Eq. (A2), Δ1B(t ) is also assumed to be expressed as Δ1B(t ) =
eηt

∫
Δ1B(ω)e−iωt dω/2π for the time-translational symmetry.
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The thermal Green function corresponding to QR
μ(ω) is

Qμ(iωλ) = 1

h̄

∫ h̄β

0
dτeiωλτ 〈Tτ {B̂(τ )Âμ(0)}〉, (A10)

where ωλ = 2πλ/h̄β (λ = 0,±1,±2, · · · ) is the Matsubara
frequency of bosons, τ is the imaginary time, and Â(τ ) =
eĤτ/h̄Âe−Ĥτ/h̄ is the so-called Heisenberg representation of
Â in the imaginary time (t = −iτ ) and defined in the re-
gion −h̄β � τ � h̄β. Tτ {· · · } is the time-ordering operator
of τ . Note that as one shows the periodicity 〈Tτ {B̂(τ −
h̄β )Âμ(0)}〉 = 〈Tτ {B̂(τ )Âμ(0)}〉 for τ � 0 using Eq. (A6), it
can be expressed by means of the Fourier series of eiωλτ .

The correspondence between QR
μ(ω) and Qμ(iωλ) is

proven easily by representing them in the Lehmann repre-
sentation and taking the analytic continuation, iωλ → ω + i0,
resulting in

QR
μ(ω) = Qμ(ω + i0). (A11)

From these, we can evaluate the linear response coeffi-
cient QR

μ(ω) from the corresponding thermal Green function
Qμ(iωλ) by taking the analytic continuation, iωl → ω + i0.

3. Second-order response

Next, we show the way to evaluate the second-order re-
sponse precisely. This procedure is similar to the evaluation
of the linear response: (1) find the correlation function in the
Matsubara formalism corresponding to the response coeffi-
cient, (2) calculate the correlation function, and (3) take the
precise analytic continuation. Procedures (1) and (3) are the
central theme in this Appendix since procedure (2) is the same
as the well-known procedure.

For k = 2 in Eq. (A3), the second-order response is given
as

Δ2B(t ) =
(−1

ih̄

)2 ∫ t

−∞
dt1

∫ t1

−∞
dt2Tr{[Âμ(t1), [Âν (t2), ρ̂]]

× B̂(t )}Fμ(t1)Fν (t2)

=
∫ ∞

−∞
dt1

∫ ∞

−∞
dt2QR

μν (t, t1, t2)Fμ(t1)Fν (t2)

= 1

2!

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2

[
QR

μν (t, t1, t2) + QR
νμ(t, t2, t1)

]
× Fμ(t1)Fν (t2), (A12)

where QR
μν (t, t ′, t ′′) is the retarded three-points correlation

function given by

QR
μν (t, t ′, t ′′) = − 1

h̄2 θ (t − t ′)θ (t ′ − t ′′)

×〈[[B̂(t ), Âμ(t ′)], Âν (t ′′)]〉. (A13)

Here we should point out that we treated the external forces
Fμ(t1) and Fν (t2) symmetrically; we added the term inter-
changing μ and ν as well as t1 and t2 and divided them by 2!
as in the last equal of Eq. (A12). From the following relation

by using Eq. (A5):

QR
μν (t, t1, t2) = − 1

h̄2 θ (t − t1)θ (t1 − t2)

×
∑
n,m,l

eβ(�−En )(1 − eβ(En−El ) )

×{ei(En−Em )(t−t1 )/h̄+i(En−El )(t1−t2 )/h̄

× 〈n| B̂ |m〉 〈m| Âμ |l〉 〈l| Âν |n〉 + (c.c.)},
(A14)

we find QR
μν (t, t1, t2) = QR

μν (t − t1, t1 − t2) with

QR
μν (t, t ′) = − 1

h̄2 θ (t )θ (t ′)〈[[B̂(t + t ′), Âμ(t ′)], Âν (0)]〉.
(A15)

By means of QR
μν (t, t ′), Eq. (A12) is rewritten as

Δ2B(t ) =
∫ ∞

−∞
dt1

∫ ∞

−∞
dt2φ

R
μν (t − t1, t1 − t2)Fμ(t1)Fν (t2),

(A16)

φR
μν (t, t ′) = 1

2!

[
QR

μν (t, t ′) + QR
νμ(t + t ′,−t ′)

]
. (A17)

Then, the second-order response [Eq. (A12)] is expressed in
the Fourier space2 as

Δ2B(ω) =
∫ ∞

−∞

dω′

2π
φR

μν (ω,ω′)Fμ(ω − ω′)Fν (ω′), (A18)

φR
μν (ω,ω′) = [

QR
μν (ω,ω′) + QR

νμ(ω,ω − ω′)
]
/2!, (A19)

QR
μν (ω,ω′) = − 1

h̄2

∫ ∞

0
dt

∫ ∞

0
dt ′ei(ω+iη)t+i(ω′+iη′ )t ′

× 〈[[B̂(t + t ′), Âμ(t ′)], Âν (0)]〉. (A20)

We introduced the convergence factor η and η′, but these
two must have the relation η > η′ because of QR

νμ(ω,ω − ω′).
Hence, we use 2i0 as the convergence factor for ω and i0 as
that for ω′.

As we show in Appendix A 4, the corresponding correla-
tion function in the Matsubara formalism to φR

μν (ω,ω′) [not
to QR

μν (ω,ω′)] is given as

ϕμν (iωλ, iωλ′ ) = 1

2!h̄2

∫ h̄β

0
dτ

∫ h̄β

0
dτ ′eiωλ(τ−τ ′ )+iωλ′ τ ′

× 〈Tτ,τ ′ {B̂(τ )Âμ(τ ′)Âν (0)}〉. (A21)

Taking the analytic continuation iωλ → ω + 2i0 and iωλ′ →
ω′ + i0, the following relation is held:

φR
μν (ω,ω′) = ϕμν (ω + 2i0, ω′ + i0). (A22)

Hence, we can evaluate the second-order response
[Eq. (A18)] from the corresponding correlation function
in the Matsubara formalism, ϕμν (iωλ, iωλ′ ), by taking the
analytic continuations.

2Considering the convergence factors, we have assumed Δ2B(t ) =
e(η+η′ )t ∫

Δ2B(ω)e−iωt dt/2π .
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4. Correspondence between ϕμν(iωλ, iωλ′ ) and φR
μν(ω,ω′ )

Here we show Eq. (A22). First, we perform the integrals of
t and t ′ in QR

μν (ω,ω′). Introducing ω+ = ω + 2i0 and ω′
+ =

ω′ + i0,

QR
μν (ω,ω′)

=− 1

h̄2

∑
n,m,l

eβ(�−En )(1−eβ(En−El ) )
∫ ∞

0
dt

∫ ∞

0
dt ′eiω+t+iω′

+t ′

×{ei(En−Em )t/h̄+i(En−El )t ′/h̄ 〈n| B̂ |m〉 〈m| Âμ |l〉 〈l| Âν |n〉
+ e−i(En−Em )t/h̄−i(En−El )t ′/h̄ 〈m| B̂ |n〉 〈n| Âν |l〉 〈l| Âμ |m〉}

=
∑
n,m,l

eβ(�−En )(1 − eβ(En−El ) )

×
{ 〈n| B̂ |m〉 〈m| Âμ |l〉 〈l| Âν |n〉

(h̄ω+ + En − Em)(h̄ω′+ + En − El )

+ 〈m| B̂ |n〉 〈n| Âν |l〉 〈l| Âμ |m〉
(h̄ω+ − En + Em)(h̄ω′+ − En + El )

}
, (A23)

and for QR
νμ(ω,ω − ω′), by interchanging n ↔ m in the above

equation, we obtain

QR
νμ(ω,ω − ω′)

=
∑
n,m,l

eβ(�−En )eβ(En−Em )(1 − eβ(Em−El ) )

×
{ 〈m| B̂ |n〉 〈n| Âν |l〉 〈l| Âμ |m〉

(h̄ω+ − En + Em)(h̄ω+ − h̄ω′+ + Em − El )

+ 〈n| B̂ |m〉 〈m| Âμ |l〉 〈l| Âν |n〉
(h̄ω+ + En − Em)(h̄ω+ − h̄ω′+ − Em + El )

}
.

Here ω+ − ω′
+ = ω − ω′ + i(η − η′), and η > η′ is needed

for the convergence in the limit t → ∞, hence putting η =
2η′. From these, φR

μν (ω,ω′) = QR
μν (ω,ω′) + QR

νμ(ω,ω − ω′)
is given as

φR
μν (ω,ω′)= 1

2

∑
n,m,l

eβ(�−En )

[ 〈n| B̂ |m〉 〈m| Âμ |l〉 〈l| Âν |n〉
h̄ω+ + En − Em

× a(ω+, ω′
+)

+ 〈m| B̂ |n〉 〈n| Âν |l〉 〈l| Âμ |m〉
−h̄ω+ + En − Em

a(−ω+,−ω′
+)

]
,

(A24)

where

a(ω+, ω′
+) ≡ 1 − eβ(En−El )

h̄ω′+ + En − El
+ eβ(En−Em )(1 − eβ(Em−El ) )

h̄ω+ − h̄ω′+ − Em + El
.

(A25)

Next we perform the integrals of the correlation function in
the Matsubara formalism [Eq. (A21)]. From the time-ordering
operator, for τ > τ ′ > 0,

〈Tτ,τ ′ {B̂(τ )Âμ(τ ′)Âν (0)}〉
=

∑
m,n,l

eβ(�−En )e(Em−El )τ ′/h̄ 〈n| B̂ |m〉 〈m| Âμ |l〉

× 〈l| Âν |n〉 e(En−Em )τ/h̄, (A26)

hence we find

1

h̄2

∫ h̄β

0
dτ ′

∫ h̄β

τ ′
dτeiωλ(τ−τ ′ )+iωλ′ τ ′ 〈Tτ,τ ′ {B̂(τ )Âμ(τ ′)Âν (0)}〉

=
∑
m,n,l

eβ(�−En ) 〈n| B̂ |m〉 〈m| Âμ |l〉 〈l| Âν |n〉 1

h̄2

×
∫ h̄β

0
dτ ′ei(ωλ′−ωλ )τ ′

e(Em−El )τ ′/h̄
∫ h̄β

τ ′
dτe(ih̄ωλ+En−Em )τ/h̄

=
∑
m,n,l

eβ(�−En ) 〈n| B̂ |m〉 〈m| Âμ |l〉 〈l| Âν |n〉
ih̄ωλ + En − Em

a(iωλ, iωλ′ ).

(A27)

Also, for τ ′ > τ > 0,

〈Tτ,τ ′ {B̂(τ )Âμ(τ ′)Âν (0)}〉
=

∑
m,n,l

eβ(�−El )e(El −Em )τ ′/h̄ 〈m| B̂ |n〉 〈n| Âν

× |l〉 〈l| Âμ |m〉 e(Em−En )τ/h̄, (A28)

and then we obtain

1

h̄2

∫ h̄β

0
dτ ′

∫ τ ′

0
dτeiωλ(τ−τ ′ )+iωλ′ τ ′ 〈Tτ,τ ′ {B̂(τ )Âμ(τ ′)Âν (0)}〉

=
∑
m,n,l

eβ(�−El ) 〈m| B̂ |n〉 〈n| Âν |l〉 〈l| Âμ |m〉 1

h̄2

×
∫ h̄β

0
dτ ′ei(ωλ′ −ωλ )τ ′

e(El −Em )τ ′/h̄

×
∫ τ ′

0
dτe(ih̄ωλ+Em−En )τ/h̄

=
∑
m,n,l

eβ(�−En ) 〈m| B̂ |n〉 〈n| Âν |l〉 〈l| Âμ |m〉
−ih̄ωλ − Em + En

× a(−iωλ,−iωλ′ ). (A29)

Therefore, Eq. (A21) is rewritten as

ϕμν (iωλ, iωλ′ )

= 1

2

∑
n,m,l

eβ(�−En )

[ 〈n| B̂ |m〉 〈m| Âμ |l〉 〈l| Âν |n〉
ih̄ωλ + En − Em

a(iωλ, iωλ′ )

+ 〈m| B̂ |n〉 〈n| Âν |l〉 〈l| Âμ |m〉
−ih̄ωλ + En − Em

a(−iωλ,−iωλ′ )

]
, (A30)

and, as compared with Eq. (A24), it is obvious that Eq. (A22)
is held.

5. Third- and higher-order responses

The third-order response, k = 3 for Eq. (A3), reads

Δ3B(t ) =
∫ ∞

−∞
dt1

∫ ∞

−∞
dt2

∫ ∞

−∞
dt3φ

R
μνξ (t, t1, t2, t3)

× Fμ(t1)Fν (t2)Fξ (t3), (A31)
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where φR
μνξ (t, t1, t2, t3) is a symmetrized response coefficient

given as

φR
μνξ (t, t1, t2, t3) = 1

3!

[
QR

μνξ (t, t1, t2, t3) + QR
μξν (t, t1, t3, t2)

+ QR
νμξ (t, t2, t1, t3)

+ QR
νξμ(t, t2, t3, t1) + QR

ξνμ(t, t3, t1, t2)

+ QR
ξμν (t, t3, t2, t1)

]
, (A32)

QR
μνξ (t, t1, t2, t3) =

(−1

ih̄

)3

θ (t − t1)θ (t1 − t2)θ (t2 − t3)

×〈[[B̂(t ), Âμ(t1)], Âν (t2)], Âξ (t3)]〉.
(A33)

One can see QR
μνξ (t, t1, t2, t3) = QR

μνξ (t − t1, t1 − t2, t2 − t3)
by using Eq. (A5), and the Fourier form is shown as

QR
μνξ (ω,ω′, ω′′)

=
(−1

ih̄

)3 ∫∫∫ ∞

0
dtdt ′dt ′′ei(ω+iη)t+i(ω′+iη′ )t ′+i(ω′′+iη′′ )t ′′

× 〈[[B̂(t + t ′ + t ′′), Âμ(t ′ + t ′′)], Âν (t ′′)], Âξ (0)]〉.
(A34)

Hence, the third-order response in the Fourier space is given
as

Δ3B(ω) = 1

3!

∫ ∞

−∞

dω′

2π

∫ ∞

−∞

dω′′

2π
φR

μνξ (ω,ω′, ω′′)

× Fμ(ω − ω′)Fν (ω′ − ω′′)Fξ (ω′′) (A35)

with

φR
μνξ (ω,ω′, ω′′) = QR

μνξ (ω,ω′, ω′′) + QR
μξν (ω,ω′, ω′ − ω′′)

+ QR
νμξ (ω,ω + ω′′ − ω′, ω′′)

+ QR
νμξ (ω,ω + ω′′ − ω′, ω − ω′′)

+ QR
ξμν (ω,ω − ω′′, ω′ − ω′′)

+ QR
ξνμ(ω,ω − ω′, ω − ω′′). (A36)

Equation (A36) indicates that the convergence factors need to
have the relation η > η′ > η′′. Hence we put η = 3η′′, η′ =
2η′′.

There is the corresponding correlation function in the
Matsubara formalism to φR

μνξ (ω,ω′, ω′′) given by

ϕμνξ (iωλ, iωλ′ , iωλ′′ )

= 1

3!h̄3

∫∫∫ h̄β

0
dτdτ ′dτ ′′eiωλ(τ−τ ′ )+iωλ′ (τ ′−τ ′′ )+iωλ′′ τ ′′

× 〈T {B̂(τ )Âμ(τ ′)Âν (τ ′′)Âξ (0)}〉. (A37)

By taking the analytic continuations, iωλ → ω + 3i0, iωλ′ →
ω′ + 2i0, iωλ′′ → ω′′ + i0, we have

φR
μνξ (ω,ω′, ω′′) = ϕμνξ (ω + 3i0, ω′ + 2i0, ω′′ + i0).

(A38)

From the k = 1, 2, 3th-order responses, it is expected that
the kth-order response is evaluated as follows: The response
of B̂ to the external forces is expressed as

ΔkB(t ) =
∫∫

· · ·
∫ ∞

−∞
dt1dt2 · · · dtk

×φR
μ1μ2···μk

(t − t1, t1 − t2, . . . , tk−1 − tk )

× Fμ1 (t1)Fμ2 (t2) · · · Fμk (tk ), (A39)

where φR
μ1μ2···μk

(t − t1, t1 − t2, . . . , tk−1 − tk ) is the response
coefficient already symmetrized, whose Fourier com-
ponent φR

μ1μ2···μk
(ω,ω1, ω2, . . . , ωk−1) is evaluated from

the corresponding correlation function in the Matsubara
formalism,

ϕμ1μ2···μk (iωλ, iωλ1 , iωλ2 , . . . , iωλk−1 )

= 1

k!h̄k

∫∫
· · ·

∫∫ h̄β

0
dτdτ1 · · · dτk−2dτk−1

× eiωλ(τ−τ1 )+iωλ1 (τ1−τ2 )+···+iωλk−2 (τk−2−τk−1 )+iωλk−1 τk−1

×〈T {B̂(τ )Âμ1 (τ1)Âμ2 (τ2) · · · Âμk−2 (τk−2)

× Âμk−1 (τk−1)Âμk (0)}〉, (A40)

by taking the analytic continuations, iωλ → ω + ki0, iωλ1 →
ω1 + (k − 1)i0, . . ., iωλk−2 → ωk−2 + 2i0, iωλk−1 → ωk−1 +
i0;

φR
μ1μ2...μk

(ω,ω1, ω2, . . . , ωk−1)

= ϕμ1μ2···μk (ω + ki0, ω1 + (k − 1)i0, ω2

+(k − 2)i0, . . . , ωk−1 + i0). (A41)

APPENDIX B: EXPRESSIONS OF DIAGRAMS

In this Appendix, we show the expressions of all the
diagrams contributing the nonlocal effective electric fields
shown in Fig. 4 for the linear response and in Fig. 6 for the
second-order response.

Equations (15a) and (15b) in the first order of the Rashba
interaction are given, respectively, by Figs. 4(a)–4(c), which
reads

χ
(1,n)
i j (q, q′; iωλ)

= eεml jαq−q′,l
1

β

∑
n

∑
σ=±

[
δ j,z�

im,σσ
q,q′ (iε+

n , iεn)

+ δ j,⊥�im,σ σ̄
q,q′ (iε+

n , iεn) + (iε+
n ↔ iεn)

]
, (B1a)
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(a)

k

k + q k + q

mloαq−q ,l k +
q + q

2 m

σo

(b)

k − qk − q

k

σo

mloαq−q ,l k − q + q

2 m

(c)

k

k + q

σm

ilmαq−q ,l

(d)

k

k + q
k + q

k + q

k

(e)

k − q

k − q

k

k − q

k

(f)

k

k + q
k + q

k

(g)

k − q

k
kk + q

k − qk − q

(h) (i) (j)

kk

k + qk + q

FIG. 4. The Feynman diagrams of χ
(1)
i j (iωλ) in the first order of the Rashba spin-orbit interaction; [(a)–(c)] without the ladder type VCs and

[(d)–(j)] with the VCs. The solid lines with arrows denote the Green functions without the Rashba interaction, given by Eq. (6); the filled circle
represents the spin vertex; the unfilled triangle describes the normal velocity vertex; the dashed wavy line indicates the anomalous velocity
vertex; and the solid wavy line depicts the Rashba-interaction vertex without the spin component.

χ
(1,a)
i j (q, q′; iωλ)

= eεil jαq−q′,l
1

β

∑
n

∑
σ=±

[
δ j,zΛ

σσ
q′ (iε+

n , iεn)

+ δ j,⊥Λσσ̄
q′ (iε+

n , iεn)
]
, (B1b)

where iε+
n = iεn + iωλ and δ j,⊥ = (1 − δ j,z ), and

�im,σσ ′
q,q′ (iεm, iεn) = 1

V

∑
k

h̄2

me

(
k + q

2

)
i

(
k + q + q′

2

)
m

× gk+q,σ (iεm)gk+q′,σ ′ (iεm)gk,σ (iεn),

(B2)

Λσσ ′
q′ (iεm, iεn) = 1

V

∑
k

gk+q′,σ (iεm)gk,σ ′ (iεn). (B3)

Here we used g−k,σ (iεn) = gk,σ (iεn) for calculating the dia-
gram of Fig. 4(b), resulting in the term which is interchanged
iε+

n and iεn for the first two terms in Eq. (B1a). The Green
function gk,σ (iεn) is here expressed depending spin σ = ±,
but we will evaluate it as gk,σ (iεn) = gk(iεn) in the next
section. The four-point vertex of the diffusion ladder is given

by Fig. 5,

Γ σσ ′
q (iε+

n , iεn) = niu
2 + (niu2)2

V

∑
k

gk+q,σ (iε+
n )gk,σ ′ (iεn)

+ (niu2)3

V

[∑
k

gk+q,σ (iε+
n )gk,σ ′ (iεn)

]2

+ · · ·

= niu2

1 − niu2Λσσ ′
q (iε+

n , iεn)
. (B4)

ni

u

u

k k

k + q k + q

i n

i n + iωλ

k

k + q

FIG. 5. The diagrammatic description for the four-point vertex of
the diffusion ladder. The dotted lines denote the impurity potential,
and the cross symbol represents the impurity concentration. The solid
lines without arrows are for the external momentums.
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i +
n ,k + q

i n, k

i +
n ,k + q + q

i +
n ,k + q

i n,k + q

i n,k + q + q

i n ,k + q

i −
n ,k

i +
n ,k

i n,k − q − q
i n,k − q

i +
n ,k − q

i n, k

i −
n ,k − q

i n ,k − q

i −
n ,k − q − q

i n, k

i +
n ,k + q + q

i +
n ,k + q

i n,k + q + q

i n ,k + q

i −
n ,k

i +
n ,k + q − q

i +
n ,k + q

i +
n ,k + q

i n, k

i n,k + q

i −
n ,k

i n ,k + q

i n ,k + q − q

(a) (b) (c) (d)

(h)(g)(f)(e)

FIG. 6. The Feynman diagrams of χ
(2)
i jk (iωλ, iωλ′ ) in the first order of the Rashba interaction without the diffusion ladder VCs. The lines

and symbols are defined in the caption of Fig. 4. [(a)–(f)] The contributions of the normal velocity term χ
(2,n)
i jk (iωλ, iωλ′ ) and [(g) and (h)]: that

of the anomalous velocity term χ
(2,a)
i jk (iωλ, iωλ′ ). Note that (b), (d), (f), and (h) are same contributions as that which are obtained by replacing

j ↔ k, q′ ↔ q′′, εn → ε−
n , ε+

n → εn, and ε ′+
n → ε ′−

n in (a), (c), (e), and (g), respectively.

The diffusion ladder VCs of χ
(1,n)
i j are given by Figs. 4(d)–4(i), which read

χ
(1,n)(df)
i j (q, q′; iωλ) = χ

(d)+(e)
i j + χ

(f)+(g)
i j + χ

(h)+(i)
i j (B5)

with

χ
(d)+(e)
i j = eεml jαq−q′,l

1

β

∑
n

∑
σ=±

[
δ j,z�

im,σσ
q,q′ (iε+

n , iεn)Γ σσ
q′ (iε+

n , iεn)Λσσ
q′ (iε+

n , iεn)

+ δ j,⊥�im,σ σ̄
q,q′ (iε+

n , iεn)Γ σ̄σ
q′ (iε+

n , iεn)Λσ̄σ
q′ (iε+

n , iεn) + (iε+
n ↔ iεn)

]
, (B6a)

χ
(f)+(g)
i j = eεml jαq−q′,l

1

β

∑
n

∑
σ=±

[
δ j,zΛ

i,σ
q (iε+

n , iεn)Γ σσ
q (iε+

n , iεn)�m,σσ
q,q′ (iε+

n , iεn)

+ δ j,⊥Λi,σ
q (iε+

n , iεn)Γ σσ
q (iε+

n , iεn)�m,σ σ̄
q,q′ (iε+

n , iεn) + (iε+
n ↔ iεn)

]
, (B6b)

χ
(h)+(i)
i j = eεml jαq−q′,l

1

β

∑
n

∑
σ=±

[
δ j,zΛ

i,σ
q (iε+

n , iεn)Γ σσ
q (iε+

n , iεn)�m,σσ
q,q′ (iε+

n , iεn)Γ σσ
q′ (iε+

n , iεn)Λσσ
q′ (iε+

n , iεn)

+ δ j,⊥Λi,σ
q (iε+

n , iεn)Γ σσ
q (iε+

n , iεn)�m,σ σ̄
q,q′ (iε+

n , iεn)Γ σ̄σ
q′ (iε+

n , iεn)Λσ̄σ
q′ (iε+

n , iεn) + (iε+
n ↔ iεn)

]
, (B6c)

where

�i,σσ ′
q,q′ (iεm, iεn) = h̄

V

∑
k

(
k + q + q′

2

)
i

gk+q,σ (iεm)gk+q′,σ ′ (iεm)gk,σ (iεn), (B7)

Λi,σ
q (iεm, iεn) = 1

V

∑
k

h̄

me

(
k + q

2

)
i
gk+q,σ (iεm)gk,σ (iεn), (B8)

and the diffusion ladder VCs of χ
(1,a)
i j is given by Fig. 4(j), which reads

χ
(1,a)(df)
i j (q, q′; iωλ) = eεil jαq−q′,l

1

β

∑
n

∑
σ=±

[
δ j,zΛ

σσ
q′ (iε+

n , iεn)Γ σσ
q′ (iε+

n , iεn)Λσσ
q′ (iε+

n , iεn)

+ δ j,⊥Λσσ̄
q′ (iε+

n , iεn)Γ σ̄σ
q′ (iε+

n , iεn)Λσ̄σ
q′ (iε+

n , iεn)
]
. (B9)

We calculate all the above quantities in Appendix C.
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(i) (j) (k)

(n) (o) (p)

(l) (m)

i n,k, σ

i m,k + q, σ
i m,k + q, σ

i n,k, σ

(q) (r)

FIG. 7. All the Feynman diagrams of χ
(2)
i jk (iωλ, iωλ′ ) in the first order of the Rashba interaction; (i), (j), (k), and (n) include the diagrams

shown in Figs. 6(a) and 6(b), 6(c) and 6(d), 6(g) and 6(h), and 6(e) and 6(f), respectively. The three diagrams surrounded by a thick line include
main contributions to the nonlocal effective electric fields. In diagrams (i)–(p), the momentums and Matsubara frequencies are not displayed
for readability; they are the same as in the diagrams of Fig. 6 for (i), (j), (k), and (n). The momentums and Matsubara frequencies in (l), (m), (o),
and (p) are expected from (i), (j), and (n) by using Fig. 5. The filled triangle and double circle are the full vertexes of the normal velocity and
the spin, respectively, given by (q) and (r). The momentums and Matsubara frequencies of the arrowed lines are shared with the corresponding
diagrams in Fig. 6.

For the second-order response discussed in Sec. III B, expanding Eqs. (28) and (29) in the first order of the Rashba interaction,
we have the diagrams in Fig. 6. The diagrams shown in Figs. 6(a)–6(f) and Figs. 6(g) and 6(h) are obtained from Eqs. (28)
and (29), respectively, which reads

χ
(2,n)
i jk (iωλ, iωλ′ ) = ieεolmεm jkαq−q′−q′′,l

1

β

∑
n

∑
σ=±

{
δm,z

[
�io,σσ σ̄

q,q′,q′′ (iε+
n , iε′+

n , iεn)+�io,σσ σ̄
q,q′′,q′ (iεn, iε′+

n , iε+
n )

−�io,σ σ̄ σ̄
q,q′,q′′ (iε+

n , iε′+
n , iεn)

] + δ j,z
[
�io,σ σ̄ σ̄

q,q′,q′′ (iε+
n , iε′+

n , iεn) + �io,σ σ̄σ
q,q′′,q′ (iεn, iε′+

n , iε+
n )

−�io,σσ σ̄
q,q′,q′′ (iε+

n , iε′+
n , iεn)

] + δk,z
[
�io,σ σ̄σ

q,q′,q′′ (iε+
n , iε′+

n , iεn) + �io,σ σ̄ σ̄
q,q′′,q′ (iεn, iε′+

n , iε+
n )

−�io,σ σ̄ σ
q,q′,q′′ (iε+

n , iε′+
n , iεn)

] + ( j ↔ k, q′ ↔ q′′, εn → ε−
n , ε+

n → εn, ε
′+
n → ε′−

n )
}
, (B10a)

χ
(2,a)
i jk (iωλ, iωλ′ ) = ieεilmεm jkαq−q′−q′′,l

1

β

∑
n

∑
σ=±

[
δm,z�

σσ̄σ
q′,q′′ (iε+

n , iε′+
n , iεn) + δ j,z�

σσσ̄
q′,q′′ (iε+

n , iε′+
n , iεn)

+ δk,z�
σσ̄ σ̄
q′,q′′ (iε+

n , iε′+
n , iεn) + ( j ↔ k, q′ ↔ q′′, εn → ε−

n , ε+
n → εn, ε

′+
n → ε′−

n )
]
, (B10b)

where iε±
n = iεn ± iωλ, iε′±

n = iεn ± iωλ′ , and

�i j,σσ ′σ ′′
p,q,r (iεl , iεm, iεn) = 1

V

∑
k

h̄2

me

(
k + p

2

)
i

(
k + p + q + r

2

)
j

gk+p,σ (iεl )gk+q+r,σ ′ (iεl )gk+r,σ ′′ (iεm)gk,σ (iεn), (B11a)

�i j,σσ ′σ ′′
p,q,r (iεl , iεm, iεn) = 1

V

∑
k

h̄2

me

(
k + p

2

)
i

(
k + p − q + r

2

)
j

gk+p,σ (iεl )gk+p−q,σ ′ (iεm)gk+r,σ ′′ (iεm)gk,σ (iεn), (B11b)

�σσ ′σ ′′
q,r (iεl , iεm, iεn) = 1

V

∑
k

gk+q+r,σ (iεl )gk+r,σ ′ (iεm)gk,σ ′′ (iεn). (B11c)
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The normal velocity terms containing diffusion ladder VCs are shown in Figs. 7(i) and 7(j), and 7(l)–7(p), and given as

χ
(2,n)(df)
i jk (iωλ, iωλ′ ) = χ

(i)+(j)
i jk + χ

(l)+(m)
i jk + χ

(n)+(o)+(p)
i jk , (B12)

χ
(2,a)(df)
i jk (iωλ, iωλ′ ) = χ

(k)
i jk , (B13)

where

χ
(l)+(m)
i jk = ieεolmεm jkαq−q′−q′′,l

1

β

∑
n

∑
σ=±

{
δm,z

[
�io,σσ

q,q′+q′′ (iε+
n , iεn)�σσ

q′+q′′ (iε+
n , iεn)�σσ̄σ

q′,q′′ (iε+
n , iε′+

n , iεn) + (iε+
n ↔ iεn)

]

+ δ j,z

[
�io,σ σ̄

q,q′+q′′ (iε+
n , iεn)�σ̄σ

q′+q′′ (iε+
n , iεn)�σ̄σ̄σ

q′,q′′ (iε+
n , iε′+

n , iεn)+�io,σ σ̄
q,q′+q′′ (iεn, iε+

n )�σσ̄
q′+q′′ (iε+

n , iεn)�σ̄σσ
q′,q′′ (iεn, iε′+

n , iε+
n )

]
+ δk,z

[
�io,σ σ̄

q,q′+q′′ (iε+
n , iεn)�σ̄σ

q′+q′′ (iε+
n , iεn)�σ̄σσ

q′,q′′ (iε+
n , iε′+

n , iεn)+�io,σ σ̄
q,q′+q′′ (iεn, iε+

n )�σσ̄
q′+q′′ (iε+

n , iεn)�σ̄σ̄σ
q′,q′′ (iεn, iε′+

n , iε+
n )

]
+ ( j ↔ k, q′ ↔ q′′, εn → ε−

n , ε+
n → εn, ε

′+
n → ε′−

n )
}
, (B14)

χ
(k)
i jk = ieεilmεm jkαq−q′−q′′,l

1

β

∑
n

∑
σ=±

[
δm,z�

σσ
q′+q′′ (iε+

n , iεn)�σσ
q′+q′′ (iε+

n , iεn)�σσ̄σ
q′,q′′ (iε+

n , iε′+
n , iεn)

+ δ j,z�
σσ̄
q′+q′′ (iε+

n , iεn)�σσ̄
q′+q′′ (iε+

n , iεn)�σσσ̄
q′,q′′ (iε+

n , iε′+
n , iεn)

+ δk,z�
σσ̄
q′+q′′ (iε+

n , iεn)�σσ̄
q′+q′′ (iε+

n , iεn)�σσ̄ σ̄
q′,q′′ (iε+

n , iε′+
n , iεn)

+ ( j ↔ k, q′ ↔ q′′, εn → ε−
n , ε+

n → εn, ε
′+
n → ε′−

n )
]
, (B15)

and χ
(i)+(j)
i jk and χ

(n)+(o)+(p)
i jk contains different types of diffusion from χ

(k)+(l)+(m)
i jk .

APPENDIX C: CALCULATION DETAILS

In this Appendix, we show the details of the calculations of the response coefficients at absolute zero, T = 0. In the present
perturbative approach, the free Green functions are spin unpolarized, which means gk,σ (iεn) is equivalent to gk(iεn) defined as in
Eq. (7). First, we calculate the liner response coefficient. Equations (B1a) and (B1b) are reduced to the following simple forms:

χ
(1,n)
i j (q, q′; iωλ) = 2eεml jαq−q′,l

1

β

∑
n

[
�im

q,q′ (iε+
n , iεn) + �im

q,q′ (iεn, iε+
n )

]
, (C1a)

χ
(1,a)
i j (q, q′; iωλ) = 2eεil jαq−q′,l

1

β

∑
n

Λq′ (iε+
n , iεn), (C1b)

and their diffusion VCs, which mainly contribute to the nonlocal effective electric fields, are given as

χ
(1,n)(df)
i j (q, q′; iωλ) � χ

(d)+(e)
i j = 2eεml jαq−q′,l

1

β

∑
n

[
�im

q,q′ (iε+
n , iεn)Γq′ (iε+

n , iεn)Λq′ (iε+
n , iεn) + (iε+

n ↔ iεn)
]
, (C1c)

χ
(1,a)(df)
i j (q, q′; iωλ) = 2eεil jαq−q′,l

1

β

∑
n

[
Λq′ (iε+

n , iεn)Γq′ (iε+
n , iεn)Λq′ (iε+

n , iεn)
]
, (C1d)

where �im
q,q′ (iε+

n , iεn), Λq′ (iε+
n , iεn), and Γq′ (iε+

n , iεn) are given, respectively, by the dropped spin dependencies in
Eqs. (B2), (B3), and (B4). Using the following relations:

Γq′ (iε+
n , iεn)Λq′ (iε+

n , iεn) = −1 + 1

1 − niu2Λq′ (iε+
n , iεn)

, (C2)

and Λq′ (iε+
n , iεn) = Λq′ (iεn, iε+

n ) due to g−k(iεn) = gk(iεn), we find

χ
(1)
i j (q, q′; iωλ) � 2eεml jαq−q′,l

1

β

∑
n

�im
q,q′ (iε+

n , iεn) + �im
q,q′ (iεn, iε+

n ) + δimΛq′ (iε+
n , iεn)

1 − niu2Λq′ (iε+
n , iεn)

. (C3)

We rewrite the Matsubara summation of iεn to the contour integral and then change the contour path as the two path of [−∞ ±
i0,+∞ ± i0] and [−∞ − iωλ ± i0,+∞ − iωλ ± i0]. After taking the analytic continuation iωλ → ω + i0, we obtain

χ
R,(1)
i j (q, q′; ω) = 2eεml jαq−q′,l

[
η

(1)
q,q′,im + iω ϕ

(1)
q,q′,im + · · · ], (C4)
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where η
(1)
q,q′,im is the zeroth-order term of ω. The ω-linear term ϕ

(1)
q,q′,im is obtained as

ϕ
(1)
q,q′,im = h̄

2π

2Re
[
�im

q,q′ (+i0,−i0)
] + δim�q′ (+i0,−i0)

1 − niu2�q′ (+i0,−i0)
, (C5)

�im
q,q′ (+i0,−i0) = 1

V

∑
k

h̄2

me

(
k + q

2

)
i

(
k + q + q′

2

)
m

gR
k+qgR

k+q′gA
k , (C6)

�q′ (+i0,−i0) = 1

V

∑
k

gR
k+q′gA

k , (C7)

where gR
k = (−εk + μ + ih̄/2τ )−1 and gA

k = (gR
k )∗. Here we keep the terms which contain both the retarded and advanced

Green functions in Eq. (C5). Expanding �im
q,q′ (+i0,−i0) and �q′ (+i0,−i0) up to q2 and q′2 and performing the k summations,

we obtain

Re
[
�im

q,q′ (+i0,−i0)
] � δim

{
−1

2
I011 + h̄2(q2 + q′2)

3me
Re

[
I131 + 4

5
I241

]
+ 4h̄2q · q′

15me
Re[I241]

}

+ h̄2

3me
(q + q′)i(q + q′)mRe

[
I131 + 4

5
I241

]
+ 4h̄2

15me
(qiqm + q′

iq
′
m)Re[I241]

+ h̄2

4me
qi(qm + q′

m)Re

[
I021 + 4

3
I131

]
, (C8)

� πντ

h̄
[δim(−1 + D0τq · q′) − D0τ (qi − q′

i )q
′
m], (C9)

�q′ (+i0,−i0) � I011 + h̄2q′2

2me

(
I021 + 4

3
I131

)
� 2πντ

h̄
(1 − D0q′2τ ), (C10)

where D0 = 2εF τ/3me is the diffusion constant, and we used Eqs. (D8) and neglected the higher-order contributions of h̄/εF τ

(� 1). Hence, using Eq. (8), we find

ϕ
(1)
q,q′,im = ντ

q′2 [δim(q − q′) · q′ − (qi − q′
i )q

′
m], (C11)

which leads to Eq. (16). It should be noted that ϕ
(1)
q,q′,i jm does not contain any terms proportional to 1/D0q′2, which means that

there is no contribution such as

〈 j(r, t )〉(1) ∝
∫

α(r) × Ṁ(r′, t )

|r − r′| dr′. (C12)

Next we calculate the second-order response coefficient. The coefficient is also simplified in the case of μ+ = μ−.
Equations (B10a) and (B10b) are given as

χ
(2,n)
i jk (iωλ, iωλ′ ) = 2ieεolmεm jkαq−q′−q′′,l

1

β

∑
n

[
�io

q,q′,q′′ (iε+
n , iε′+

n , iεn) + �io
q,q′′,q′ (iεn, iε′+

n , iε+
n )

− �io
q,q′′,q′ (iεn, iε′−

n , iε−
n ) − �io

q,q′,q′′ (iε−
n , iε′−

n , iεn) + �io
q,q′,q′′ (iε+

n , iε′+
n , iεn) − �io

q,q′′,q′ (iεn, iε′−
n , iε−

n )
]
,

(C13)

χ
(2,a)
i jk (iωλ, iωλ′ ) = 2ieεilmεm jkαq−q′−q′′,l

1

β

∑
n

[�q′,q′′ (iε+
n , iε′+

n , iεn) − �q′′,q′ (iεn, iε′−
n , iε−

n )], (C14)

where �io
q,q′,q′′ (iε+

n , iε′+
n , iεn), �io

q,q′,q′′ (iε+
n , iε′+

n , iεn), and �q′,q′′ (iε+
n , iε′+

n , iεn) are the same, respectively, as the dropped spin
indexes in Eqs. (B11a), (B11b), and (B11c). However, Eqs. (C13) do not contribute the nonlocal effective electric fields of our
interest because it is canceled by the diffusion ladder VCs shown in Figs. 6(i), 6(j) and 6(n). We also find that Eq. (C14) is
canceled by the diffusion ladder VCs of the spin vertex σ j or σ k , which gives rise to 1/D0q′′2 or 1/D0q′2 and do not contribute
the effective electric field we focus on in this paper.

The main contributions of the diffusion VCs [Eqs. (B12) and (B13)] to the nonlocal effective electric field are given as

χ
(2,n)(df)
i jk (iωλ, iωλ′ ) = 2ieεolmεm jkαq−q′−q′′,l

1

β

∑
n

[
�io

q,q′+q′′ (iε+
n , iεn)�q′+q′′ (iε+

n , iεn)�q′,q′′ (iε+
n , iε′+

n , iεn)

− �io
q,q′+q′′ (iεn, iε−

n )�q′+q′′ (iεn, iε−
n )�q′′,q′ (iεn, iε′−

n , iε−
n )
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+ �io
q,q′+q′′ (iεn, iε+

n )�q′+q′′ (iεn, iε+
n )�q′,q′′ (iεn, iε′+

n , iε+
n )

− �io
q,q′+q′′ (iε−

n , iεn)�q′+q′′ (iε−
n , iεn)�q′′,q′ (iε−

n , iε′−
n , iεn)

]
, (C15)

χ
(2,a)(df)
i jk (iωλ, iωλ′ ) = 2ieεilmεm jkαq−q′−q′′,l

1

β

∑
n

[�q′+q′′ (iε+
n , iεn)�q′+q′′ (iε+

n , iεn)�q′,q′′ (iε+
n , iε′+

n , iεn)

− �q′+q′′ (iεn, iε−
n )�q′+q′′ (iεn, iε−

n )�q′′,q′ (iεn, iε′−
n , iε−

n )], (C16)

where �q(iε+
n , iεn) and �q(iε+

n , iεn) are defined, respectively, by the dropped spin indexes in Eqs. (B3) and (B4). For Eqs. (C15)
and (C16), we perform similar procedures as for the calculations of the linear response coefficient; rewriting the Matsubara
summation of iεn to the contour integral, changing the integral path into the three paths [−∞ − iPi ± i0,+∞ − iPi ± i0] with
P1 = ωλ, P2 = ωλ′ , and P3 = 0 for the terms which depend on the frequencies set (iε+

n , iε′+
n , iεn), and with P1 = 0, P2 = −ωλ′ ,

and P3 = −ωλ for the terms which depend on the frequencies set (iεn, iε′−
n , iε−

n ). Then, taking the analytic continuations as
Eq. (26), we obtain

χ
R,(2)
i jk (q, q′, q′′; ω,ω′) = 2ieεolmεm jkαq−q′−q′′,l

[
η

(2)
q,q′,q′′,io + iω ϑ

(2)
q,q′,q′′,io + iω′ ϕ(2)

q,q′,q′′,io + · · · ], (C17)

where the first term gives rise to the current depending on the magnetization ∼Mj (t )Mk (t ), not on its dynamics, and the second
term leads to the current due to the total derivative of the magnetizations ∼d (Mj (t )Mk (t ))/dt . The third term of Eq. (C17) is the
component on which we are focusing, which is obtained as

ϕ
(2)
q,q′,q′′,io = ϕ

(1)
q,q′+q′′,io

niu2

2
�q′,q′′ , (C18)

�q′,q′′ =
∑

s,t=±
s�q′,q′′ (it0, is0,−it0) = 2i

V

∑
k

Im
[(

gR
k − gA

k

)
gR

k+q′gA
k−q′′

]
, (C19)

where ϕ
(1)
q,q′+q′′,io is given by Eq. (C5). We neglected the terms which contain only retarded/advanced Green functions because

they are just higher-order contributions with respect to h̄/εF τ , and we used �q′′,q′ (−i0,±i0, i0) = �q′,q′′ (i0,±i0,−i0). Here,
expanding �q′,q′′ with respect to q′ and q′′ up to the second order, we have

�q′,q′′ = −2i Im

[
2I012 + h̄2(3q′2 + 4q′ · q′′ + 3q′′2)

2me
I013 + 4h̄2(2q′2 + 3q′ · q′′ + 2q′′2)

3me
I114

]

� −8iπντ 2

h̄2 {1 − D0τ (2q′2 + 3q′ · q′′ + 2q′′2)}, (C20)

where Ilmn is given by Eq. (D1) and left in the leading order of εF τ/h̄ in the second equal by means of Eqs. (D8). Hence, using
Eqs. (C9), (C10), and (8), we finally find

ϕ
(2)
q,q′,q′′,io = −2iντ 2

h̄

δio(q − q′ − q′′) · (q′ + q′′) − (qi − q′
i − q′′

i )(q′
o + q′′

o )

(q′ + q′′)2
+ O(q2, q′2, q′′2), (C21)

which leads to Eq. (32).

APPENDIX D: INTEGRALS

In this Appendix, we show k integrals Ilmn that we use in
this paper:

Ilmn = 1

V

∑
k

(
h̄2k2

2me

)l(
gR

k

)m(
gA

k

)n
, (D1)

where we set m + n � l + 3/2 to its convergence. We rewrite
the summation over k into the energy integral,

Ilmn =
∫ ∞

−εF

dξ
ν(ξ + εF )(ξ + εF )l

(−ξ + ih̄/2τ )m(−ξ − ih̄/2τ )n
, (D2)

where ν(ε) ∝ √
ε is DOS. For evaluating Ilmn with respect to

the leading order of h̄/εF τ , it is valid to approximate ξ + εF �
εF , which means that DOS and the energy approximates to
the values at the Fermi level and to regard the lower limit of
the integral as −∞. However, we need to evaluate the higher-

order contributions precisely such as in Eq. (16). Hence, we
calculate Ilmn without any approximations.

Considering ν(x) ∝ x1/2, the analyticity is as follows:
Suppose that z = x + iy and w = √

z = X + iY , and in the
polar coordinate, z = rei(θ+2nπ ) with −π � θ < π and n =
0,±1,±2, . . .,

w = e
1
2 log z = e

1
2 log r+ iθ

2 +nπ i =
{√

rei θ
2 (n = 0),

−√
rei θ

2 (n = 1),
(D3)

where n = 0, 1 means the nth Riemann surface: [−π, π )
for n = 0, and [π, 3π ) for n = 1. For the Riemann surface
of n = 0,

X = √
r cos

θ

2
, Y = √

r sin
θ

2
, (D4)
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and the condition −π � θ < π , using x = r cos θ =
r(2 cos2(θ/2) − 1), y = r sin θ = 2r sin(θ/2) cos(θ/2),

cos
θ

2
=

√
1

2

(
1 + x

r

)
, sin

θ

2
= sgn(y)

√
1

2

(
1 − x

r

)
.

Similarly, for the Riemann surface of n = 1,

cos
θ

2
= −

√
1

2

(
1 + x

r

)
, sin

θ

2
= −sgn(y)

√
1

2

(
1 − x

r

)
.

These are collectively expressed as

w =
{√

x[c+(y/x) + isgn(y)c−(y/x)] (n = 0),

−√
x[c+(y/x) + isgn(y)c−(y/x)] (n = 1),

(D5)

where

c±(δ) =
√

1 + δ2

(√
1 + δ2 ± 1

2

) 1
2

. (D6)

FIG. 8. The path of the integral is described. The solid and
dashed line of the path CR and C0 denote the pathes on the Riemann
surfaces n = 0 and n = 1, respectively. The contributions from C0

and CR vanish in the limit of R → ∞.

From Eq. (D5), we can rewrite the path of the integral in
Eq. (D2) as (see Fig. 8)

1

2π

∫ ∞

−εF

dξν(ξ + εF )
ν(ξ + εF )(ξ + εF )l

(−ξ + ih̄/2τ )m(−ξ − ih̄/2τ )n

= 1

4π

(∫ ∞+i0

−εF +i0
+

∫
CR

+
∫ −εF −i0

∞−i0
+

∫
C0

)
dξ

ν(ξ + εF )(ξ + εF )l

(−ξ + ih̄/2τ )m(−ξ − ih̄/2τ )n

= i

2

∑
η=±1

Resξ=iηh̄/2τ

[
ν(ξ + εF )(ξ + εF )l

(−ξ + ih̄/2τ )m(−ξ − ih̄/2τ )n

]
, (D7)

where the path CR is given by ξ = Reiθ , 0 � θ � 2π (changing the Riemann surfaces at θ = π ) and C0 is given by ξ = δeiθ ,
0 � θ < 2π , and Resx=a[ f (x)] is the residue of the function f (x) at x = a. Noted that the sign of the residue at ξ = −ih̄/2τ is
minus, because we gather it of the Riemann surface of n = 1.

Here we show the results of the integrals Ilmn with m = 1 and c± = c±(h̄/2εF τ ),

I011 = 2πντ

h̄
c+, (D8a)

I012 = 2πντ 2

h̄2

[(
i − δ

2

1

1 − iδ

)
c+ + δ

2

ic−
1 − iδ

]
, (D8b)

I013 = −2πντ 3

h̄3

{[
1 + 1

2

iδ

1 − iδ
+ 1

4

δ2

(1 − iδ)2

]
c+ + δ

2

c−
1 − iδ

(
1 − 1

2

iδ

1 − iδ

)}
, (D8c)

I112 = 2πνεF τ 2

h̄2

[(
i − 3δ

2

)
c+ + iδ

2
c−

]
, (D8d)

I113 = −2πνεF τ 3

h̄3

[(
1 + 3iδ

2
− 3

4

δ2

1 − iδ

)
c+ + δ

2

(
1 + 3

2

iδ

1 − iδ

)
c−

]
, (D8e)

I114 = 2πνεF τ 4

h̄4

{[
−i + 3δ

2
+ 3

4

iδ2

1 − iδ
+ 1

4

δ3

(1 − iδ)2

]
c+ − δ

2

[
i − 3

2

δ

1 − iδ
+ 1

2

iδ2

(1 − iδ)2

]
c−

}
, (D8f)

I214 = 2πνε2
F τ 4

h̄4

[(
−i + 5δ

2
+ 9iδ2

4
− 5

4

δ3

1 − iδ

)
c+ − δ

2

(
i − 5δ

2
− 5iδ2

2

1

1 − iδ

)
c−

]
, (D8g)

I215 = 2πνε2
F τ 5

h̄5

{[
1 + 5iδ

2
− 9δ2

4
− 5

4

iδ3

1 − iδ
− 5

16

δ4

(1 − iδ)2

]
c+ + δ

2

[
1 + 5iδ

2
− 5

2

δ2

1 − iδ
+ 5

8

iδ3

(1 − iδ)2

]
c−

}
, (D8h)
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where δ = h̄/2εF τ (� 1). For small δ (> 0),

c+(δ) = 1 + (5/8)δ2 − (13/128)δ4 + · · · , (D9a)

c−(δ) = δ/2 + (3/16)δ3 − (17/256)δ5 − · · · . (D9b)
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