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Chaotic dynamics in spin-vortex pairs
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We report on spin-vortex pair dynamics measured at temperatures low enough to suppress stochastic core
motion, thereby uncovering the highly nonlinear intrinsic dynamics of the system. Our analysis shows that the
decoupling of the two vortex cores is resonant and can be enhanced by dynamic chaos. We detail the regions of
the relevant parameter space, in which the various mechanisms of the resonant core-core dynamics are activated.
We show that the presence of chaos can reduce the thermally induced spread in the decoupling time by up to two
orders of magnitude.
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I. INTRODUCTION

Topologically protected states of vortex type are known in
many areas of condensed matter physics, such as ferromagnets
[1–3] and superconductors [4], including unconventional su-
perconducting cuprates [5,6]. In all that variety, the topologi-
cal structures in magnets, spin vortices (for a review see [1,2]),
are particularly attractive since they do not require cryogenic
temperatures and have nanometer length scales, which makes
them promising for various applications from nanoelectronics
[7–14] to medicine [15,16].

Vortices have a number of highly attractive characteristics
and can exist in any soft magnetic material with desirable
microwave properties, which in turn enables applications
in fast nonvolatile memory [7–11] and microwave sources
[12–14,17–19]. Furthermore, spin vortices can be organized
into various vortex ensembles with strong and tunable inter-
vortex interactions [20–26]. The unique topology of pairs of
spin vortices, especially with a strong direct core-core cou-
pling studied in this work, vastly expands the available low-
dissipative dynamic regimes. This is in contrast to in-plane
superconducting vortices in cuprates where the intervortex
interactions are far-field and the main dynamic mode is that
of transverse core vibration rather than in-phase rotation of
two cores. Further the interaction is such that dissociation of
cores is impossible.

In this work we investigate experimentally, theoretically,
and numerically a tightly spaced vortex pair and focus on its
most intriguing configuration, having parallel core polariza-
tions and antiparallel vortex chiralities [referred to as the P-AP
state; illustrated in Fig. 1(a)]. This core-core configuration
is unique as it can be found in different states with the
vortex cores in the two magnetic layers coupled (a diatomic-
molecule type pair) or well separated (a dissociated molecule),
controlled by the magnitude of the external in-plane field. The
system is thus bistable, with the two states corresponding to
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two minima in the potential energy of the system separated by
a potential barrier. Such systems are sensitive to external exci-
tations, both periodic and stochastic. We show that the collec-
tive dynamics exhibited by the system are entirely different
from those of the individual vortices comprising the pair.
We find experimentally, by measuring at the liquid nitrogen
temperature where thermal excitation effects in our system are
negligible, highly nonlinear dynamics, in particular, chaotic
dynamics and chaos-enhanced decoupling. The experimental
observations are confirmed by an analytical model in the
framework of collective variables based on the Thiele equa-
tions [27] for the coordinates of the core pairs, reduced to
two time-dependent first-order equations, a bare minimum of
phase space dimensions required to exhibit chaotic dynamics.
Our experimental and analytical findings on the nonlinear and
chaotic behavior of the system are fully supported by in-depth
micromagnetic simulations.

II. SAMPLES AND CHARACTERIZATION

Our samples were elliptical nanopillars containing two
vertically stacked permalloy (Py) layers, each 350 × 420 nm
in-plane and 5 nm thick, separated by a 1 nm thick TaN
spacer. The nanopillars are on-chip integrated in a toggle-style
memory cell layout with the resistive readout over an Al-O
tunnel barrier and electrically disconnected high-frequency
Cu line used to supply the GHz-range excitations. The el-
liptical shape was chosen for ease of characterization of the
junctions in the uniform ground state [28], but plays no role
for the small-radius high-frequency dynamics investigated in
this work. Further fabrication details can be found in [29]. For
measurements, both Py layers were set into a vortex state by
GHz excitation of a given amplitude and frequency such that
the vortex pair with parallel core polarizations and antipar-
allel chiralities [P-AP; Fig. 1(a)] is generated [30]. After the
creation of a vortex state the magnetoresistance is measured
in order to confirm that the created pair configuration is P-
AP. The magnetic response was measured magnetoresistively
using a Wheatstone bridge and a lock-in amplifier with the
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FIG. 1. (a) Schematic of the studied vortex pairs, having verti-
cally tightly spaced magnetic layers, each in a spin vortex state with
parallel core polarizations (vertical arrows) and antiparallel chirali-
ties (circular arrows): the P-AP vortex pair state. The pair is shown
in a decoupled state, with a large in-plane core-core separation, as
against a coupled state, with the two cores on-axis (not shown). (b)
Measured magnetoresistance of a sample in a P-AP vortex state,
with hysteresis at 77 K (blue) between the coupled and decoupled
core-core states (illustrated by insets showing corresponding spin
maps), and no hysteresis at 300 K due to thermal smearing (dashed
orange line).

junction design as shown in Fig. 2. Further measurement
details can be found in Appendix A.

Figure 1(b) shows the magnetoresistance of a typical sam-
ple in the P-AP vortex state at 77 K and room temperature
(RT). The well-defined R-H hysteresis observed at 77 K at
about 10–15 Oe is due to decoupling and recoupling of the two
vortex cores, and is smeared out at RT. With all measurements
done at 77 K and the dc field kept at mid-hysteresis, we focus
below on this key hysteretic transition in the system between
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FIG. 2. Circuit diagram of the measurement setup. The junction
resistance is read out using a Wheatstone bridge, with the resistor
values 9 k� and 1.3 k� in one arm and 9 k� together with the
junction in the other arm. GHz-range excitations are supplied to the
junction through integrated 50 � high-frequency lines connected to
an rf generator (Keysight 13 GHz) or an arbitrary-wave-generator
(Tektronix 5 GS/s).
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FIG. 3. Measured core-decoupling probability, at a bias field of
17 Oe, as a function of the excitation frequency and field amplitude
applied as 300 ms pulse envelopes. The inset shows probability-
vs-frequency cross sections for pulse-envelope excitations of 100
periods in duration (40 to 100 ns). The dashed regions labeled
300 ms and 100 periods show the smoothed area, within which
the corresponding pulse envelopes have a greater than 20% chance
of decoupling the vortex pair. The probability map is broadened to
higher frequency for longer excitation envelops, along the red arrow
marked with kT , due to greater probability of decoupling caused by
thermal fluctuations.

its coupled and decoupled states (with tightly bound and
dissociated cores, as illustrated by the micromagnetically sim-
ulated spin maps for the two states), which exhibits unique,
chaos-enhanced dynamics.

The core-core decoupling process was mapped out versus
frequency and amplitude of the field excitation applied as a
pulse envelope of 300 ms in duration. Such a pulse envelope
of a given amplitude and frequency, with a subsequent readout
of the junction state as to decoupled/coupled, was repeated
35 times to yield the core-core decoupling probability for
a given point in the parameter space, shown in Fig. 3. The
bulk of the decoupling region (orange) is somewhat lower in
frequency than the small-signal rotational resonance for the
system (about 3 GHz [20]), expected since the dc bias field
corresponding to mid-hysteresis used in the measurement
increases the core-core separation of the coupled state, thereby
lowering the rotational frequency of the pair. At higher ex-
citation amplitudes the decoupling probability map shows a
complex structure with a subband centered at 1.5 GHz.

The picture changes for shorter pulse envelopes. 100 period
pulses [about 40 ns, versus 300 ms for the main P(A, f )
phase space of Fig. 3], timed to take into consideration the
geometry-modified effective damping constant [31] of 0.1,
are sufficient to establish a steady-state oscillation while
short enough to suppress thermal escape events at 77 K.
The corresponding response, shown in the inset to Fig. 3, is
qualitatively the same as the main probability-vs-frequency
peak, but requires a significantly higher amplitude (illustrated
by the dashed triangle, labeled 100 periods, indicating the
area of greater than 20% decoupling probability for short
pulses compared to the corresponding dashed area for the 300
ms data). The main decoupling map (300 ms) is broadened
predominantly toward higher frequencies since the greater
pulse duration leads to a larger number of thermal fluctuation
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events with sufficient strength, which is indicated by how
the 100-period area is expanded along the red arrow marked
with kT to the larger 300 ms dashed area in the main panel
of Fig. 3. This is to be expected since for a given field
amplitude the high-frequency forced oscillations are located
deeper in the potential well, where a longer time is needed
to encounter a suitable thermal excitation event. Thus, by
varying the excitation duration and amplitude we can study
the various regimes of the vortex-pair dynamics with its rich
phase space—essentially deterministic, stochastic, weakly or
highly nonlinear, as well as chaotic.

III. THEORETICAL MODEL

We use the Thiele equation framework established earlier
[20] to describe the vortex motion in the presence of a strong
core-core interaction. The equations of motion can be derived
from the Lagrangian,

L = G

2
xẏ + 2GXẎ − U (x, X), (1)

where G = μ0LzMs/2γ is the gyroconstant for a single vor-
tex, Lz the thickness of the layer, x = X1 − X2 the core sepa-
ration, X = (X1 + X2)/2 the collective pair displacement, and
Xi the in-plane coordinates of the vortex cores originating
from the center of the layer. The potential U describes the
forces acting on the individual cores as well as the direct in-
teraction between the cores. An individual core experiences a
restoring force from the layer boundary, centering it within the
layer. This boundary-restoring force is given by the potential,

Ums = k

2
X2

i + k′

4
X4

i , (2)

where k = 20μ0M2
s L2

z /9Lx, k′ ≈ k/2L2
x , and Lx the length

of the long axis of the ellipse, as shown in [32]. The force
is present due to an additional stray field when the core is
displaced from the layer’s center.

In stacked vortex pairs, where the vertical core-core spac-
ing is small compared to the core size, the dominant inter-
action is the direct magnetic dipolar core-core coupling. The
intervortex interaction through the boundary stray fields can
then be considered negligibly small. The resulting core-core
interaction potential is a sum of the four pairwise interactions
among the four surfaces of the two cores and can be written
as

Ucc(x) = σμ0M2
s �2

[
−�

(
x

�
,

D

�

)

+ 2�

(
x

�
,

D + Lz

�

)
− �

(
x

�
,

D + 2Lz

�

)]
, (3)

where, again, x is the lateral core-core separation, � is the
core size, and D is the spacer thickness. The function

�(x, y) =
π

4

√
2e−x2/2

∫ ∞

0

rdr√
r2 + y2/2

e−r2
I0(x

√
2r)

(4)

is the universal function describing the normalized potential
between the two inner magnetic surfaces and I0 is the modified
Bessel function, obtained assuming a Gaussian distribution of

the magnetization in the core. The parameter σ = ±1 is deter-
mined by the relative core polarities and, for the parallel case
(σ = 1), with the vertical core-core spacing much smaller
than the core length, the interaction is a highly localized,
quasimonopole core-core attraction. The interaction becomes
repulsive when the in-plane core separation is increased to
more than a few core radii.

In addition to the core-boundary and core-core interac-
tions, an externally applied field interacts with the in-plane
spins in the vortex periphery, outside the core region, which
results in a Zeeman force on the core directed perpendicular
to the field. The Zeeman potential is given by

UZ = cχ [ez × Xi]H, (5)

where the proportionality constant, c = πμ0MsLz/2, is de-
rived using the rigid vortex model and determines the mag-
nitude of the field-induced core movement, while the vortex
chirality, χ = ±1, determines its direction.

In this model, the core-decoupling dynamics are fully
described by using only the separation between the cores,
x. The collective motion of the pair described by X can
be disregarded for the discussion herein since the intermode
coupling is negligible, depreciated further by the immense
difference of the respective characteristic frequencies (of the
core-core rotational motion versus that of the pair’s center).
Furthermore, direct excitation of the “center-of-mass” oscil-
lations is forbidden by the symmetry between the two layers
and can be excited only at negligible levels through the weak
nonlinearity of the boundary force.

The resulting equations of motion for the separation vector
are

[ez × ẋ] = ω(|x|)x + λẋ + C{ez × [Hbias + h(t )]}, (6)

where ω = ∂U (x|X=0)/∂x
2Gx is the intrinsic oscillation frequency

dependent on the oscillation amplitude x, λ = πα ln(R/�)
[31,33], with the micromagnetic damping constant α, R is
the radius of the layer, � is the vortex core size, and h and
Hbias are the ac and dc magnetic fields. Under an external
time-dependent force the phase space of the system becomes
three-dimensional, since now the motion is determined not
only by the starting position but also by the starting time. In
the absence of thermal fluctuations (6) can be used to calculate
the core trajectories for both decoupling and non-decoupling
oscillations, starting from the coupled state with zero core
separation, x = 0.

We illustrate the above model by numerically plotting in
Fig. 4(a) the bifurcation map, which displays the different dy-
namic regimes in our system. Here and below, the theoretical
ac field amplitude is in the rms amplitude normalized to the
biasing field magnitude. The field values obtained from the
model are of about the same magnitude as the experimental
values but, due to inaccuracies in the core-core potential, not
equal exactly. One can see that the main core-decoupling map
is centered at 2.0 GHz. Additionally, a lower-frequency de-
coupling subband, itself with substructure, is visible at around
1.5 GHz. Comparing Fig. 4 with Fig. 3, one can see that
the theoretical and experimental core-core decoupling maps
are in good agreement in terms of the general layout as well
as the substructure, with normalized amplitudes coinciding
precisely.

054402-3



BONDARENKO, HOLMGREN, LI, IVANOV, AND KORENIVSKI PHYSICAL REVIEW B 99, 054402 (2019)

1.0 1.5 2.0 2.5 3.0 3.5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Frequency �GHz�

N
or

m
al

iz
ed

 a
c 

fie
ld

am
pl

itu
de

,

�6 �4 �2 0 2 4 6
�15

�10

�5

0

x�nm�

y�
nm
�

0 2 4 6 8
�12

�10

�8

�6

�4

�2

0

x[nm]

y
[n

m
�

Thiele equation simulation Micromagnetic simulation
(a) (b) (c)

quasi-linear response period-doubled period-quadrupled period-octupled

Non-decoupling
regimes

Dynamic
decoupling

CHAOS

=0.23hn =0.26hn =0.28hn =0.284hn

h n

FIG. 4. (a) Bifurcation map of a P-AP vortex pair, with the bottom panels showing the progression of qualitative changes in the trajectories
of the bottom core at an excitation frequency of 2.2 GHz as the amplitude is increased, from linear to nonlinear with sequential period doubling
and eventually chaotic, with the top core having symmetric trajectories mirrored with respect to the vortex-pair center. The color of the arrows
indicates the corresponding region in the bifurcation map where each panel originates from. The height indicates the timescale of each panel
is equal to one external excitation period (with periodic boundaries). The color scale of the in-plane projection goes from blue, through the
full color spectrum, and back to blue, during the same period. The normalized amplitude, hn, is the rms amplitude of the excitation normalized
by the bias field. (b) Example of a set of chaotic trajectories of the vortex core in the bottom layer obtained using our analytical model. (c)
A micromagnetic simulation of the same configuration as used in (b), with the comparison fully validating the analytical approach employed.
The color of the trajectories indicate the time evolution going from blue (initial) to orange (final).

The right wing of the core-decoupling map, its high-
frequency side, is particularly interesting. Here, the system
undergoes a period-doubling cascade [yellow, blue, and pur-
ple regions in Fig. 4(a), with the trajectories given in the
bottom panels as indicated by the correspondingly colored
arrows], giving rise to chaotic dynamics (red) right at the
edge of the dynamic-decoupling regime (green). In the chaotic
regime, the core trajectories are never repeated and do not
settle into a steady state [Figs. 4(b) and 4(c)]. Decoupling
trajectories in the dynamic regime, as opposed to stochastic
and chaotic regimes, have been studied previously [34].

The period doubling can be qualitatively explained as
follows: at some amplitude the applied ac field becomes
strong enough to pull the cores from the bottom of the
coupled-potential well up toward the edge where the intrinsic
oscillation frequency of the pair is lower and the cores detune
from the external excitation. The cores then fall back into the
well under the influence of magnetic friction and the now
out-of-phase ac field, and after one period of recovery the
cycle is repeated. The period-doubled response can thus be
split into a slow close-to-the-edge motion with a high chance

of escape, and a fast recovery motion at the bottom of the
well, with the two strictly alternating. At still higher excitation
amplitudes, in the chaotic regime, the core trajectories can
cross the free motion separatrix, defined such that if the
field were turned off at that exact point the cores would
not return to the coupled-state well and decoupling would
occur.

The results of the analytical model were compared to mi-
cromagnetic simulations performed using the MUMAX3 [35]
package. The cell size was {x, y, z} = {1.76471, 1.76471, 2}
nm, with 240 × 200 cells in the x-y plane. The spacer was
modeled as a single-cell-thick vacuum layer between the two
permalloy disks, each 2 cells in height; the material param-
eters used were the standard permalloy parameters, Ms ≈
8 × 105 A/m, A = 13 × 10−12 J/m, and α = 0.013, with no
intrinsic anisotropy. The micromagnetic simulations did not
include thermal fluctuations. Additional details of the mi-
cromagnetic simulations can be found in Appendix B. The
resulting chaotic trajectories are compared in Fig. 3(c) versus
Fig. 3(b). We observe that the micromagnetic chaotic trajec-
tory shares the same shape and qualitative evolution as the
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analytical one obtained using (1), which is a strong validation
of the model used.

In order to understand the role of thermal fluctuations we
next discuss the short-pulse dynamics. A study of the effects
of thermal fluctuations on the vortex-pair dynamics can be
done within a linearized model describing simple gyration
of the cores: G[ez × ẋ] = klx, where kl is the linearization
parameter. The Green’s function of the model, when including
magnetic dissipation, is given by

G(t ) = (t )

(
cos θt − sin θt
sin θt cos θt

)
e−λθt , (7)

where θ = kl/G, λ is the dissipation constant, and (t ) is
the Heaviside step function. The time evolution under the
influence of a random force, Fst (t ), is then given by

x(t ) =
[

x0

(
cos θt

− sin θt

)
+ y0

(
sin θt
cos θt

)]
e−λθt

+
∫ t

0
dτ G(t − τ ) · Fst (τ ), (8)

where the random force is assumed to be of white-noise type:
〈Fi,st (t )Fj,st (t ′)〉 = �δi jδ(t − t ′). To obtain the magnitude of
the random force, �, the autocorrelation function, Bi j (t ′ −
t ) = 〈xi(t )x j (t ′)〉, is calculated:

B(t ) = �

2λω

(
cos θt − sin θt
sin θt cos θt

)
e−λθ |t |, (9)

which for the special case of t = t ′ can be compared to the
thermodynamic result from the Boltzmann distribution and
results in the following fluctuation dissipation theorem for our
system:

〈
x2

i

〉 = kBT

kl
. (10)

This gives the magnitude of the random force,

� = 2λkBT

G
, (11)

which does not depend on the linearization parameter, kl . For
core motion offset from the layer center the system can still be
linearized to the same form as (8), since (11) does not depend
on the linearization parameter.

We then use the stochastic Runge-Kutta numerical algo-
rithm to obtain the distribution of decoupling times in our
system. The representative distributions of the decoupling
time (T) as well as its spread (�T ) are shown in Fig. 5(a)
versus the ac field amplitude. For a typical thermally agitated
system, the transition width decreases monotonically since the
relative role of the stochastic effects decreases with increasing
amplitude of the external force. The distribution is, however,
highly nonmonotonic, with distinct minima of one to two
orders of magnitude, superposed onto a gradual decay.

IV. CHAOTIC DYNAMICS

The first, most pronounced minimum precisely coincides
with the amplitude range where the dynamics become chaotic,
as evidenced by the corresponding Lyapunov characteristic
exponents (nonzero LCE1,2) shown in Fig. 5(b). The LCEs

for our system were calculated using the methods originally
proposed in Refs. [36,37]. Although the algorithms for ob-
taining the value of the largest LCE discussed in Refs. [38–40]
(some of which simplify the above general approach) provide
a satisfactory precision with a reasonable computational com-
plexity, we have opted instead for a method able to describe
all of the characteristic exponents of the system. Obtaining
all of the LCEs and their behavior versus the system’s pa-
rameter space, greatly facilitated by the recent rise in the
scientific computing capabilities, adds an additional degree
of certainty when discussing the complex dynamics of the
system, especially when the number of degrees of freedom
increases. We have implemented the relevant algorithms using
the built-in ODE-integration capabilities of MATHEMATICA.
The script was written for an arbitrary dynamical system and
is available at [41]. Using a modern computer, the calculation
of the exponents, with the precision and resolution seen in
Fig. 5, took about 8 hours.

The Lyapunov characteristic exponents of a system char-
acterize the stability of a given trajectory to small fluctua-
tions. The time-dependent deviation, δx(t ), from a trajectory
evolves, in the linear approximation, as

δx(t ) = |δx0|eλLCEt (12)

from some infinitesimal initial deviation, |δx0|, with the Lya-
punov characteristic exponents λLCE (one LCE per dimension
of phase space). Positive LCE indicates an unstable motion,
for which the deviation grows with time, while negative LCE
characterize stable motion. For a three-dimensional phase
space, chaotic motion is characterized by a set of one positive,
one negative, and one zero-valued LCE. This criterium is
fulfilled exactly at the pronounced minimum in the decoupling
time spread. The close proximity of the chaotic trajectories
to the decoupled state’s basin of attraction, combined with
the low phase-space volume of the basin of attraction for the
chaotic trajectory due to its fractal nature as shown in Fig. 6,
makes the energy barrier to switching arbitrarily small. At
the same time the two attractors possess different degrees
of stability, such that at low temperatures the cores, once
they decouple, cannot be efficiently recaptured by the chaotic
fractal attractor due to its low volume, while the decoupled
state’s basin of attraction, which is not fractal, occupies a large
volume and dominates. The less pronounced high-amplitude
minima occurring in the dynamic decoupling regime at hn =
0.55 and above are not due to chaotic motion but rather to
the coupled state’s complete loss of stability as an attractor.
The nonlinearity in the potential causes the loss of stability to
occur nonmonotonically.

We have observed this theoretically predicted chaos sig-
nature in a direct experiment. The decoupling time and its
statistical distribution were measured by varying the pulse
envelope of the applied ac field of given amplitude and fre-
quency from 1 to 107 cycles and recording whether the vortex
pair switched into the decoupled state, with the entire se-
quence repeated 1000 times to obtain accurate statistics. Three
distinct dynamic regimes are observed, shown in Fig. 5(c), as
the amplitude is increased.

The decoupling probability for low fields [blue curve
in Fig. 5(c)] is well described by the Poisson distribution,
with the decoupling rates limited by the rate of thermal
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fluctuations with energy sufficient for lifting the cores out of
the coupled attractor. Such thermally dominated decoupling
takes place in the quasilinear regime before period doubling
occurs, indicated by the white area in Fig. 4(a). The rate of
such fluctuations is lower than the characteristic relaxation

FIG. 6. The decoupled state’s basins of attraction near the cou-
pled state’s potential well for one time slice, calculated using our
analytic model. The color denotes the average number of ac field pe-
riods needed for core-core decoupling, with deep blue being infinite
and red being 3 periods. The regions of fast switching (few periods)
show a fractal behavior (same pattern on zoom-in) and correspond to
chaotic trajectories within the potential well.

time of the system for the given parameters, which allows the
cores to relax to dynamically stable trajectories between the
thermal-escape events.

At higher amplitudes (orange curve) the dynamically stable
trajectories, on average, increase in radius and pass closer to
the separatrix, which makes lower-energy thermal fluctuations
sufficient for activating core decoupling. At the same time,
the number of fluctuations with energy comparable to the
decoupling threshold is much larger and their effects can
multiply within the relaxation time for a given trajectory.
This regime is characteristic of the period-multiplied regions
preceding chaos, marked in yellow/blue/purple in Fig. 4(a).
We point out that, as expected, the Poisson distribution no
longer is accurate in the limit where the intrinsic dynamics
of the system is dominating and, as a result, a log-normal
distribution provides a much better fit to the experimental data
[as shown in Fig. 5(c)].

Still higher amplitudes [green curve in Fig. 5(c)] alter the
probability in a qualitative way, such that it does not saturate at
unity due to significant recoupling. The recoupling probability
is high due to the forced high-energy oscillations within the
decoupled well post-switching, which in turn can undergo
thermal excitation events, bringing the system back into the
coupled attractor. The decoupling is entirely dynamic and
for short pulses is independent of thermal fluctuations. This
process takes place in the dynamic regime marked in green in
Fig. 4(a).
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The spread in the decoupling time (the width of the de-
coupling transition) extracted from the decoupling probability
using the above Poissonian and log-normal fitting, is shown
in Fig. 5(d) for two frequencies near the core-core resonance.
Qualitatively, the observed nonmonotonic behavior is in good
agreement with the theoretical prediction, with the transition
width going through a deep minimum at intermediate field
amplitudes. The transition width is not straightforward to de-
fine at the highest amplitudes, which results in the data cutoff
in Fig. 5(d) at 27 and 36 Oe for 2.2 GHz and 2.5 GHz, respec-
tively. The shift of the distribution to lower field amplitudes
with lowering the frequency as well as the corresponding
decrease in the depth of the �T -vs-h minimum in Fig. 5(d)
are consistent with the changes expected theoretically (as
indicated by the period doubling occurring more rapidly and
at lower amplitudes for decreasing frequencies) as one moves
along the right wing above 1.8 GHz of the core-decoupling
bifurcation map in Fig. 4(a).

Examples of chaotic dynamics are known for individual
vortices [42,43] and simulated vortex pairs [44], which in-
clude switching of the vortex core polarity. However, this
regime is obtained at very high amplitude excitations (up-
wards of 100 mT) or a complex pumping sequence with
multiple frequencies [42]. In our case, the rich phase space
of the system yields chaos dynamics, which are intrinsic and
do not require thermal agitation, at fields of only 1 mT.

V. CONCLUSION

A vortex pair with a hysteretic core-core bistability is
used to study dynamic chaos in a nanoscale spin system.
The observed core-core decoupling is chaos-enhanced by up
to two orders of magnitude in speed and can take place at
ultralow resonant fields, which should facilitate low-power
applications. The results expand the knowledge base of nano-
magnetism, demonstrating a system with performance bene-
fiting from dynamic chaos, of relevance for applications in
spintronics. The uncovered details of the core-core dissocia-
tion can serve as a model for magnetic nanosystems such as
two interacting solitons, domain walls, or skyrmions, or for
other, nonmagnetic atomic or molecular systems.
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APPENDIX A: MEASUREMENT METHODS

The vortex pair state was set in using the high-power
high-frequency excitations with amplitudes of hundreds of

Oe and frequency in the range of 1–4 GHz. Once the vortex
state is set, its lifetime at zero field is essentially infinite.
In the vortex pair state 16 possible combinations of core
polarization and chirality can occur. Assuming the layers are
symmetric these reduce to 4 nondegenerate states: parallel
core polarization and parallel chirality (P-P), AP-AP, AP-P,
and P-AP. The focus of this work is the nonlinear dynamics
of the P-AP state, signified by its strong core-core coupling
combined with effective core-separation control. The type of
a vortex pair produced was determine from the R-H sweeps,
in which the resistance change is related to the displacement
of the bottom vortex core along the short axis of the junction.
The key signature of a P-AP vortex pair is hysteresis in R-
H, corresponding to coupling and decoupling of the cores.
Further, the P-AP state is the only state with a resonance
at about 3 GHz, with the two cores strongly coupled and
rotating about the pair’s center. A field sweep and microwave
spectrum measured at 77 K for a typical P-AP spin vortex
pair are shown in Fig. 7. We have previously reported on the
dynamic properties on the strongly coupled P-AP state, in its
quasilinear regime, at room temperature [20]. Here we focus
on the highly nonlinear, hysteretic core decoupling/recoupling
dynamics, unmasked from thermal agitation by measurements
at lower temperatures.

The measurements were performed by biasing the junction
with a dc field to the center of the core-core hysteresis, −18
Oe in Fig. 7, then applying various rf excitations using the
on-chip 50 � lines and measuring the junction resistance
to determine whether the system had switched between the
two core-core states. If core decoupling had occurred, the
system was reset by toggling the static field. Two types of
high-frequency excitations were used: continuous wave (cw)
produced by a Keysight N5173B EXG rf generator, and wave
forms with a precisely controlled number of periods produced
by a Tektronix AWG 7052 arbitrary wave form generator. The
lifetimes of the coupled/decoupled states near the center of
the hysteresis are infinite in relation to the measurement times
used.

The cw signals had a typical duration of 300 ms (un-
controlled but roughly 1011 periods), much longer than any
intrinsic relaxation time in the measured system, ensuring
a steady-state regime. The cw measurements were used for
recording the amplitude-frequency maps, such as in Fig. 3,
with repetitions to ensure proper statistics. Prior to measure-
ments, the rf feed lines, including the on-chip wire bonding,
were characterized and compensated for reflections via the rf
generator sequence.

RF excitations in the form of shorter pulse envelopes were
sine waves from one period in duration to close to 107 periods
(about 600 ps to 600 μs). The measurements were performed
at fixed frequency and amplitude with varying number of
periods for determining the characteristic core-core switching
time and its spread, such as shown in the inset to Fig. 2 and
Figs. 4(c) and 4(d). No reflection compensation was used, as
frequency was not swept.
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(a) (b)Coupled

Decoupled

FIG. 7. (a) R-H hysteresis loop corresponding to core coupling/decoupling. At small fields the cores of the P-AP vortex pair measured are
centered in the Py layers and strongly bound. As the dc field increases the cores are pulled apart due to the antiparallel chirality. Above some
threshold, roughly −20 Oe, the cores decouple and act as individual cores. (b) Microwave spectrum of a P-AP vortex pair measured with the
excitation amplitude of 3 Oe (small-signal linear regime). The peak of the rotational resonance corresponds to an antiphase rotation of the two
cores about the pair’s “center of mass.” The frequency of the oscillation is sensitive to the lateral separation of the two cores and decreases as
the separation is increased, which leads to a widening of the resonance peak toward lower frequencies as the rf field amplitude is increased
(not shown).

APPENDIX B: MICROMAGNETIC SIMULATIONS

The micromagnetic simulations were performed using the
MUMAX3 simulation package. The cell size was {x, y, z} =
{1.76471, 1.76471, 2} nm, with 240 × 200 cells in the x-y
plane. The spacer was modeled as a single-cell-thick vacuum
layer between the two permalloy disks, each 2 cells in height.
The material parameters used were the standard permalloy pa-
rameters, Ms ≈ 8 × 105 A/m, A = 13 × 10−12 J/m, and α =
0.013, with no intrinsic anisotropy. The simulations did not
include thermal fluctuations. The simulated spin distributions
of the coupled and decoupled core-core states are shown in
Fig. 8.

A set of micromagnetic trajectories under continuous ac
field excitation, with the applied biasing dc field correspond-

ing to the center of hysteresis (the midpoint of bistability in the
core-core potential) is shown in Fig. 3(c) in the main article.
The micromagnetically simulated trajectories have qualita-
tively the same form and evolution as those obtained in the
analytical model, shown in Fig. 3(b). An observation is that
the naturally more precise micromagnetic core-core potential
is steeper than the one used in the model and leads to effec-
tively slightly smaller separations between the cores, seen in
the micromagnetic trajectories as being more localized near
the equilibrium point [tighter trajectory spread in Fig. 3(c)
as compared to that in Fig. 3(b) of the main article]. Qual-
itatively, however, our analytics and micromagnetics agree
extremely well as regards to the presence of the chaotic dy-
namics and the period-doubling cascade (Fig. 3 of main text).

(a) Coupled core-core state (b) Decoupled core-core state

FIG. 8. Micromagnetically simulated spin distribution showing the coupled (a) and decoupled (b) core-core states of a P-AP vortex pair.
The out-of-plane height reflects the z component of the core magnetization in the two Py layers, while the blue and red colors correspond to
the positive and negative orientation of the in-plane easy-axis component of the magnetization in the vortex periphery. The illustrations are not
to scale; the actual separation between the layers in the measured samples is 1 nm or about 1/400th of the lateral layer dimension, such that
the spacer would be invisible on the scale shown. The cores were separated by a static field applied in the plane, having the effects of pulling
the cores apart in the direction perpendicular to the field since the two chiralities are antiparallel; this is shown with red-blue versus blue-red
for the two vortices in the pair.
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