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(Fe, Sn)4N alloy as a model spin-glass system with short-range competing interactions on a
nonfrustrated simple cubic lattice
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The origin of the spin-glass state in (Fe, Sn)4N alloys is studied on the basis of a Heisenberg Hamiltonian
with parameters derived from first principles within the magnetic force theorem applied in the framework of the
disordered local moments method and local spin-density approximation. We show that in the alloy concentration
range where the spin-glass state is stable only one Fe sublattice is intrinsically magnetic and the interatomic
exchange magnetic interactions are essentially short ranged due to effects of chemical and magnetic disorder.
The magnetic Fe atoms with well-localized spin moments are randomly distributed over the nongeometrically
frustrated simple cubic lattice. The magnetic frustration, which generally is believed to be an essential ingredient
of the spin-glass state formation condition, may occur only due to the competition of the two nearest-neighbor
interactions. We thus argue that (Fe, Sn)4N is a rare example of a spin-glass system where the mechanism of
spin-glass state formation might be studied in the framework of the minimal random-site model on a simple
cubic lattice with competing interactions, while the effects of the geometrical frustration can be excluded.
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I. INTRODUCTION

The spin-glass (SG) problem remains one of the most com-
plicated topics in modern solid-state physics [1]. Over more
than four decades since the discovery of the phenomenon
[2] in dilute magnetic alloys a vast amount of experimental
data has been collected. The “experimental” definition of the
spin-glass state and the spin-freezing process has been worked
out in great detail [3]. However, the theoretical description of
the SG state formation in real materials (realistic spin glasses)
[4] is still elusive and remains one of the central unsolved
problems in condensed-matter physics [5]. In the past most
of the effort has been concentrated on models describing
“mathematical” spin glasses, which provide, as it is believed,
a crucial simplification by replacing the chemical site disorder
in real alloys by bond disorder on an ideal lattice [6]. Magnetic
models with bond disorder [7] allow for the celebrated replica
symmetry trick, which has been successfully used to describe
the spin-glass transition in both Ising- and Heisenberg-type
spin systems [8,9]. The rigorous treatment of the problem,
however, requires a consideration of the solutions with broken
replica symmetry [10] and the associated complexity has
given rise to the mathematical theory [11] of the random-bond
spin glass, which is still under intensive development [12].
Surprisingly, much less theoretical attention has been paid
to the realistic SG alloys, which are random-site disordered
systems on a lattice. Even large-scale computational computer
simulations have concentrated mainly on the mathematical
glasses, in an attempt to solve the associated theoretical prob-
lems of random-bond models, rather than on the random-site
SGs [13]. This has led to a rather interesting dichotomy in the
experimental and theoretical spin-glass research, mentioned
already in few decades ago [4] when experimental works
dealing with realistic glasses refer to the results of mathemat-
ical spin-glass theory and when, vice versa, theoretical works

on mathematical glasses refer to experimental results for the
random-site SG alloys for illustrations and comparison. The
root of this dichotomy is the above-mentioned development of
the mathematical SG theory, which provides a wide specula-
tive background for discussion, and presumably removes the
ultimate complexity [4] of the SG problem on a lattice with
site disorder. What certainly can be learned from SG theory
and empirical data to date is that two essential ingredients
of the SG state formation in real alloy systems are magnetic
frustration and chemical disorder [3]. The frustration might
have two sources—geometrical frustration of the lattice
and/or the competition of the intersite exchange interactions.
In the most studied “canonical” [3] spin-glass systems, like
CuMn, AuFe, and some other fcc alloys, both types of
the frustration are present due to natural frustration of the
fcc lattice with respect to antiferromagnetic (AFM) interac-
tions and the long-range oscillating Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction [1,3]. In fact, in realistic SG alloys
other physical factors apart from frustration and disorder are
debated to be important for the onset of a SG state such as
the magnetic anisotropy [14,15], the Dzyaloshinskii-Moriya
exchange [16], long rangedness of the interactions (RKKY
glasses) [3], and complex spin dynamic effects [17]. However,
the problem of whether these effects are necessary for the
onset of a SG state in addition to frustration and disorder
remains unclear. To resolve these issues it is desirable to
consider realistic site-disorder magnetic models and to inves-
tigate the SG system behavior with realistic material specific
parameters.

In recent decades highly efficient first-principles based
computational quantum-mechanical methods have been de-
veloped and applied to disordered magnetic alloy systems
[18,19]. In particular, the methodology of the ab initio calcula-
tions of the magnetic exchange interactions in the framework
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of the magnetic force theorem (MFT) embedded [20] in
the local spin-density approximation [21] (LSDA) is very
successful in the prediction of the complex ground states and
magnetic ordering temperatures of the metallic magnets [22].
It has also been demonstrated that the first-principles based
MFT is able to account for atomic disorder and chemical
substitution effects on the exchange interactions in a number
of alloy systems, allowing for quantitative analysis of such
effects as the evolution of the magnetic ground state with
nonmagnetic substitutions [23], the change of the magnetic
critical temperature due to partial disorder effects [24], and
the prediction of the character of the metamagnetic processes
in alloys with noncollinear magnetic structure [25]. The first-
principles estimation of the exchange interactions in real SG
alloys can be traced back to the pioneering work of Ling
et al. [26], who calculated the interactions up to ninth nearest-
neighbor (NN) shells in Mn15Cu85. These long-distance ex-
change interactions have been calculated on the basis of the
LSDA MFT for the AuFe reentrant spin-glass alloys in a
wide range of chemical compositions [27]. It was shown
[27], in particular, that the antiferromagnetic coupling, which
“frustrates” the magnetic system, appears only between very
distant Fe atomic neighbors and that the simple RKKY form
of the interaction, often used in model SG simulations [28], is
only approximately valid because of its strong dependence on
the lattice directions, the existence of an additional exponen-
tial decaying factor due to chemical and magnetic disorder,
and a significant contribution from a direct exchange mecha-
nism in the first few NN shells. Realistic exchange constants
calculated from first principles have been used in large-scale
Monte Carlo (MC) simulations [29,30] and atomistic spin
dynamic simulations [31] of the SG state in CuMn alloys.
These studies allow us to progress in the understanding of
the SG formation and spin dynamics in realistic SG alloy sys-
tems. However, they also reveal additional complexities when
dealing with canonical SG alloys, in particular the presence of
significant short-range chemical order, which has an impact
on the magnetic properties of the CuMn alloys [26,30]. The
most studied canonical [3] SG alloys, like AuFe and CuMn,
have geometrically frustrated fcc structure. This means that
both types of magnetic frustration are present in fcc alloys:
the geometrical one and the frustration due to a competition
of the distant exchange interactions. Thus, the theoretical
simulations of canonical fcc SG alloys, even with realistic
parameters, always leave open the question concerning the
minimal set of conditions for a SG state formation. In this
regard a recent experimental report [32] on the spin-glass
behavior in (Sn0.9Fe3.1)4N alloy is rather transparent since,
as we will argue in this paper on the basis of the first-
principles simulations, it appears that the SG state is forming
in this material on the nongeometrically frustrated simple
cubic (sc) lattice. By calculating the magnetic moments and
exchange interactions in the high-temperature paramagnetic
state in chemically disordered alloys we show that only Fe
moments on one of the two iron sublattices are intrinsic in
(Sn0.9Fe3.1)4N, where this sublattice is essentially atomically
disordered and the intersite exchange interactions are short
ranged. This observation makes (Sn0.9Fe3.1)4N an almost

FIG. 1. Crystal structure of Fe4N. The Sn atoms populate Fe(1a)
sites in the (Fe4−xSnx )4N alloy.

ideal model system for a combined experimental and model
study of SG phenomena on a nongeometrically frustrated
simple cubic lattice with random-site disorder. The frustration
arises in this system entirely due to competition of the first
nearest-neighbor (1NN) and second nearest-neighbor (2NN)
interactions, which are both antiferromagnetic and have a
similar magnitude. Quite notoriously, the Heisenberg model
on the simple cubic lattice without site disorder and competing
first and second nearest-neighbor interactions (J1 − J2) has
been considered as a simplest canonical three-dimensional
model for a study on the emergence of spin liquid behavior
and quantum fluctuations due to frustration of the interactions
[33]. The possible relevance of the J1 − J2 antiferromagnetic
Heisenberg model on a sc lattice with site disorder to the SG
problem, however, remains an open question [34]. The exper-
imental observation [32] of the SG state in (Sn0.9Fe3.1)4N to-
gether with a structure of its paramagnetic state and exchange
interactions revealed in the present paper may be stimulating
for further discussions and modeling of the spin-glass problem
in the framework of this simple (perhaps the simplest realistic)
model of a disordered magnetic alloy.

The parent compound Fe4N crystallizes in the cubic an-
tiperovskite crystal structure (Pm3̄m, no. 221, see Fig. 1)
and its magnetic properties have been rather well studied
experimentally [35–37] as well as theoretically on a first-
principles basis [38–40]. The strong ferromagnetic (FM) in-
teractions between two Fe sublattices, Fe(1a) and Fe(3c), in
Fe4N result in a remarkable total magnetization and high
magnetic ordering temperature (767 K) [41]. The exchange
interactions between the Fe spin moments in the ferromag-
netic ground state have been studied in the ab initio framework
by Meinert [40], who found a rather reasonable agreement
between the calculated and experimental Curie temperature.
In this paper it has also been found that in addition to a strong
ferromagnetic nearest-neighbor interaction there are antifer-
romagnetic distant interactions of considerable magnitude.
Based on Meinert’s results [40] and ab initio calculations,
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which show the overall weakening of the ferromagnetism
upon Sn substitution in Fe4N, Scholtz and Dronkowski [32]
interpreted the formation of the SG state in (Sn0.9Fe3.1)4N
alloy as a result of the competition between the weakened
FM and the distant AFM interactions. In this paper, however,
we show that indeed only Fe in position 1a (see Fig. 1)
possesses intrinsic magnetic moments in (Sn0.9Fe3.1)4N and
that these moments are randomly distributed over the sc lattice
(with 10% sites occupied) interacting antiferromagnetically.
We thus argue that the SG state is formed due to competitions
of the two NN AFM couplings on the site-disordered sc lattice
and support our argument by Monte Carlo simulations with
ab initio calculated exchange interactions.

II. METHODOLOGY

We performed electronic structure calculations for disor-
dered (Fe4−xSnx )N alloys in the concentration range x = 0 −
0.9 employing the coherent-potential approximation (CPA) in
the framework of the Korringa-Kohn-Rostoker (KKR) method
and the atomic sphere approximation (ASA) [42,43]. In our
KKR-ASA calculations the partial wave functions were ex-
panded up to angular momentum l = 3 (spdf-basis) and the
effects of exchange and correlation are treated within the
LSDA [44].

The magnetic exchange interaction constants, Ji j , of the
classical Heisenberg Hamiltonian,

H = −
∑

i, j

Ji j�ei�e j, (1)

where�ei is the unit directional vector of the magnetic moment
at the ith site of the Fe sublattice, have been calculated using
the magnetic force theorem [45] as implemented in the bulk
Korringa-Kohn-Rostoker band-structure method [46]. In fact,
our calculation methods are similar to those used by Meinert
[40] for Fe4N and our exchange constants calculated for the
ferromagnetic state of stoichiometric Fe4N (see upper panel
of Fig. 2) are very similar as well. However, our discussion in
this paper will be based on the exchange constants calculated
in the paramagnetic state with disordered local moments
(DLMs) [47] above the magnetic ordering temperature. The
importance of the paramagnetic state as a reference state for
calculations of the exchange interactions in metals for inves-
tigations of the high-temperature properties and, in particular,
of the magnetic phase transition has been pointed out and dis-
cussed several times [48,49]. One must also take into account
that for (Sn0.9Fe3.1)4N, which experimentally does not show
long-range order (LRO), the choice of a particular ordered
magnetic configuration for the estimation of the exchange
constants would be rather artificial and in general might
lead to incorrect conclusions. The thermal magnetic disorder
essentially modifies the electronic structure of the valence
bands of metals and consequently the exchange interactions;
an example will be given below for stoichiometric Fe4N. The
use of the classical Heisenberg model for metallic systems
is dictated by the band origin of the atomic magnetic mo-
ments. Further discussion on the application of the classical
Heisenberg model and its extensions for investigation of finite
temperature magnetic properties of 3d-metallic systems can
be found, e.g., in our recent work [50].

FIG. 2. Calculated intersite exchange interactions in Fe4N com-
pounds in the ferromagnetic (upper panel) and paramagnetic states
with disordered local moments (lower panel). Closed symbols, inter-
actions within the Fe(1a) sublattice; open symbols, within the Fe(3c);
and mixed, Fe(1a)-Fe(2c) interactions. The interatomic distance,
d/a, is given in units of the cubic lattice constant a.

III. RESULTS AND DISCUSSION

In Fig. 2 we show the exchange constants of the Hamilto-
nian (1) calculated in the FM ground state and the DLM state
above Tc for Fe4N. We see that the dominating interaction is
the first NN intersublattice ferromagnetic coupling between
Fe atoms in positions 1a and 3c. This interaction defines the
ferromagnetic order at low temperatures. One immediately
notes the difference between the interactions calculated in
the FM and DLM state. In the FM state they are essentially
long range with a few AFM intrasublattice (1a-1a as well as
3c-3c) couplings of rather significant sizes. In the DLM state
the distant interactions are damped by the magnetic disorder
effects on the electronic structure. If one wants to discuss
low-temperature properties (much lower than the magnetic
ordering temperature), like spin waves or magnetization dy-
namics, etc., one needs to consider the exchange interactions
calculated in the FM state. However, if we want to study the
onset of magnetic order at high temperatures, then the DLM
interactions are relevant. Only for magnetic insulators with
fully localized magnetic moments the interactions in the FM
and paramagnetic state with DLM might be the same. In met-
als, where the interactions are mediated by the metallic bonds,
the magnetic disorder effects will always modify the inter-
atomic exchange interactions via changes of the electronic
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FIG. 3. (a) Calculated Fe magnetic moments in (Fe4−xSnx )4N alloys in the ferromagnetic (red) and the disordered local moment states
(dark) for two sublattices 1a (closed symbols) and 2c (open symbols). (b) First nearest-neighbor interaction between Fe(1a) and Fe(2c)
calculated for (Fe4−xSnx )4N alloys for ferromagnetic (circles) and disordered local moment (squares) states. (c) First (squares) and second
(circles) nearest-neighbor interactions between localized Fe in the position 1a calculated for (Fe4−xSnx )4N alloys. (d) The exchange interactions
between Fe(1a) positions calculated for (Sn0.9Fe3.1)4N alloy.

structure of the conduction bands. It has been shown that
even in the case of well-localized systems like hcp Gd these
effects are important [48]. In the paramagnetic state only three
interactions are essential for the onset of the magnetic order in
Fe4N: strong 1NN coupling between 1a and 3c sublattices and
two (1NN and 2NN) interactions with opposite sign within the
2a sublattice. Estimating the magnetic ordering temperature
by performing the Monte Carlo simulations for the Hamilto-
nian (1) using the calculated exchange energies (lower panel
of Fig. 2) we obtain a value of 790 K, which is in good
agreement with experiment (767 K) [41]. In these simulations
we used interactions up to the 15th NN shells for each of
the Fe sublattices. These results justify our further discussion
of the exchanges in the (Sn0.9Fe3.1)4N alloys using the DLM
approach to the electronic structure of the paramagnetic state.
Before we proceed we note here that our exchanges calculated
for the FM state are similar to those obtained previously by
Meinert [40] for stoichiometric Fe4N.

The considerable difference in the magnitudes of the inter-
actions for the FM and DLM states of Fe4N can be further un-
derstood by analyzing the atomic magnetic moments on both
Fe sublattices [see Fig. 3(a)]. The moment of Fe in position
1a is rather large (∼3 μb), having the same value in the FM
ground state and in the paramagnetic state suggesting a high

degree of localization. The moment of Fe in the position 3c is
smaller—in the FM ground state it is almost exactly 2 μb—but
it largely reduces in the paramagnetic DLM state to 1.24 μb.
This is a signal for the very itinerant character of the mag-
netism in Fe(3c). Experimentally it is known that upon doping
the Sn atoms substitute for the Fe atoms entirely in the 1a
position [32]. Our CPA calculations suggest a gradual collapse
of the Fe moments in 3c position [Fig. 3(a)] in both FM and
DLM states with increasing Sn concentration. At the critical
Sn concentration in (Fe4−xSnx )N alloy (approximately at x =
0.2) Fe(3c) loses its intrinsic moment in the paramagnetic
state, which, however, might be induced upon ferromagnetic
ordering of Fe in 1a position at low temperatures. Due to
this effect the Fe(1a)-Fe(3c) FM interaction weakens very
quickly with increasing Sn concentrations [see the respective
calculated values in Fig. 3(b)], and already at x ≈ 0.2 it
has almost no influence on the magnetic order formation at
elevated temperatures. The leading interactions, which deter-
mine the magnetic ordering in (Fe4−xSnx )N alloys with high
Sn concentration, would be the interactions between large
localized Fe moments in 1a positions. Quite an interesting
observation is that the magnitudes of these interactions (1a-
1a) dramatically change with increase of the Sn concentra-
tion. The 1NN 1a-1a interactions, being ferromagnetic in the
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stoichiometric Fe4N compound, turn out to be antiferromag-
netic in (Fe4−xSnx )N [see calculated values in Fig. 3(c)]. Thus
the magnetic structure of the (Fe4−xSnx )N alloys would have
a strong tendency towards antiferromagnetic order with in-
creasing Sn concentration. In Fig. 3(d) we show the calculated
distance dependence of the 1a-1a exchange interactions in
(Sn0.9Fe3.1)4N alloys, which is the main subject of the present
paper. It can be seen that this interaction is quite short ranged
and basically has only two significant members—1NN and
2NN—both of which are antiferromagnetic and of similar
magnitude. Already the third NN interaction is one order of
magnitude smaller, whereas more distant interactions have
vanishing magnitude in the paramagnetic state.

Before we proceed with the analysis of the derived picture
for the magnetic interactions in (Sn0.9Fe3.1)4N some com-
ments on the weak itinerant nature of magnetism of Fe in the
3c position in stoichiometric Fe4N and nearly stoichiometric
(Fe4−xSnx )4N are necessary. As it has been shown earlier
the decrease of the Fe spin moments in the paramagnetic
state compared to the ordered FM state due to their itinerant
character is the leading mechanism of the anomalous negative
thermal expansion in Fe-based Invar-like alloys via the mech-
anism of the spontaneous volume magnetostriction [51,52].
Indeed, experimentally, the Fe4N is an Invar-like system [53]
and thus the considerable reduction of the itinerant Fe(3c)
moments in the paramagnetic state is completely in line with
this observation. A second comment is related to the situation
of (Fe4−xSnx )4N alloys around the critical concentration (x ∼
0.2 − 0.3) (x ∼ 0.2 − 0.3. It might appear that they would
exhibit a very rich physics associated with the proximity to
the onset of intrinsic magnetism on the Fe(3c) sublattice—a
topic which recently triggered considerable interest due to
experimental observations of the “clean” effects of quantum
criticality in disordered metallic alloys of NiCoCrx, which
can be driven towards an itinerant ferromagnetic critical point
by chemical substitutions [54]—an effect predicted earlier for
CoGaNix and CoGaNix alloys with similar structure [55]. It
thus might be interesting to test experimentally the magnetic
and critical behavior of the (Fe4−xSnx )4N alloys around the
critical compositions in the future.

Turning back to the (Sn0.9Fe3.1)4N alloy one can sum-
marize our discussion of the results presented in Fig. 3 as
following. At this Sn concentration the Fe sites in the po-
sitions 3c do not possess an intrinsic magnetic moment—
although some spin polarization might be induced by the
spontaneous magnetization of the Fe local moments in 1a
positions. However, even this scenario of the induced spin
polarization in the 3c positions should be excluded since the
moments on the 1a sites do not order ferromagnetically (thus
it does not produce a molecular field on the 3c sites) since
the dominant interactions within the Fe(1a) sublattice are an-
tiferromagnetic. Thus the magnetism of (Sn0.9Fe3.1)4N is due
to well-localized Fe moments randomly distributed over the
simple cubic 1a sublattice, which populate 10% of sc lattice
sites and interact antiferromagnetically such that the 1NN
interactions are similar in magnitude to the 2NN ones [see
Fig. 3(d)]. This gives us strong arguments pointing towards
the notion that the experimentally observed [32] SG behavior
in (Sn0.9Fe3.1)4N is a special case of the SG phenomena in

FIG. 4. Collinear antiferromagnetic state on a simple cubic lat-
tice. The ground state of the classical Heisenberg Hamiltonian on a
fully ordered lattice with interactions is taken from Fig. 3(d).

the random-site disordered systems on the nongeometrically
frustrated sc lattice caused by the competition of the first two
NN AFM couplings.

In order to further support our conclusions we perform a
MC simulation with the Hamiltonian (1) and the calculated
exchange constants as presented in Fig. 3(d). The MC simula-
tions have been done on a 28 × 28 × 28 simple cubic lattice
with 10% of sites randomly populated by magnetic atoms
using periodic boundary conditions and a simple Metropolis
algorithm. The classical magnetically ordered ground state
on the ordered sc lattice (where all sites are populated by
magnetic atoms) with exchanges presented in Fig. 3(d) would
be a collinear antiferromagnetic state [34] as shown in Fig. 4.
This ordered state consists of ferromagnetic {001} chains with
checkerboardlike AFM ordering between {001} planes of the
sc lattice. In order to monitor the onset of magnetic order
in the disordered system we simulate the intersite spin-spin
correlation functions (CFs) defined as for the nth nearest
neighbor as

c(n) = 1

N

∑

i

1

Nn

∑

�Rn

〈
�e�Ri

�e�Ri+�Rn

〉
, (2)

where the first sum runs over N translation vectors of the sc
lattice, �Ri; the second sum is taken over the Nn translation
vectors, �Rn, spanning the nth shell; and 〈 〉 stands for the
statistical average. The spin-spin correlation function has been
also normalized to take into account the partial lattice site
occupations by the magnetic atoms to give unity in the case of
ferromagnetic order. For instance, with definition (2), the spin-
spin correlation functions for fully ordered AFM structure
from Fig. 4 will be c(1) = −0.33, c(2) = −1, and c(3) = +1.
In Fig. 5 we plot the results of our MC simulations of CFs
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FIG. 5. Temperature dependence of the spin-spin correlation
functions [Eq. (2)] for (Sn0.9Fe3.1)4N alloy for the first four
nearest-neighbor shells and Edwards-Anderson order parameter, qEA

[Eq. (3)]. Results of the Monte Carlo simulations with calculated
exchange parameters from Fig. 3(d) (see text).

for the first-four NN shells. As can be seen down to very
low temperature (1 K) no traces of the regular AFM order
occur. Due to rather significant values of the 1a-1a intersite
exchanges there is a strong short-range order (SRO) effect in
the first two NN shells in a very broad temperature interval
(up to hundreds of degrees Kelvin), but there is no trace of
regular LRO down to 1 K. As temperature lowers c(1) and
c(2) monotonously grow in magnitude without turning into
the values they should have in an AFM state with LRO,
merely increasing SRO defined by the respective signs of the
exchanges between neighboring atoms in the respective shells.
Quite notorious is the behavior of c(3) and c(4)—they also
do not approach the AFM LRO values, but manifest quite
distinctive turning points at about 20 and 8 K, respectively,
indicating an onset of strong cooperative behavior in this

temperature interval, exactly where the onset of the spin-glass
behavior is observed experimentally [32] in (Sn0.9Fe3.1)4N.

In order to further elucidate the emergence of the SG state
at the lowest temperature we calculate also the Edwards-
Anderson (EA) parameter. The EA parameter for random site
model can be defined in analogy with random bond model
definition [56] as:

qEA = 〈�ei(t0)�ei(t0 + t )〉, (3)

where, similarly to Eq. (2), the averaging stands for the MC
statistical average over all sites at a given temperature, but in
addition there is a time (t) average (over MC steps). This pa-
rameter has played an important role in SG theories based on
the random-bond model and here, for a random-site model, it
reflects the temporal evolution of the “magnetization” related
to a single site. As one can see from Fig. 5 the EA parameters
show a clear upturn at a temperature around 15 K, suggesting
the onset of the temporal correlations of the moment direc-
tions on the single sites at this temperature. These temporal
correlations are one of the important hallmarks of the SG
behavior.

Our simulations with ab initio calculated exchange con-
stants thus predict that interactions, frustration, and site disor-
der prevent the formation of a state with magnetic LRO down
to very low temperatures. This fact also points towards SG
formation in (Sn0.9Fe3.1)4N without geometrical frustration
effects, long-range interactions, and effects of cauterization.
One needs to note, however, that the presented MC results
cannot be regarded as a proof of the SG state formation
and that a more refined analysis beyond a simple Metropolis
algorithm will be necessary. The idea of the present paper
is to direct the attention of theoreticians working on model
simulations and spin-glass theory to the recently discovered
notorious SG system, (Sn0.9Fe3.1)4N which, on the basis of
our ab initio analysis and simple Monte Carlo simulations,
might be considered as one of the most “simple” realistic
spin-glass materials.
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