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Higher-order exceptional point in a cavity magnonics system
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We propose to realize the pseudo-Hermiticity in a cavity magnonics system consisting of the Kittel modes in
two small yttrium iron garnet spheres coupled to a microwave cavity mode. The effective gain of the cavity can be
achieved using the coherent perfect absorption of the two input fields fed into the cavity. With certain constraints
of the parameters, the Hamiltonian of the system has pseudo-Hermiticity, and its eigenvalues can be either all real
or one real and other two constituting a complex-conjugate pair. By varying the coupling strengths between the
two Kittel modes and the cavity mode, we find the existence of the third-order exceptional point in the parameter
space in addition to the usual second-order exceptional point existing in the system with parity-time symmetry.
Also, we show that these exceptional points can be demonstrated by measuring the output spectrum of the cavity.
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I. INTRODUCTION

By harnessing the advantages of different components, hy-
brid quantum systems have potential applications in quantum
information [1,2]. Among various hybrid systems, the cavity
magnonics system has received increasing interest in recent
years [3–16]; here magnonics is related to an emergent branch
of magnetism, with the main aim to investigate the behavior
of spin waves in a confined or nanostructured system [17].
In such a hybrid system, magnons in, e.g., a small yttrium
iron garnet (YIG) sample are coupled to microwave photons
in a cavity. Originating from the high spin density and the
strong spin-spin exchange interactions, the Kittel mode in the
YIG sample can possess both a long coherence time and a
low damping rate [8,18], making the cavity magnonics system
easily reach the strong-coupling regime [5–7] and even possi-
bly reach the ultrastrong-coupling regime [19,20]. Moreover,
owing to the merits of high tunability and good coherence, the
cavity magnonics system has become a promising platform
to implement various novel phenomena, such as the magnon
gradient memory [21], bistability of cavity-magnon polaritons
[22,23], cavity spintronics [24,25], and cooperative polariton
dynamics [26]. In addition, it was experimentally shown that
the magnons in the small YIG sample can couple to the optical
photons [27–30], phonons [31], and superconducting qubits
[32,33]. This makes it promising to produce the magnon-
photon-phonon entanglement in cavity magnomechanics [34].

As stated in quantum mechanics, the Hamiltonian of a
closed quantum system must be Hermitian to have a real
energy spectrum. However, any realistic quantum systems
are actually open systems. Under certain conditions, they
may be effectively modeled by non-Hermitian Hamiltoni-
ans. In Refs. [35–37], Mostafazadeh proposed the pseudo-
Hermiticity for the non-Hermitian Hamiltonian of the sys-
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tem: If a Hamiltonian H with a discrete spectrum satisfies
H† = UHU −1, where the dagger (†) denotes the Hermitian
adjoint and U is a linear Hermitian operator, the Hamiltonian
H is pseudo-Hermitian, and its eigenvalues are either real
or complex-conjugate pairs. The pseudo-Hermiticity is an
interesting topic in non-Hermitian physics, which can give
rise to rich exotic phenomena in different subjects of physics
(e.g., quantum chaos and quantum phase transitions [38,39],
Dirac particles in gravitational fields [40], Maxwell’s equa-
tions [41], the anisotropic XY model [42], and dynamical
invariants [43]).

Obviously, the Hermiticity of the Hamiltonian, H† = H , is
a special case of the pseudo-Hermiticity, with U being a unit
operator. Also, the PT -symmetric Hamiltonian is another
subset of the pseudo-Hermitian Hamiltonian [37], where the
Hamiltonian H satisfies [44] [H,PT ] = 0, with P and T
being the parity and time operators, respectively. Hereafter,
the pseudo-Hermiticity mentioned below excludes both the
Hermiticity and the PT symmetry. When varying one of the
system’s parameters near the critical point (i.e., the excep-
tional point), the system undergoes a quantum phase transi-
tion from the PT -symmetric phase to the PT -symmetry-
breaking phase (with real and complex eigenvalues, respec-
tively) in the parameter space [44]. This exceptional point
is also called the second-order exceptional point (EP2) and
has been studied in various non-Hermitian systems, including
optomechanical systems [45,46], coupled waveguides [47],
coupled optical microresonators [48], cavity magnonics sys-
tems [49–52], and superconducting circuit-QED systems [53].
Besides EP2, high-order exceptional points may occur in
non-Hermitian systems. Specifically, an nth-order exceptional
point (EPn) corresponds to the coalescence of n eigenvalues
in a non-Hermitian linear system [54]. Higher-order excep-
tional points are more complicated but can exhibit richer
physical phenomena [55–61]. For instance, a higher-order
exceptional point has much richer topological characteristics
in coupled acoustic resonators [62] and can further enhance
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the sensitivity of the sensors in photonic molecules [63]. To
the best of our knowledge, there is no study on both the
pseudo-Hermiticity without PT symmetry and the related
higher-order exceptional point in a cavity magnonics system.

In this work, we investigate the high-order exceptional
point in a cavity magnonics system by designing an effective
pseudo-Hermitian Hamiltonian without PT symmetry. In our
proposal, the hybrid system is composed of two small YIG
spheres placed in a microwave cavity, where the Kittel mode
in each YIG sphere is strongly coupled to the cavity mode. In
order to realize the pseudo-Hermiticity of the Hamiltonian, a
gain of the cavity is needed, which can be effectively achieved
using coherent perfect absorption (CPA) of the two input
fields fed into the cavity via two ports [49,64]. In addition to
the usual EP2, we find the third-order exceptional point (EP3)
in the parameter space. Moreover, we show that the EP3 can be
observed by measuring the total output spectrum of the cavity,
where the CPA frequencies are found to be coincident with the
real energy spectrum of the hybrid system.

Our work brings the study of cavity magnonics systems to
the interesting pseudo-Hermitian physics. In previous works
[45–64], exceptional points were realized in either the PT -
symmetric system or the non-Hermitian system without the
pseudo-Hermiticity. Our work provides an initial study of the
high-order exceptional point in a cavity magnonics system
with a pseudo-Hermitian Hamiltonian withoutPT symmetry.
In contrast to Ref. [49], we design a more sophisticated
system and show that CPA can also occur in the absence
of PT symmetry. Also, our proposed hybrid system may
be harnessed to explore exotic phenomena of the high-order
exceptional point (e.g., the topological properties [62] and the
perturbation amplification [63]) in the future.

II. THE MODEL

The proposed cavity magnonics system consists of two
YIG spheres (YIG 1 and YIG 2) and a three-dimensional (3D)
microwave cavity, as schematically shown in Fig. 1, where
the considered magnon mode (i.e., the Kittel mode) in each
YIG sphere couples to the same cavity mode via the collective
magnetic-dipole interaction. This Kittel mode corresponds to
a mode of magnons in the long-wavelength limit with zero
wave number (i.e., k = 0), where all spins in the sample
precess uniformly [17].

When each Kittel mode is in the low-lying excitations and
only one cavity mode is considered, the total Hamiltonian of
this hybrid system can be written as [3–7]

H = ωca†a + ω1b†
1b1 + ω2b†

2b2 + g1(a†b1 + ab†
1)

+ g2(a†b2 + ab†
2), (1)

where a and a† (b j and b†
j , j = 1, 2) are the annihilation and

creation operators of the cavity mode (the Kittel mode in the
jth YIG sphere), ωc and ω j are the corresponding frequencies
of these modes, and g j is the coupling strength between the
cavity photons and the magnons in the jth YIG sphere. When
two input fields a(in)

1 and a(in)
2 with the same frequency are

fed into the microwave cavity via ports 1 and 2, the dynamics
of the hybrid system is governed by the following quantum

FIG. 1. The schematic layout of the proposed hybrid system.
Two purple YIG spheres glued on movable orange thin bars are
placed in a 3D microwave cavity. The magnetizations of the two YIG
spheres are saturated via a static magnetic field B0 in the z direction.
In addition, two weak-bias magnetic fields, �B1 and �B2, are also
applied in the z direction, each of which can be produced using a
coil near the corresponding YIG sphere [21]. The coupling strength
between each Kittel mode and the cavity mode can be controlled by
moving the YIG sphere via the bar along the x direction, and the
decay rates κ1 and κ2 due to ports 1 and 2 can be tuned by changing
the intracavity lengths of the pins inside the two ports [49]. Moreover,
two input fields, a(in)

1 and a(in)
2 , are fed into the cavity via ports 1 and

2, and the corresponding two output fields are denoted as a(out)
1 and

a(out)
2 .

Langevin equations [65]:

ȧ = −i[ωc − i(κ1 + κ2 + κint )]a − ig1b1 − ig2b2

+
√

2κ1a(in)
1 +

√
2κ2a(in)

2 ,

ḃ j = −i(ω j − iγ j )b j − ig ja, (2)

where κint is the intrinsic decay rate of the cavity mode and
κi is the decay rate of the cavity mode due to the ith port
(i = 1, 2). Then, the total decay rate of the cavity mode is
κ1 + κ2 + κint. The Kittel mode in the jth YIG sphere has a
damping rate γ j , and no input field is applied to the Kittel
mode. According to the input-output theory [65], we can
connect the intracavity field a with the input field a(in)

i and
output field a(out)

i via

a(in)
i + a(out)

i =
√

2κia (3)

at each port i.

A. Effective Hamiltonian

With appropriate parameters, CPA may occur in the hybrid
system (see Sec. II B), with no output fields going out from
ports 1 and 2, i.e., a(out)

i = 0. In this case, Eq. (3) becomes

a(in)
i =

√
2κia. (4)

Substituting Eq. (4) into Eq. (2), we obtain

ȧ = −i[ωc + i(κ1 + κ2 − κint )]a − ig1b1 − ig2b2,

ḃ j = −i(ω j − iγ j )b j − ig ja. (5)
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The Langevin equations in Eq. (5) can be expressed in matrix
form as

V̇ = −iHeffV, (6)

where V = (a, b1, b2)T represents a column vector and Heff

is the effective non-Hermitian Hamiltonian of the hybrid
system,

Heff =
⎛
⎝ωc + iκg g1 g2

g1 ω1 − iγ1 0
g2 0 ω2 − iγ2

⎞
⎠, (7)

where κg ≡ κ1 + κ2 − κint > 0 represents an effective gain of
the cavity mode owing to CPA [49,64].

In the special case without YIG 2, the effective Hamilto-
nian Heff in Eq. (7) is reduced to a 2 × 2 matrix,

H̃eff =
(

ωc + iκg g1

g1 ω1 − iγ1

)
. (8)

When the system parameters satisfy ωc = ω1 and κg = γ1,
the binary system can possess PT symmetry [44], and the

eigenvalues of H̃eff are ω± = ωc ±
√

g2
1 − γ 2

1 , which are real
(complex) for g1 > γ1 (g1 < γ1), corresponding to the system
in the PT -symmetric (PT -symmetry-breaking) phase. As
reported in Ref. [49], the binary system with H̃eff exhibits a
spontaneous PT -symmetry-breaking quantum phase transi-
tion at the EP2 (i.e., ω+ = ω− = ωc when g1 = γ1) by tuning
the coupling strength g1 from g1 > γ1 to g1 < γ1. In Eq. (7),
when both g1 �= 0 and g2 �= 0, leading to PT symmetry,
the ternary system should satisfy [63] κg = 0 and γ1 = −γ2.
This is not achievable in the usual case when the Kittel
modes are lossy (γ1 > 0 and γ2 > 0). However, as shown in
Secs. III and IV, the ternary system without PT symme-
try can also have a real energy spectrum and exhibit both
EP3 and EP2 in the parameter space under the condition of
pseudo-Hermiticity.

B. CPA conditions

Using Fourier transformations a(t ) =
1√
2π

∫ +∞
−∞ a(ω)e−iωt dω and b j (t ) = 1√

2π

∫ +∞
−∞ b j (ω)e−iωt dω,

we can convert the Langevin equations in Eq. (2) to

−i[(ωc − ω) − i(κ1 + κ2 + κint )]a − ig1b1 − ig2b2

+
√

2κ1a(in)
1 +

√
2κ2a(in)

2 = 0,

− i[(ω j − ω) − iγ j]b j − ig ja = 0. (9)

From Eq. (9), the intracavity field is obtained as

a =
√

2κ1a(in)
1 + √

2κ2a(in)
2

(κ1 + κ2 + κint ) + i(ωc − ω) + ∑
(ω)

, (10)

where

∑
(ω) =

∑
j=1, 2

g2
j

γ j + i(ω j − ω)
(11)

is the self-energy due to the two Kittel modes.

Using Eqs. (10) and (3), we can also obtain the output fields
a(out)

1 and a(out)
2 at ports 1 and 2,

a(out)
1 = 2κ1a(in)

1 + 2
√

κ1κ2a(in)
2

(κ1 + κ2 + κint ) + i(ωc − ω) + ∑
(ω)

− a(in)
1 ,

a(out)
2 = 2

√
κ1κ2a(in)

1 + 2κ2a(in)
2

(κ1 + κ2 + κint ) + i(ωc − ω) + ∑
(ω)

− a(in)
2 . (12)

When CPA occurs, the two input fields are fully fed into the
cavity, so a(out)

1 = a(out)
2 = 0 in Eq. (12). Solving Eq. (12) with

a(out)
i = 0, we obtain three constraints.

The first constraint on the two input fields a(in)
1 and a(in)

2 is

a(in)
2 =

√
κ2/κ1a(in)

1 , (13)

while the second and third constraints on the parameters of the
system and the frequency of the input fields are

κg =
∑
j=1, 2

g2
j

(ω j − ωCPA)2 + γ 2
j

γ j,

(14)

ωc − ωCPA =
∑
j=1, 2

g2
j

(ω j − ωCPA)2 + γ 2
j

(ω j − ωCPA),

where ωCPA denotes the frequency of the two input fields in
the case of CPA. The constraint in Eq. (13) means that the two
input fields should have the same phase and a specific magni-
tude ratio

√
κ2/κ1, which can be readily satisfied via a variable

phase shifter and a variable attenuator in the experiment [49].

III. PSEUDO-HERMITIAN HAMILTONIAN

Below we derive the parameter conditions of the pseudo-
Hermiticity for the effective Hamiltonian Heff in Eq. (7).
For this considered Hamiltonian, there are three eigenvalues.
Following Ref. [35], Heff becomes pseudo-Hermitian only if
its eigenvalues satisfy one of the following conditions: (i) all
three eigenvalues are real, or (ii) one of the three eigenvalues is
real, and the other two are a complex-conjugate pair. Solving
Det(Heff − �I ) = 0, i.e.,∣∣∣∣∣∣∣
(ωc + iκg) − � g1 g2

g1 (ω1 − iγ1) − � 0
g2 0 (ω2 − iγ2) − �

∣∣∣∣∣∣∣ = 0,

(15)

where I is an identity matrix, we can obtain the three eigen-
values. According to the energy-spectrum property of the
pseudo-Hermitian Hamiltonian [35], both Eq. (15) and its
complex-conjugate expression Det(H∗

eff − �I ) = 0, i.e.,∣∣∣∣∣∣
(ωc − iκg) − � g1 g2

g1 (ω1 + iγ1) − � 0
g2 0 (ω2 + iγ2) − �

∣∣∣∣∣∣ = 0,

(16)

should yield the same solutions.
By expanding the determinants in Eqs. (15) and (16) and

comparing their corresponding coefficients, we find that the
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system parameters satisfy the following constraints:

κg − γ1 − γ2 = 0,

�1γ1 + �2γ2 = 0,

(�1�2 − γ1γ2)κg + g2
1γ2 + g2

2γ1 = 0, (17)

and the characteristic polynomial in Eq. (15) is reduced to

(� − ωc)3 + c2(� − ωc)2 + c1(� − ωc) + c0 = 0. (18)

Here �1(2) = ω1(2) − ωc is the frequency detuning between
Kittel mode 1 or 2 and the cavity mode, and the coefficients
c0, c1, and c2 are given by

c0 = g2
1�2 + g2

2�1 − κg(γ1�2 + γ2�1),

c1 = κ2
g + �1�2 − γ1γ2 − g2

1 − g2
2,

c2 = −(�1 + �2). (19)

Clearly, the pseudo-Hermiticity ensures that the loss and gain
are balanced in the whole hybrid system, i.e., κg − γ1 − γ2 =
0. For convenience, we introduce two new parameters, η

and k,

γ1 = ηγ2, g2 = kg1, (20)

where we have assumed that γ2 � γ1, i.e., η � 1. Using
Eq. (20), the pseudo-Hermitian conditions in Eq. (17) become

κg = (1 + η)γ2,

�2 = −η�1,

�2
1 = 1 + ηk2

(1 + η)η
g2

1 − γ 2
2 , (21)

and the coefficients of the characteristic polynomial in
Eq. (19) are

c0 = (k2 − η)g2
1�1 + (η2 − 1)(1 + η)γ 2

2 �1,

c1 = (1 + η)2γ 2
2 − η

(
�2

1 + γ 2
2

) − (1 + k2)g2
1,

c2 = (η − 1)�1. (22)

From the last equation in Eq. (21), it follows that the coupling
strength g1 should be in an appropriate regime to ensure
�2

1 � 0. Setting �2
1 = 0, the allowed minimal value gmin of

the coupling strength g1 is given by

gmin ≡
[

(1 + η)η

1 + ηk2

]1/2

γ2. (23)

Obviously, this is achievable in our considered system.

IV. EP3 IN THE CAVITY MAGNONICS SYSTEM

In this section, we study the EP3 in both symmetric and
asymmetric cases by solving the characteristic polynomial
in Eq. (18) under the pseudo-Hermitian conditions of the
system’s parameters and demonstrate that this EP3 can be
observable via measuring the total output spectrum of the
cavity. Assuming that the pseudo-Hermitian system has an
EP3 at � ≡ �EP3 and the corresponding critical parameters
are denoted as g1 ≡ gEP3 and �1 ≡ �EP3, we can rewrite the
secular equation in Eq. (18) as

(� − �EP3)3 = 0 (24)

at the EP3. Comparing the coefficients of Eqs. (18) and (24),
we can link the coalescence eigenvalue � = �EP3 to the
parameters of the system,

−3(�EP3 − ωc) = (η − 1)�EP3,

3(�EP3 − ωc)2 = (1+η)2γ 2
2 −η

(
�2

EP3+γ 2
2

)−(1+k2)g2
EP3,

−(�EP3−ωc)3 = (k2−η)g2
EP3�EP3+(η2−1)(1+η)γ 2

2 �EP3.

(25)

The first equation in Eq. (25) gives the corresponding eigen-
value at the EP3,

�EP3 = ωc + 1

3
(1 − η)�EP3. (26)

A. The symmetric case of γ1 = γ2

When the two Kittel modes have identical damping rates
γ1 = γ2 (i.e., η = 1), the coalescence eigenvalue in Eq. (26)
becomes �EP3 = ωc, and the last two equations in Eq. (25)
can be simplified to

�2
EP3 + (1 + k2)g2

EP3 − 3γ 2
2 = 0,

(k2 − 1)g2
EP3�EP3 = 0. (27)

Solving Eq. (27) under the pseudo-Hermitian conditions in
Eq. (21) and ignoring the trivial solution, we can analytically
express the critical parameters as

gEP3 = 2√
3
γ2, �EP3 = 1√

3
γ2, (28)

and the obtained ratio k in Eq. (20) is k = 1.
In such a case with γ1 = γ2 and g1 = g2 (i.e., η = k = 1),

the secular equation in Eq. (18) can be rewritten as[
(� − ωc)2 − (

3g2
1 − 4γ 2

2

)]
(� − ωc) = 0. (29)

The corresponding three eigenvalues of the effective pseudo-
Hermitian Hamiltonian Heff are

�0 = ωc,

�± = ωc ±
√

3g2
1 − 4γ 2

2

(30)

in the region g1 � gmin. Now, gmin in Eq. (23) becomes gmin =
γ2, which is smaller than gEP3 = 2√

3
γ2. Clearly, the eigenvalue

�0 is real for any allowed values of g1 (i.e., g1 � gmin),
while the two eigenvalues �± are real for 3g2

1 − 4γ 2
2 > 0

(i.e., g1 > gEP3) and complex for 3g2
1 − 4γ 2

2 < 0 (i.e., gmin �
g1 < gEP3). When 3g2

1 − 4γ 2
2 = 0 (i.e., g1 = gEP3), the three

eigenvalues �± and �0 coalesce to the EP3, i.e., �± = �0 =
�EP3 = ωc. Because gmin < gEP3, the EP3 is experimentally
observable in this symmetric case.

Below we check the CPA conditions in Eq. (14). For η =
k = 1, the CPA conditions are reduced to[

(ωCPA − ωc)2 − (
3g2

1 − 4γ 2
2

)]
(ωCPA − ωc)2 = 0,[

(ωCPA − ωc)2 − (
3g2

1 − 4γ 2
2

)][
(ωCPA − ωc)2 − g2

1

]
× (ωCPA − ωc) = 0 (31)

under the pseudo-Hermitian conditions in Eq. (21). Solv-
ing the above equations, we obtain the three CPA
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FIG. 2. The ratio k = g2/g1 of the coupling strengths g2 and g1

versus the ratio η = γ1/γ2 of the Kittel-mode damping rates γ1 and
γ2.

frequencies

ω
(0)
CPA = ωc, g1 � gmin,

ω
(±)
CPA = ωc ±

√
3g2

1 − 4γ 2
2 , g1 � gEP3. (32)

Comparing Eq. (32) with Eq. (30), we find that the CPA
frequencies are coincident with the eigenvalues of the hybrid
system when the eigenvalues �± and �0 are real. However,
for the complex eigenvalues, CPA begins to disappear.

B. The asymmetric case of γ1 �= γ2

In the experiment, it is difficult to have two Kittel modes
with the same damping rates because the Kittel-mode damp-
ing rate is not tunable. Thus, it is useful to investigate the
EP3 in the asymmetric case of γ1 �= γ2 (i.e., η �= 1). With the
pseudo-Hermitian conditions in Eq. (21) and the conditions of
the EP3 in Eq. (25), we find that the parameter k satisfies the
following expression:

1

4

[
1 + ηk2

(1 + η)η
+ 3(1 + k2)

1 + η + η2

]

=
[

1 + 27(1 + η)2

(η − 1)2

]−1[ 1 + ηk2

(1 + η)η
− 27(k2 − η)

(η − 1)3

]
, (33)

where η �= 1 and the critical parameters are

gEP3 =
[

1 + ηk2

(1 + η)η
+ 3(1 + k2)

1 + η + η2

]−1/2

2γ2,

�EP3 =
[

1 + ηk2

(1 + η)η
g2

EP3 − γ 2
2

]1/2

. (34)

With the expressions of gmin and gEP3 in Eqs. (23) and (34),
respectively, we obtain the relation

gEP3 = gmin

√
1 + 27η2(2 + η)−2(1 + 2η)−2, (35)

where we eliminate the parameter k via Eq. (33). Obviously,
gEP3 > gmin, so the EP3 is achievable in the experiment.
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FIG. 3. The eigenvalues of the effective Hamiltonian Heff in
Eq. (7) versus the coupling strength g1 between the cavity mode and
the Kittel mode in YIG 1. Note that there is no pseudo-Hermiticity
for the system with g1 < gmin (green regions). In each panel, the
dashed red and dotted blue lines denote the eigenvalues �±, and
the solid black line denotes the eigenvalue �0. (a) and (c) The
real and imaginary parts of the eigenvalues �± and �0 versus g1

in the symmetric case of η = k = 1, where κ1/2π = κ2/2π = 2.25
MHz and γ1/2π = 1.5 MHz. (b) and (d) The real and imaginary
parts of the eigenvalues �± and �0 versus g1 in the asymmetric
case of η = 2 and k = 0.494, where κ1/2π = κ2/2π = 3 MHz
and γ1/2π = 3 MHz. Other parameters are chosen to be γ2/2π =
κint/2π = 1.5 MHz.

Using Eq. (33), we plot in Fig. 2 the ratio k = g2/g1 of the
coupling strengths versus the ratio η = γ1/γ2 of the damping
rates. It can be seen that k decreases from 1 to 0.3 as η varies
from 1 to 3, which means that the coupling strengths should
satisfy the relation g1 > g2 in the case of γ1 > γ2 (because
γ1 = ηγ2 and g1 = g2/k) to observe EP3 in our proposed
system. Different from the symmetric case with γ1 = γ2 and
g1 = g2 (i.e., η = k = 1), it is difficult to analytically solve
the secular equation in Eq. (18) as well as the CPA conditions
in Eq. (14) for γ1 �= γ2 and g1 �= g2, but we can numerically
solve them.

In Fig. 3, we plot the energy spectra of the effective
Hamiltonian Heff in Eq. (7) versus the coupling strength g1 in
the symmetric and asymmetric cases of γ1 = γ2 and γ1 = 2γ2

(i.e., η = 1 and η = 2), respectively. Note that no eigenvalue
exists when g1 < gmin (see the green regions) because there is
no pseudo-Hermiticity for the system. Figures 3(a) and 3(c)
show the real and imaginary parts of the eigenvalues �± and
�0 given in Eq. (30) versus g1 for η = 1, with the critical
coupling strength gEP3/2π = 1.732 MHz. The eigenvalues
have different characteristics in the two regions: gmin � g1 <

gEP3 and g1 > gEP3. When gmin � g1 < gEP3, the eigenvalues
�± are a complex-conjugate pair (see the dashed red and
dotted blue lines), and �0 is real (see the solid black lines).
It is clear that the three eigenvalues �± and �0 coalesce to
�EP3 = ωc at g1 = gEP3 (i.e., the EP3). For g1 > gEP3, all three
eigenvalues �± and �0 are real.
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In the asymmetric case of γ1 �= γ2 (where we choose η =
2), the corresponding real and imaginary parts of eigenvalues
�± and �0 versus the coupling strength g1 are shown in
Figs. 3(b) and 3(d), respectively. We note that there are
two critical coupling strengths gEP3/2π = 3.394 MHz and
gEP2/2π = 3.600 MHz. The eigenvalue �0 is real for any
allowed values of the coupling strength g1 � gmin (see the
solid black lines), and �± are complex (real) for gmin � g1 <

gEP3 and gEP3 < g1 < gEP2 (g1 = gEP3 and g1 � gEP2; see the
dashed red and dotted blue lines). In this case, in addition to
the EP3 at g1 = gEP3, where the three eigenvalues �± and
�0 are coalescent, there is the EP2 at g1 = gEP2, where the
two eigenvalues �± are coalescent. This is different from the
symmetric case.

C. The output spectrum

In this section, we derive the total output spectrum of
the cavity for the hybrid system and show that the pseudo-
Hermiticity can be observed using the output spectrum. As
discussed in Sec. II B, when CPA occurs, the first constraint is
on the two input fields a(in)

1 and a(in)
2 , i.e., Eq. (13). Using this

equation, the expressions of the two outgoing fields in Eq. (12)
can be rewritten as

a(out)
1 = S1(ω)a(in)

1 ,
(36)

a(out)
2 = S2(ω)a(in)

2 ,

where S1(ω) and S2(ω) are the output coefficients at ports 1
and 2 for the frequency ω of the two input fields,

S1(ω) = 2κ1 + 2κ2

(κ1 + κ2 + κint ) + i(ωc − ω) + ∑
(ω)

− 1,

S2(ω) = S1(ω). (37)

Here we define a total output spectrum |Stot (ω)|2 to character-
ize the input-output property of the hybrid system,

|Stot (ω)|2 = |S1(ω)|2 + |S2(ω)|2. (38)

It is easy to check that |Stot (ω)|2 = 0 when the second and
third constraints in Eq. (14) are satisfied at ω = ωCPA.

In Figs. 4(a) and 4(b), we show the total output spectrum
|Stot (ω)|2 versus the coupling strength g1 and the frequency
detuning ω − ωc between the two input fields and the cavity
mode when η = 1 and η = 2, respectively. The minimum in
the total output spectrum (see the blue pattern) represents
CPA, i.e., a(out)

1 = a(out)
2 = 0. As expected, the CPA frequen-

cies are coincident with the real eigenfrequencies of the
effective pseudo-Hermitian Hamiltonian Heff in Eq. (7), where
the real eigenvalues and the EPs are indicated by the dashed
white lines and the white stars, respectively. Therefore, the
energy spectra and the EP3 and EP2 can be demonstrated
by measuring the total output spectrum of the microwave
cavity.

V. DISCUSSION AND CONCLUSIONS

Both the 3D microwave cavity with a high Q factor (e.g.,
κint/2π ∼ 1 MHz) and the highly polished small YIG sphere
with γ1,2/2π ∼ 1 MHz are experimentally available [6–8].
Also, the decay rates of the cavity induced by the two ports
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FIG. 4. The transmission spectrum |Stot (ω)|2 versus the coupling
strength g1 between the cavity mode and the Kittel mode in YIG 1
as well as the frequency detuning ω − ωc between the input fields
and the cavity mode, where the phases and amplitudes of the two
input fields satisfy Eq. (13). (a) The symmetric case of γ1 = γ2 (i.e.,
η = 1). (b) The asymmetric case of γ1 = 2γ2 (i.e., η = 2). The real
energy spectra (see Fig. 3) and EPs are marked using the dashed
white lines and the white stars, respectively. Other parameters are
the same as in Fig. 3.

are tunable (ranging from 0 to 8 MHz) by adjusting the
intracavity pin lengths of the ports [49]. For a saturated mag-
netized YIG sphere by a static magnetic field, the frequency
of the Kittel mode in the YIG sphere can be further tuned
in the range of tens of megahertz via the magnetic field
generated by a small coil near the sphere [21]. In Ref. [49],
the YIG sphere is attached to a thin rod placed in the cavity
through a small hole in the cavity, and the coupling strength
between the cavity and Kittel mode can be tuned from 0
to 9 MHz by moving the rod. Moreover, a microwave sig-
nal generated by a vector network analyzer can be divided
into two feeding fields needed for realizing CPA, and their
magnitudes and relative phases can be adjusted using a vari-
able attenuator and phase shifter, respectively. With these
achievable conditions, our proposed scheme is experimentally
implementable.

In addition, we have shown that the energy spectra and
EP3 can be revealed by harnessing the output spectrum of
the microwave cavity. Owing to the good tunability of the
cavity magnonics system, the CPA conditions can be nearly
perfectly satisfied by carefully adjusting the parameters of the
system [49], where the absorption rate of the cavity for the
two input fields can reach as high as 99%. Indeed, as shown
in a cavity magnonics system with only one YIG sphere [49],
the experimentally obtained energy spectra and EP can have

054404-6



HIGHER-ORDER EXCEPTIONAL POINT IN A CAVITY … PHYSICAL REVIEW B 99, 054404 (2019)

features similar to the simulated counterparts of the ideal
system, even though the CPA conditions cannot be ideally
achieved in the experiment. This confirms the usefulness of
the spectroscopic method in revealing the exceptional points.
In Ref. [49], CPA was achieved for a PT -symmetric system,
while in Ref. [66] CPA was investigated for an optical system
without PT symmetry. In the present work, we find that
CPA is also realizable for a system with pseudo-Hermiticity.
It is known that the EP3 is more complicated but has richer
physics than the EP2 [55–63]. Compared with other platforms,
the cavity magnonics system has its own merits, such as
high tunability and good coherence [21–23,49], which are
important for the implementation of the pseudo-Hermiticity
of the system. Also, as a hybrid system, the cavity magnon-
ics system has good compatibility with phonons [31], op-
tical photons [27–30], and superconducting qubits [32,33].
Moreover, the YIG has intrinsic nonreciprocity [28]. These
characteristics will make the cavity magnonics system useful
in exploring the richer properties of the high-order exceptional
points.

In short, we have theoretically studied the pseudo-
Hermiticity and EP3 in a cavity magnonics system consisting
of two small YIG spheres in a microwave cavity. Under the
parameter conditions of the pseudo-Hermiticity, the effective
Hamiltonian of the system has either three real eigenvalues or
one real and two complex-conjugate eigenvalues. By tuning
the coupling strengths between the two Kittel modes and the
cavity mode, the three eigenvalues can coalesce at the EP3.
Also, we show that the pseudo-Hermiticity and EP3 can be
probed using the total output spectrum of the cavity. Our
work provides an experimentally feasible scheme to realize
the pseudo-Hermiticity and EP3 in a hybrid quantum system.
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