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Optimal plasmonic multipole resonances of a sphere in lossy media
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Fundamental upper bounds are given for the plasmonic multipole absorption and scattering of a rotationally
invariant dielectric sphere embedded in a lossy surrounding medium. A specialized Mie theory is developed for
this purpose and when combined with the corresponding generalized optical theorem, an optimization problem
is obtained which is explicitly solved by straightforward analysis. In particular, the absorption cross section is a
concave quadratic form in the related Mie (scattering) parameters and the convex scattering cross section can be
maximized by using a Lagrange multiplier constraining the absorption to be non-negative. For the homogeneous
sphere, the Weierstrass preparation theorem is used to establish the existence and the uniqueness of the plasmonic
singularities and explicit asymptotic expressions are given for the dipole and the quadrupole. It is shown that
the optimal passive material for multipole absorption and scattering of a small homogeneous dielectric sphere
embedded in a dispersive medium is given approximately as the complex conjugate and the real part of the
corresponding pole positions, respectively. Numerical examples are given to illustrate the theory, including
a comparison with the plasmonic dipole and quadrupole resonances obtained in gold, silver, and aluminum
nanospheres based on some specific Brendel-Bormann (BB) dielectric models for these metals. Based on these
BB models, it is interesting to note that the metal spheres can be tuned to optimal absorption at a particular size
at a particular frequency.

DOI: 10.1103/PhysRevB.99.054301

I. INTRODUCTION

The absorption and scattering of light by small particles
have many interesting applications in plasmonics concern-
ing, e.g., plasmon waveguides, aperture arrays, extraordinary
transmission, perfect lenses, artificial magnetism, and surface-
enhanced biological sensing with molecular monolayer spec-
troscopy, only to mention a few [1]. There are also new
emerging applications and ideas emanating from the (in prin-
ciple) unlimited-power reflection, absorption, and emission
that is associated with high modal orders and super-resolution
effects [2–4]. In the analysis of these problems the background
medium is usually assumed to be lossless. This assumption
is usually made for simplicity, but it also gives very strong
results such as the optical theorem for a small particle of
arbitrary shape, and which is given solely in terms of the
wavelength of the incident light and the polarizability of the
particle [5, pp. 71 and 140].

In some of these applications, however, it may also some-
times be necessary, or even critically important, to consider
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the losses in the surrounding medium. The plasmonic res-
onances in small particles, and in particular the resonances
associated with high modal orders, will be severely limited
by the presence of internal as well as external losses. Many
of the substances used in optics such as the polymeric media
are usually considered to be transparent to visible light [6],
but there are also studies concerning doped PMMA showing
significant losses [7]. Another interesting application area
is with light in biological tissue [8] and the use of gold
nanoparticles for plasmonic photothermal therapy [9]. Hence,
there is a motivation to develop new theory that can be used
to evaluate the impact of external losses in these applications.

Interestingly as it turns out, it is a nontrivial task to develop
a general theory on the scattering and absorption for small
particles in a lossy surrounding medium and the existing
results are typically given only for spheres [10–15]. An im-
portant example is Bohren’s optical theorem for a spherical
particle in an absorbing medium where the extinction cross
section is defined in a way to be consistent with the power
loss that can be physically observed at a detector when the
particle is placed between the source and the detector [12,
Eq. (11) on p. 218]. However, this definition of extinction
cross section diverts from the more common definition made
in [5, Eq. (3.19) on p. 70] or [14, Eq. (7) on p. 1276] but which
is not necessarily non-negative when the surrounding medium
is lossy. Nevertheless, as we will see in this paper, the latter
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definition is very useful as a mathematical device to derive the
optimal absorption of a sphere inside a lossy medium.

As has been indicated above, there are major difficulties
associated with the definition of cross sections when there are
losses in the surrounding medium (even for the sphere). Con-
sider, e.g., the simple fact that the power intensity of the plane
wave impinging on the particle will depend on the spatial vari-
able. Hence, the fundamental difficulties in general are that
the absorption in the surrounding medium will depend on the
geometry of the scatterer and the cross sections will depend
on the chosen reference point (or origin) for the plane wave.

The purpose of this paper is to develop a specialized
theory with rigorous bounds on the multipole scattering and
absorption for a rotationally invariant sphere embedded in an
infinite isotropic lossy medium. For simplicity, explicit formu-
las are given only for the electrical multipoles of nonmagnetic,
dielectric, or metallic spheres which are common in plasmonic
applications, but the magnetic cases can be treated similarly.

The rest of the paper is organized as follows: In Sec. II
we derive the basic formulas regarding the electrodynamics of
a rotationally invariant sphere embedded in a lossy medium.
The general theory is then exploited in Sec. III for derivation
of fundamental upper bounds on scattering and absorption, as
well as for characterization of optimal plasmonic resonances
of the homogeneous sphere. The theory is then illustrated
in Sec. IV with numerical examples concerning the optimal
absorption of gold, silver, and aluminium nanospheres. The
paper is finally concluded with a summary.

II. ELECTRODYNAMICS OF THE SPHERE

A. Notation and conventions

The classical Maxwell equations are considered with elec-
tric and magnetic field intensities E and H given in SI
units [16–18]. The time convention for time harmonic fields
(phasors) is given by e−iωt , where ω is the angular frequency
and t the time. Let μ0, ε0, η0, and c0 denote the perme-
ability, the permittivity, the wave impedance, and the speed
of light in vacuum, respectively, where η0 = √

μ0/ε0 and
c0 = 1/

√
μ0ε0. The wave number of vacuum is given by k0 =

ω
√

μ0ε0. The wave number of a homogeneous and isotropic
medium with relative permeability μ and permittivity ε is
given by k = k0

√
με and the wavelength λ is defined by

kλ = 2π . The wave impedance of the same medium is given
by η0η, where η = √

μ/ε is the relative wave impedance.
In the following, we will consider only nonmagnetic, ho-
mogeneous, and isotropic materials, and hence μ = 1 from
now on. The spherical coordinates are denoted by (r, θ, φ),
the corresponding unit vectors (r̂, θ̂, φ̂), and the radius vector
r = rr̂. The regular spherical Bessel functions, the Neumann
functions, the spherical Hankel functions of the first kind
and the corresponding Riccati-Bessel functions [17] are de-
noted jl (z), yl (z), h(1)

l (z) = jl (z) + iyl (z), ψl (z) = zjl (z), and
ξl (z) = zh(1)

l (z), respectively, all of order l . Finally, the real
and the imaginary parts and the complex conjugate of a com-
plex number z are denoted Re{z}, Im{z}, and z∗, respectively.

B. General Mie theory for a lossy background

The Mie theory gives the solution to Maxwell’s equations
for a plane wave impinging on a homogeneous sphere in terms

of the multipole expansion of spherical vector waves; see,
e.g., [5,17]. The definition of the spherical vector waves and a
description of some of their most important properties used in
this paper are given in Appendix.

We consider the scattering of the electromagnetic field due
to a homogeneous and isotropic dielectric sphere of radius a,
relative permittivity ε, and wave number k = k0

√
ε. The back-

ground medium is assumed to be homogeneous and isotropic
and is characterized by the relative permittivity εb and the
associated wave number kb = k0

√
εb. Throughout the analysis

in this paper, both materials are assumed to be passive, either
lossy or lossless, and hence Im{ε} � 0 as well as Im{εb} � 0.
It is also assumed that neither ε nor εb can reside at the branch
cut of the square root which is defined as the negative part of
the real axis.

The incident and the scattered fields for r > a are ex-
pressed as in (A1) with multipole coefficients aτml and fτml for
regular and outgoing spherical vector waves, respectively, and
the interior field for r < a is similarly expressed using regular
spherical vector waves with multipole coefficients aint

τml . By
matching the tangential fields at the boundary of radius a, it
can be shown that

fτml = tτ l aτml , (1)

aint
τml = rτ l aτml , (2)

for τ = 1, 2, l = 1, 2, . . ., and m = −l, . . . , l , and where tτ l

and rτ l are transition matrices for scattering and absorption,
respectively; see, e.g., [5, Eqs. (4.52) and (4.53) on p. 100].
In particular, the electric (τ = 2) multipole coefficients are
given by

t2l = mψl (ka)ψ ′
l (kba) − ψl (kba)ψ ′

l (ka)

ξl (kba)ψ ′
l (ka) − mψl (ka)ξ ′

l (kba)
(3)

and

r2l = −im

ξl (kba)ψ ′
l (ka) − mψl (ka)ξ ′

l (kba)
, (4)

where m = √
ε/

√
εb; cf. also [17, Eqs. (8.7) and (8.10) on pp.

420 and 426].
Let E i(r) = E0eikbk̂·r describe a plane wave with vector

amplitude E0 and propagation direction k̂. It can be shown
that the corresponding multipole expansion coefficients are
given by

aτml = 4π il−τ+1E0 · A∗
τml (k̂), (5)

for τ = 1, 2, l = 1, 2, . . ., and m = −l, . . . , l , and where the
vector spherical harmonics Aτml (k̂) are defined as in Ap-
pendix A 1; see also [17, Eq. (7.28) on p. 375]. Based on the
sum identities for the vector spherical harmonics derived in
Appendix A 2 it is readily seen that

l∑
m=−l

|aτml |2 = 2π (2l + 1)|E0|2, (6)

and where (A17) and (A18) have been used for τ = 2 and
τ = 1, respectively, as well as the relation k̂ · E0 = 0. It is
noticed that the relation (6) is independent of the direction k̂
of the incoming plane wave.
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Although the main focus of this paper is with the homo-
geneous and isotropic dielectric sphere, many of the relevant
results developed here are also valid for a rotationally invari-
ant sphere. With a rotationally invariant sphere the scattering
behavior can be described as in (1), i.e., with a diagonal
transition matrix tτ l which is independent of the azimuthal
index m. A typical situation is with a layered sphere [17,
Chap. 8.3] or with a radially inhomogeneous sphere having
an index of refraction which depends only on the radial
coordinate r.

C. Rotationally invariant sphere in a lossy medium

Consider the scattering of a rotationally invariant sphere
of volume Va bounded by the spherical surface Sa of radius
a and which is embedded inside a lossy (or lossless) infi-
nite, homogeneous, isotropic, and nonmagnetic background
medium with complex-valued relative permittivity εb. Let E
and H denote the total fields everywhere in R3, and E i and
Es the incident and the scattered fields, respectively, so that
E = E i + Es in the exterior region R3 \ Va, and similarly for
the magnetic field. Based on the expansion in spherical vector
waves (A1) together with (1) as well as (6) and the orthogo-
nality relationships (A31) and (A32), the power absorbed in
the scatterer can be expressed in terms of the exterior fields as

Pabs = −
∫

Sa

1

2
Re{(E i + Es) × (H i + Hs)∗} · dS

= π |E0|2
η0

Im

{
(
√

εb)∗
2∑

τ=1

∞∑
l=1

(2l + 1)

×
[∫

Sa

vτml (kbr) × v∗
τ̄ml (kbr) · dS

+ tτ l

∫
Sa

uτml (kbr) × v∗
τ̄ml (kbr) · dS

+ t∗
τ l

∫
Sa

vτml (kbr) × u∗
τ̄ml (kbr) · dS

+ |tτ l |2
∫

Sa

uτml (kbr) × u∗
τ̄ml (kbr) · dS

]}
, (7)

where vτml (kbr) and uτml (kbr) are the regular and the out-
going spherical vector waves, respectively, and τ̄ denotes
the dual index, etc.; cf. Appendix A 1. In the order of the
terms appearing in (7), i.e., the constant, the linear, and the
quadratic forms in tτ l , the absorbed power can be interpreted
as Pabs = Pi + Pext − Ps, where Pi relates to the power lost
in the background medium, Pext is the extinct power, and Ps

the scattered power, respectively [5, p. 70]. Strictly speaking,
Pext can be interpreted as the extinct power Pext = Pabs + Ps

only when the surrounding medium is lossless and Pi = 0;
cf. [5, Eq. (3.20) on p. 70]. In the general lossy case, Pext is
interpreted here merely as a mathematical device to calculate
the absorption; see also, e.g., [12–15] for a comprehensive
discussion on this topic.

The corresponding cross sections are obtained by the
normalization C = P/Ii, where Ii = |E0|2Re{√εb}/2η0 is the
intensity of the plane wave at the origin r = 0. Based on
the orthogonality relationships (A31) and (A32), the

absorption cross section for a particular electric (τ = 2) mul-
tipole index l can now be expressed in terms of the following
generalized optical theorem:

Cabs,2l = −Cs,2l + Cext,2l + Ci,2l

= 2π (2l + 1)

|kb|2 (a2l |t2l |2 + 2Re{b2l t2l} + c2l ), (8)

where

a2l = −Im

{
k∗

b

Re{kb}ξ
′
l (kba)ξ ∗

l (kba)

}
, (9)

b2l = 1

2i

[
− k∗

b

Re{kb}ξ
′
l (kba)ψ∗

l (kba)

+ kb

Re{kb}ψ
′
l
∗(kba)ξl (kba)

]
, (10)

and

c2l = −Im

{
k∗

b

Re{kb}ψ
′
l (kba)ψ∗

l (kba)

}
; (11)

see also [14, Eq. (7) on p. 1276]. Observe that the notation
used in (9) through (11) should not be confused with (1) and
(2). It is noted that the coefficients a2l and c2l are real-valued
whereas the coefficients b2l are complex-valued. Furthermore,
it is seen that the scattering cross section is given by

Cs,2l = −2π (2l + 1)

|kb|2 a2l |t2l |2, (12)

and since Poynting’s theorem asserts that the scattered power
must be non-negative in a passive medium, it follows im-
mediately from (12) that a2l < 0. Note also that c2l � 0.
By employing the Wronskians of the spherical Bessel func-
tions (jly′

l − j′lyl = 1/z2) and of the Riccati-Bessel functions
(ψlξ

′
l − ψ ′

l ξl = i), it can be shown that for a lossless medium
with Im{kb} = 0, the coefficients defined in (9) through (11)
become a2l = −1, b2l = −1/2, and c2l = 0, yielding

Cabs,2l = 2π (2l + 1)

k2
b

(−|t2l |2 − Re{t2l}), (13)

which is in agreement with the classical optical theorem;
see, e.g., [17, p. 421] or [18, Eqs. (7.295) and (7.297) on
pp. 465–466].

D. Homogeneous sphere in a lossy medium

The absorption of a homogeneous sphere can also be calcu-
lated directly from the internal fields via Poynting’s theorem,

Pabs = 1

2
ωε0Im{ε}

∫
Va

|E|2dv, (14)

where Va denotes the spherical volume of radius a. Due to the
orthogonality of the spherical vector waves over a spherical
volume as expressed in (A27) through (A30), the absorption
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cross section can be evaluated as

Cabs = Pabs

Ii
= k0Im{ε}

|E0|2Re{√εb}
∫

Va

|E|2dv

= 2πk0Im{ε}
Re{√εb}

∞∑
l=1

2∑
τ=1

(2l + 1)Wτ l (k, a)|rτ l |2,

(15)

where Wτ l (k, a) = ∫
Va

|vτml (kr)|2dv are the volume integrals
of the regular spherical vector waves. Note that in (15), the
relations (2) and (6) have also been employed. For the electric
multipoles (τ = 2), W2l (k, a) is given by (A29) and (A30) and
can be expressed explicitly as

W2l (k, a) = a2

2l + 1

1

Im{k2} Im{k[(l + 1)jl (ka)j∗l−1(ka)

+ ljl+2(ka)j∗l+1(ka)]}, (16)

and which are based on the adequate Lommel integrals for
spherical Bessel functions with complex-valued arguments;
cf. also [19, Eq. (A15) on p. 11].

III. OPTIMAL PLASMONIC RESONANCES
OF THE SPHERE

A. Optimal absorption of the rotationally invariant sphere

Consider the problem of maximizing the absorption cross
section for a single electric (τ = 2) multipole index l based
on (8). Since a2l < 0, the absorption cross section Cabs,2l is
a strictly concave quadratic form in t2l , hence possessing a
unique maximum. By differentiating (8) with respect to the
complex conjugate of the variable z = t2l and solving for
stationarity

∂

∂z∗ (a2l zz∗ + b2l z + b∗
2l z

∗ + c2l ) = a2l z + b∗
2l = 0, (17)

the following optimal Mie coefficient is obtained:

t2l = −b∗
2l

a2l
, (18)

yielding the optimal absorption cross section for the rotation-
ally invariant sphere

Copt
abs,2l = π (2l + 1)

2|kb|2
(

−4|b2l |2
a2l

+ 4c2l

)
. (19)

For a lossless medium with Im{kb} = 0, we have a2l = −1,
b2l = −1/2, and c2l = 0, giving the optimal solution t2l =
−1/2, and

Copt
abs,2l = π (2l + 1)

2k2
b

, (20)

in agreement with the classical theory for a lossless medium;
see, e.g., [20, Eq. (16) on p. 937] for the case l = 1.

B. Optimal scattering and extinction of the rotationally
invariant sphere

Consider the problem of maximizing the scattering cross
section for a single electric (τ = 2) multipole index l based
on (12). Since a2l < 0, the scattering cross section Cs,2l (the

negative of the first term in (8)) is a strictly convex quadratic
form in t2l , and the additional convex constraint Cabs,2l � 0
based on (8) is needed to get a valid solution. With z = t2l , the
problem can be formulated equivalently as

maximize zz∗

subject to a2l zz∗ + b2l z + b∗
2l z

∗ + c2l = 0,
(21)

and where the inequality constraint has been replaced by
an equality constraint (Cabs,2l = 0) since the maximum of a
convex function over a convex set will always occur at a
boundary point (active constraint). The Lagrange function for
(21) is given by

L(z) = zz∗ + α(a2l zz∗ + b2l z + b∗
2l z

∗ + c2l ), (22)

where α is the real-valued multiplier. The Lagrange condition
for an optimal solution is

∂L

∂z∗ = z + α(a2l z + b∗
2l ) = 0, (23)

and the solution can be written as

z = −αb∗
2l

1 + αa2l
= βb∗

2l , (24)

where β = −α/(1 + αa2l ) is a real-valued parameter. Inser-
tion of (24) into the quadratic constraint in (21) gives the
condition for stationarity

β2a2l |b2l |2 + 2β|b2l |2 + c2l = 0. (25)

The maximizing solution is readily found as t2l = βb∗
2l , where

β = − 1

a2l
+

√
1

a2
2l

− c2l

a2l |b2l |2 , (26)

and the optimal scattering cross section for the rotationally
invariant sphere is

Copt
s,2l = 2π (2l + 1)

|kb|2 (−a2l )|b2l |2β2. (27)

For a lossless medium with Im{kb} = 0, we have a2l = −1,
b2l = −1/2, c2l = 0, and β = 2 giving the optimal solution
t2l = −1, and

Copt
s,2l = 2π (2l + 1)

k2
b

, (28)

in agreement with the classical theory for a lossless medium;
see, e.g., [20, Eq. (17) on p. 938] for the case l = 1.

The same Lagrange multiplier technique as outlined above
can also be used to maximize the extinction cross section
Cext,2l = 2π (2l+1)

|kb|2 2Re{b2l t2l} (the second term in (8)) which
is a linear form in t2l . Using the same quadratic constraint
Cabs,2l � 0, it can readily be shown that the solution is again
given by the same maximizer t2l = βb∗

2l as above with β

given by (26) (the only difference is that in this case the
Lagrange multiplier α is related to β by β = −(α + 1)/a2lα).
Hence, the optimal extinction cross section for the rotationally
invariant sphere is given by

Copt
ext,2l = 2π (2l + 1)

|kb|2 |b2l |22β. (29)
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For a lossless background medium, the optimal parameter is
again t2l = −1, yielding Copt

ext,2l = Copt
s,2l where Copt

s,2l is given by
(28) and where Cabs = 0; see also [20, Eq. (17) and below on
p. 938] (a lossless plasmonic particle at resonance).

Finally, we mention that a very similar optimization ap-
proach based on the Lagrange technique has been used to
obtain fundamental limits on the absorption and scattering
by more general particles embedded in lossless media, as
in [21, Eqs. (23a) and (23b)]. Here, it is important (and
perhaps also confusing) to note that the convexity properties
related to the corresponding optical theorem are “reversed” in
comparison to our formulation. Hence, in [21, Eqs. (4) and
(7)] the absorption and scattering cross sections are convex
and concave functions of the interior electromagnetic fields
(equivalent sources), respectively, whereas in our formulation
the same quantities are instead concave and convex in the
scattering parameter t2l (giving the exterior field). In both
formulations, the extinction cross section is a linear form, and
hence both convex and concave.

C. Asymptotic analysis for small homogeneous spheres

An asymptotic analysis of (15) and (12) is carried out
to find approximate expressions for the corresponding opti-
mal permittivity εopt of the homogeneous sphere when the
electrical size k0a is small. For this purpose, the following
power series expansion of the spherical Bessel functions is
employed,

jl (z) =
∞∑

k=0

Akl z
l+2k, (30)

and for the spherical Neumann functions,

yl (z) =
l∑

k=0

Bkl z
−l−1+2k + O{zl+1}, (31)

and the spherical Hankel functions of the first kind,

h(1)
l (z) = i

l∑
k=0

Bklz
−l−1+2k + A0l z

l + O{zl+1}, (32)

where Akl = (− 1
2 )k/k!(2l + 2k + 1)!! and Bkl = −( 1

2 )k (2l −
2k − 1)!!/k!; cf. [22, Eqs. (10.53.1) and (10.53.2), respec-
tively], and where O{·} denotes the big ordo defined in [23,
p. 4]. The power series expansions of ψl (z), ξl (z), ψ ′

l (z), and
ξ ′

l (z) are readily obtained from (30) and (32).
Consider the Mie series coefficient r2l given by (4) and

extend the fraction using the factor iεb(kba)l (ka)−l to get

r2l = (
√

εb)l+1

(
√

ε)l−1

1

fl (ε,
√

εb, k0a)
, (33)

where

fl (ε,
√

εb, k0a) = i(kba)lξl (kba)(ka)−lψ ′
l (ka)εb

− i(ka)−l−1ψl (ka)(kba)l+1ξ ′
l (kba)ε

= l

2l + 1
ε + l + 1

2l + 1
εb + O{(k0a)2}, (34)

and where the order relation is found by considering
the corresponding power series expansions. Note that the

combinations zlξl (z), z−lψ ′
l (z), z−l−1ψl (z), and zl+1ξ ′

l (z) are
all entire analytic functions of z; see, e.g., [22, Sec. 10.47(ii)].
Hence, it can be concluded that the function fl (ε,

√
εb, k0a)

defined in (34) is an analytic function in all of its three
arguments (ε,

√
εb, k0a). The function fl is analytic in ε since

z−lψ ′
l (z) and z−l−1ψl (z) are even functions.

An asymptotic analysis of (33) shows that

r2l = 2l + 1

l

(
√

εb)l+1

(
√

ε)l−1

1

ε + l+1
l εb + (k0a)2Cl (k0a, ε, εb)

+i(k0a)2l+1Dl + O{(k0a)2l+2} , (35)

where Cl (k0a, ε, εb) is a polynomial function of (k0a, ε, εb)
with terms having even order in k0a ranging from 0 up to 2l −
2 and real-valued coefficients, and

Dl = l + 1

l

1

(2l + 1)!!

1

(2l − 1)!!
(
√

εb)2l+1(εb − ε). (36)

A detailed study shows that for the electric dipole we have

r21 = 3
εb

ε + 2εb + (k0a)2
(
ε2

b − 9
10εbε − 1

10ε2
)

+i(k0a)3 2
3εb

√
εb(εb − ε) + O{(k0a)4} , (37)

and for the quadrupole

r22 = 5

2
√

ε

εb
√

εb

ε + 3
2εb + (k0a)2

(
1
4ε2

b − 5
28εbε − 1

14ε2
)

+(k0a)4
(

1
16ε3

b − 1
14ε2

bε + 1
144εbε2 + 1

504ε3
)

+i(k0a)5 1
30ε2

b
√

εb(εb − ε) + O{(k0a)6} . (38)

D. The plasmonic singularities of the homogeneous sphere

When the background permittivity εb is fixed, it follows
from (33) and (34) that the Mie coefficient r2l can be written

r2l = 2l + 1

l

(
√

εb)l+1

(
√

ε)l−1

1

fl (w, k0a)
, (39)

where fl (w, z) is an analytic function in the complex variables
w and z, of the form

fl (w, z) = w + O{z2}, (40)

and where w = ε + l+1
l εb and z = k0a.

The following theorem by Weierstrass [24, Theorem 7.5.1]
can now be used to establish the existence and the uniqueness
of a single pole of r2l with the property εp,l (k0a) → − l+1

l εb as
k0a → 0. We will refer to εp,l (k0a) as the plasmonic multipole
singularity of the sphere.

Theorem 1. (The Weierstrass preparation theorem). Let
f (w, z) be an analytic function of (w, z) ∈ C × C in a neigh-
borhood of (0,0) such that⎧⎪⎨⎪⎩ f = ∂ f

∂w
= · · · = ∂n−1 f

∂wn−1
= 0,

∂n f

∂wn
�= 0,

(41)

at (0,0). Then there is a unique factorization

f (w, z) = a(w, z)[wn + bn−1(z)wn−1 + · · · + b0(z)], (42)
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where b j (z) and a(w, z) are analytic in a neighborhood of 0
and (0,0), respectively, a(0, 0) �= 0 and bj (0) = 0.

Here, it is seen from (40) that⎧⎪⎨⎪⎩
fl = 0,

∂ fl

∂w
= 1,

(43)

at (w, z) = (0, 0). It follows then from Theorem 1 that there
is a unique factorization

fl (w, z) = a(w, z)[w + b0(z)], (44)

where a(w, z) and b0(z) are analytic in a neighborhood of
(0,0) and 0, respectively, and a(0, 0) �= 0 and b0(0) = 0.
From (40) follows also that fl (w, 0) = w and hence that
a(w, 0) = 1. The factorization (44) can now be written

fl (w, k0a) = a(w, k0a)[ε − εp,l (k0a)], (45)

where

εp,l (k0a) = − l + 1

l
εb − b0(k0a), (46)

and where b0(k0a) → 0 as k0a → 0. This establishes the
existence and the uniqueness of the pole εp,l (k0a) as
stated above. Since a(w, z) is a continuous function with
a(w, 0) = 1, it is furthermore seen that

fl (w, k0a) ∼ ε − εp,l (k0a) (47)

as k0a → 0 and where the symbol ∼ indicates an asymptotic
approximation in the sense of [23, p. 4]. Finally, the asymp-
totics of the Mie coefficient r2l can be written

r2l ∼ 2l + 1

l

(
√

εb)l+1

(
√

ε)l−1

1

ε − εp,l (k0a)
(48)

as k0a → 0. It is also observed that εp,l (k0a) resides in the
lower complex half plane Im{ε} < 0 when the surrounding
medium is passive; cf. (46) with Im{εb} > 0.

An asymptotic analysis of the equation fl (w, k0a) = 0 to
leading order in k0a reveals the pole structure of the electric
multipole. In general, the pole structure based on (35) and (36)
is given by

εp,l (k0a) = − l + 1

l
εb + (k0a)2Fl (k0a, ε, εb) − i(k0a)2l+1εl+1

b

×√
εb

l + 1

l2

1

[(2l − 1)!!]2
+ O{(k0a)2l+2}, (49)

where Fl (k0a, εb) is a polynomial function of (k0a, εb) with
terms having even order in k0a ranging from 0 up to 2l − 2
and real-valued coefficients. A detailed study based on (37)
and (38) gives the following pole expression for the dipole:

εp,1(k0a) = −2εb − 12

5
ε2

b (k0a)2 − i2ε2
b
√

εb(k0a)3

+O{(k0a)4}, (50)

and for the quadrupole

εp,2(k0a) = −3

2
εb − 5

14
ε2

b (k0a)2 − 65

392
ε3

b (k0a)4

− i
1

12
ε3

b
√

εb(k0a)5 + O{(k0a)6}. (51)

E. Optimal permittivity of the homogeneous sphere

To maximize the absorption cross section (15) with respect
to the permittivity ε we consider the normalized absorption
cross section Qabs,2l for a particular electric multipole:

Qabs,2l = Cabs,2l

πa2
= 2k0aIm{ε}

Re{√εb} (2l + 1)
W2l (k, a)

a3
|r2l |2

= 2

Re{√εb} Im{√ε[(l + 1)jl (ka)j∗l−1(ka)

+ ljl+2(ka)j∗l+1(ka)]}|r2l |2, (52)

where (16) has been used. An asymptotic analysis of (52)
using (30) and (48) yields

Qabs,2l ∼ (k0a)2l−1 2(l + 1)(2l + 1)

l2[(2l − 1)!!]2

|εb|l+1

Re{√εb}

× Im{ε}
|ε − εp,l (k0a)|2 , (53)

for small k0a, and where it is observed that the singular
factor 1/(

√
ε)l−1 in (48) cancels due to the corresponding

regularity of W2l (k, a). The function Qabs,2l is of the form
F (ε) = Im{ε}/|ε − εp,l (k0a)|2 which has a local maximum
for Im{ε} > 0 at

εopt,l (k0a) = ε∗
p,l (k0a); (54)

cf., e.g., [19, Sec. 2.5, Eqs. (15) through (17)]. Hence, the
expression (54) gives an approximation of the optimal per-
mittivity for multipole absorption of small dielectric spheres
embedded in lossy media.

Based on (50) and (51) we can now immediately assess
that the corresponding optimal permittivity for the dipole
absorption is given by

εopt,1(k0a) = −2ε∗
b − 12

5
ε∗2

b (k0a)2 + i2ε∗2
b

√
ε∗

b (k0a)3

+O{(k0a)4}, (55)

and for the quadrupole absorption

εopt,2(k0a) = −3

2
ε∗

b − 5

14
ε∗2

b (k0a)2 − 65

392
ε∗3

b (k0a)4

+ i
1

12
ε∗3

b

√
ε∗

b (k0a)5 + O{(k0a)6}. (56)

Similarly, to maximize the scattering cross section defined
in (12), it is observed that Cs,2l is proportional to the squared
Mie coefficient |t2l |2. An asymptotic analysis of (3) for small
k0a shows that

t2l ∼ i(k0a)2l+1 l + 1

l

1

(2l + 1)!!

1

(2l − 1)!!
(
√

εb)2l+1

× ε − εb

ε − εp,l (k0a)
, (57)

where εp,l (k0a) is the same pole as defined in (45) and (46)
above, and hence that

|t2l |2 ∼ A
|ε − εb|2

|ε − εp,l (k0a)|2 , (58)
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where A is a constant. To maximize (58) for Im{ε} � 0 and
small k0a as well as with small losses Im{εb}, it is readily seen
that the distance function |ε − εb| can be neglected and the
optimal plasmonic resonance for multipole scattering by small
dielectric spheres in lossy media is approximately given by

εopt,l (k0a) = Re{εp,l (k0a)}. (59)

It is noted that the expressions (54) through (56), and
similarly (59), give asymptotic expansions of the permittivity
of a small dielectric sphere yielding optimal absorption and
scattering (or extinction), respectively, and which explicitly
takes the background loss into account via the complex-valued
parameter εb. This generalizes previous results for a lossless
background given, e.g., by [20, Eqs. (18) through (24) on
p. 938] and [25, Eqs. (11) and (14) on p. 3]. For a lossless
medium, it is observed that the leading term of Im{εp,l (k0a)}
(the term proportional to (k0a)2l+1 in (49)) is related to the
scattering (or radiation) loss; see also [20, Eqs. (7), (18),
and (23)]. For a lossy medium, a straightforward separation
of absorption and scattering loss as in [20, Eq. (7)] is no
longer possible. It is finally noted that the homogeneous
sphere represents a subclass of spherical objects embraced
by the rotationally invariant sphere, and the optimality of the
homogeneous sphere must hence be bounded by (19), (27),
and (29).

IV. NUMERICAL EXAMPLES

The theory developed in this paper is discussed based on
a few numerical examples and illustrated in Figs. 1 through
5 below. In particular, we are relating here to applications
in optics where the the absorption coefficient is given by
α = 2k0Im{√εb} and the skin depth is α−1; cf. [16, p. 314–
315]. As a reference, in [8, Table 3.2 on pp. 47–49] is given
a comprehensive summary of published data regarding the
absorption coefficient of biological tissue at optical frequen-
cies. Even though these data are very diverse, one can argue
that the skin depth of tissue in the visible light is on the
order of α−1 = 10−1 cm. Another class of materials which is
important in optics is the polymeric media such as PMMA
which usually can be considered as transparent in the optical
regime; cf. [6]. However, some papers report large absorption
coefficients, and in particular for doped PMMA films with

10−2 10−1 100

10−1

101

103

k0a

Optimal normalized absorption cross section Qopt
abs,2l

l = 1, ε′′b = 10−9

l = 1, ε′′b = 10−3

l = 1, ε′′b = 10−1

l = 2, ε′′b = 10−9

l = 2, ε′′b = 10−3

l = 2, ε′′b = 10−1

FIG. 1. The optimal normalized absorption cross section Qopt
abs,2l

for a rotationally invariant sphere in a lossy medium with εb = 1 +
iε ′′

b .

1 5 10 2010−1

100

101

102

hν (eV)

Dielectric models of Au, Ag, Al

−Re{εAu}
Im{εAu}
−Re{εAg}
Im{εAg}
−Re{εAl}
Im{εAl}

FIG. 2. Permittivities of gold (Au), silver (Ag), and aluminum
(Al) according to the Brendel-Bormann model fitted to experimental
data [26].

skin depths as small as α−1 = 10−2 cm for visible light [7].
The skin depth of pure water is approximately α−1 = 104 cm
for visible light [16, p. 315]. The numerical examples given
below have been chosen to cover this range of losses, and
even though the refractive indices are somewhat different in
various applications, the real part of εb is not so critical in
these comparisons and we have therefore consistently chosen
Re{εb} = 1.

In Fig. 1 is shown the optimal normalized absorption
cross section Qopt

abs,2l = Copt
abs,2l/πa2, where Copt

abs,2l is given by
(19) and plotted here as a function of the electrical size k0a
for different loss factors ε′′

b = Im{εb} = 10−9, 10−3, 10−1 and
multipole orders l = 1, 2. At visible light with the wavelength
λ = 550 nm, these loss factors correspond approximately to a
skin depth α−1 = 104, 10−2, 10−4 cm, respectively.

Notice that even though the quadrupole field is potentially
more efficient for absorbtion, it is attenuated much more
effectively than the dipole field with increasing external losses
or decreasing electrical size. The optimal scattering cross
section (27) can be investigated similarly and shows a very
similar spectrum, only about 4 times larger; cf. (20) and (28).

To illustrate the theory on optimal resonances with an
application in plasmonics at optical frequencies, we inves-
tigate the optimal absorption in gold (Au), silver (Ag), and
aluminum (Al) nanospheres embedded in a lossy medium as
indicated above. In Fig. 2 is plotted the permittivities of the
three metals according to the Brendel-Bormann (BB) model
fitted to experimental data as presented in [26, the dielectric
model in Eq. (11) with parameter values from Table 1 and
Table 3]. Here, the frequency axis is given in terms of the
photon energy hν in units of electron volts (eV) where h is
Planck’s constant and ν the frequency.

Let ε̂opt,1(k0a) and ε̂opt,2(k0a) denote the approximate
asymptotic expressions corresponding to the optimal per-
mittivities given by (55) and (56) up to orders 3 and 5,
respectively. One can now attempt to numerically solve the
parametric equation

ε̂opt,l (k0a) = εAx(ν), (60)

for l = 1, 2, Ax = Au, Ag, Al, and where εAx(ν) denotes
either of the dielectric BB models for gold, silver, and
aluminum, respectively. When a solution is obtained in terms
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−6 −5 −4 −3 −2
0

1

2

3

Re{ε}

Im
{ε
}

Permittivity parameters ε

εAu(ν)
εAg(ν)
εAl(ν)
ε̂opt,1(k0a)
ε̂opt,2(k0a)

FIG. 3. The dielectric functions εAx(ν ) for gold (Au), silver
(Ag), and aluminum (Al) according to the Brendel-Bormann model
[26], and the asymptotic near-optimal dielectric functions ε̂opt,l (k0a),
l = 1, 2, parametrized by frequency ν and electrical size k0a, re-
spectively, plotted in the complex plane. Their intersections give an
approximation to an optimal dipole or quadrupole resonance for each
metal.

of (k0a, ν), the optimally tuned radius is given simply as
a = k0ac0/2πν. It turns out that such a solution can be found
for the dipole as well as for the quadrupole for all three metals,
as illustrated in Fig. 3. In Fig. 4 is plotted and summarized
the results for the optimally tuned metal spheres for a lossless
background with εb = 1, and where QAx

abs,2l , l = 1, 2, is given
by (52) based on the corresponding BB model for the dielec-
tric function of gold, silver, and aluminum, respectively. The
optimally tuned radii appear in the legends to the right, and the
corresponding (almost tangent) optimal bounds (19) are plot-
ted as dotted lines. As a reference, the dipole resonance peaks
for gold, silver, and aluminum shown in Fig. 4 appear approx-
imately at the wavelengths λ = 510 nm, λ = 390 nm, and
λ = 158 nm, respectively. In Fig. 5 is illustrated the impact
of a significant increase of the external losses by changing the
background permittivity to εb = 1 + i10−1 (α−1 ≈ 10−4 cm),
and where all the other parameters are left unchanged. It
is observed that significant losses are needed to impact on
these near-optimal resonances. As, e.g., with εb = 1 + i10−3

1 5 10 2010−2

10−1

100

101

hν (eV)

Normalized absorption cross section Qabs,2l

QAu
abs,21, a = 89nm

QAu
abs,22, a = 165 nm

QAg
abs,21, a = 39nm

QAg
abs,22, a = 88nm

QAl
abs,21, a = 12nm

QAl
abs,22, a = 29nm

FIG. 4. Normalized dipole and quadrupole absorption cross sec-
tions QAx

abs,2l , l = 1, 2, for a sphere made of gold (Au), silver (Ag),
and aluminum (Al), and where the radius a has been tuned to
match the condition (60) for optimal absorption; see also Fig. 3. The
almost tangent optimal bounds are plotted as dotted lines. Here, the
background is lossless with εb = 1.

1 5 10 2010−2

10−1

100

101

hν (eV)

Normalized absorption cross section Qabs ,2l

QAu
abs ,21 , a = 89nm

QAu
abs ,22 , a = 165 nm

QAg
abs ,21 , a = 39nm

QAg
abs ,22 , a = 88nm

QAl
abs ,21 , a = 12nm

QAl
abs ,22 , a = 29nm

FIG. 5. Same plot and parameter choices as in Fig. 4, except here
with a lossy background given by εb = 1 + i0.1.

(α−1 ≈ 10−2 cm), the absorption is virtually not affected at
all. These characteristics are also readily understood in view
of the plots in Fig. 1, considering that the radii of the optimal
metal spheres investigated here are rather large with an elec-
trical size at resonance ranging from k0a = 1/2 to k0a = 2.

It should be noted that the optimization procedure de-
scribed above in (60) is only suboptimal in the sense that it
is based on the asymptotic expansions (55) and (56) rather
than the exact pole positions εp,l (k0a) defined in Sec. III D.
Of course, this deficiency could be remedied by using a more
sophisticated numerical procedure to find the maximizing
permittivity function. However, it should also be emphasized
that this example merely illustrates the fact that a gold, silver,
or aluminum sphere under a certain BB model can yield
optimal absorption at a certain size at a certain frequency. For
this particular size and frequency, there are no other materials
that can give higher absorption. But this also means, e.g., that
if the size of the optimal multipole Ax sphere is just slightly
decreased then both Qopt

abs,2l as well as QAx
abs,2l (still close to

resonance) will slightly increase, but optimality is lost for all
frequencies. This behavior is quite natural since the sphere is
a very simple geometry with only one geometrical degree of
freedom (its radius), whereas more complicated objects such
as the spheroid having two geometrical degrees of freedom
(size and eccentricity) would be expected to give much higher
flexibility in this regard.

V. SUMMARY AND CONCLUSIONS

Fundamental upper bounds on absorbed and scattered pow-
ers are given for the plasmonic multipole resonances of a
rotationally invariant sphere embedded in a lossy medium
and an asymptotic analysis is carried out to characterize the
corresponding resonances of small homogeneous spheres. Ex-
plicit expressions are given for the dipole and the quadrupole
and the theory is illustrated in a comparison with the corre-
sponding resonances of metal nanospheres based on a specific
Brendel-Bormann (BB) model for the permittivity of gold,
silver, and aluminum.
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APPENDIX: SPHERICAL VECTOR WAVES

1. Definition of spherical vector waves

In a source-free homogeneous and isotropic medium the
electromagnetic field can be expanded in spherical vector
waves as{

E(r) = ∑
l,m,τ aτmlvτml (kr) + fτmluτml (kr),

H (r) = 1
iη0η

∑
l,m,τ aτml vτ̄ml (kr) + fτmluτ̄ml (kr),

(A1)

where vτml (kr) and uτml (kr) are the regular and the outgoing
spherical vector waves, respectively, and aτml and fτml the cor-
responding multipole coefficients; see, e.g., [5,16,17,27,28].
Here, l = 1, 2, . . . is the multipole order, m = −l, . . . , l the
azimuthal index, and τ = 1, 2, where τ = 1 indicates a trans-
verse electric (TE) magnetic multipole and τ = 2 a transverse
magnetic (TM) electric multipole, and τ̄ denotes the dual
index, i.e., 1̄ = 2 and 2̄ = 1.

The solenoidal (source-free) regular spherical vector waves
are defined here by

v1ml (kr) = 1√
l (l + 1)

∇ × [rjl (kr)Yml (r̂)] = jl (kr)A1ml (r̂)

(A2)

and

v2ml (kr) = 1

k
∇ × v1ml (kr)

= [krjl (kr)]′

kr
A2ml (r̂) +

√
l (l + 1)

jl (kr)

kr
A3ml (r̂),

(A3)

where Yml (r̂) are the spherical harmonics, Aτml (r̂) the vector
spherical harmonics, and jl (x) the spherical Bessel functions
of order l; cf. [16,17,22,28–30]. Here, (·)′ denotes a differen-
tiation with respect to the argument of the spherical Bessel
function. The outgoing (radiating) spherical vector waves
uτml (kr) are obtained by replacing the regular spherical Bessel
functions jl (x) above with the spherical Hankel functions of
the first kind, h(1)

l (x); see [16,17,22,29].
The vector spherical harmonics Aτml (r̂) are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1ml(r̂) = 1√
l (l + 1)

∇ × [rYml (r̂)]

= 1√
l (l + 1)

∇Yml (r̂) × r,

A2ml (r̂) = r̂ × A1ml (r̂)

= 1√
l (l + 1)

r∇Yml (r̂),

A3ml (r̂) = r̂Yml (r̂),

(A4)

where τ = 1, 2, 3, and where the spherical harmonics Yml (r̂)
are given by

Yml (r̂) = (−1)m

√
2l + 1

4π

√
(l − m)!

(l + m)!
Pm

l (cos θ )eimφ, (A5)

and where Pm
l (x) are the associated Legendre functions

[16,22,28]. The associated Legendre functions can be

obtained from

Pm
l (cos θ ) = (−1)m(sin θ )m dm

d (cos θ )m
Pl (cos θ ), (A6)

where Pl (x) are the Legendre polynomials of order l
and 0 � m � l; see [16,22,28]. Important symmetry prop-
erties are P−m

l (x) = (−1)m (l−m)!
(l+m)! P

m
l (x) and Y−m,l (θ, φ) =

(−1)mY∗
ml (θ, φ) where m � 0. Hence, the vector spherical

harmonics satisfy the symmetry Aτ,−m,l (r̂) = (−1)mA∗
τml (r̂).

The vector spherical harmonics are orthonormal on the unit
sphere, and hence∫

�0

A∗
τml (r̂) · Aτ ′m′l ′ (r̂)d� = δττ ′δmm′δll ′ , (A7)

where �0 denotes the unit sphere and d� = sin θ dθ dφ.

2. Sum identities for the vector spherical harmonics

General sum identities for the vector spherical harmonics
are derived below. We start with the addition theorem for the
Legendre polynomials given by

Pl (r̂1 · r̂2) = 4π

2l + 1

l∑
m=−l

Y∗
ml (r̂1)Yml (r̂2); (A8)

see, e.g., [17, Appendix C.5 on pp. 635–637] or [28, Eq.
(8.189) on p. 556]. In particular, for r̂ = r̂1 = r̂2 this relation
reads

l∑
m=−l

Y∗
ml (r̂)Yml (r̂) = 2l + 1

4π
, l = 0, 1, 2, . . . , (A9)

since Pl (1) = 1. Notice that the sum is independent of the
direction r̂.

Now, differentiate (A8) to obtain to following dyadic iden-
tity:

∇2∇1Pl (r̂1 · r̂2) = 4π

2l + 1

l∑
m=−l

∇2Y∗
ml (r̂2)∇1Yml (r̂1),

(A10)

and notice that the result is not symmetric in the indices 1
and 2. The left-hand side of the identity in (A10) can be
evaluated by using the differential rules of the nabla operator:

∇2∇1Pl (r̂1 · r̂2) = ∇2

{
P′

l (r̂1 · r̂2)

(
r̂2

r1
− r̂1

r̂1 · r̂2

r1

)}
= P′′

l (r̂1 · r̂2)

(
r̂1

r2
− r̂2

r̂1 · r̂2

r2

)
×

(
r̂2

r1
− r̂1

r̂1 · r̂2

r1

)
+ P′

l (r̂1 · r̂2)

×
(

I3 − r̂2r̂2

r1r2
− r̂1 − r̂2(r̂1 · r̂2)

r1r2
r̂1

)
.

(A11)

In the derivation of (A11) we have used

∇1(r̂1 · r̂2) = r̂2

r1
− r̂1

r̂1 · r̂2

r1
(A12)
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and similarly for ∇2(r̂1 · r̂2), as well as

∇2

(
r̂2

r1
− r̂1

r̂1 · r̂2

r1

)
= I3 − r̂2r̂2

r1r2
− r̂1 − r̂2(r̂1 · r̂2)

r1r2
r̂1

(A13)

and where

∇r̂ = I3 − r̂r̂
r

, (A14)

and I3 is the identity dyadic. The result (A11) can now be
simplified and combined with the right-hand side of (A10) to
yield

r1r2∇2∇1Pl (r̂1 · r̂2) = P′′
l (r̂1 · r̂2)[r̂1r̂2 − r̂1r̂1(r̂1 · r̂2)

− r̂2r̂2(r̂1 · r̂2) + r̂2r̂1(r̂1 · r̂2)2]

+ P′
l (r̂1 · r̂2)[I3 − r̂2r̂2 − r̂1r̂1

+ r̂2r̂1(r̂1 · r̂2)]

= 4π

2l + 1

l∑
m=−l

r2∇2Y∗
ml (r̂2)r1∇1Yml (r̂1).

(A15)

In particular, for r̂ = r̂1 = r̂2 the relation (A15) reads

l∑
m=−l

[r∇Y∗
ml (r̂)][r∇Yml (r̂)] = 2l + 1

4π

l (l + 1)

2
(I3 − r̂r̂),

(A16)

since P′
l (1) = l (l + 1)/2.

By employing the definitions made in (A4) we see that
(A16) can be written

l∑
m=−l

A∗
2ml (r̂)A2ml (r̂) = 2l + 1

8π
(I3 − r̂r̂). (A17)

Similarly,

l∑
m=−l

A∗
1ml (r̂)A1ml (r̂) = −r̂ ×

l∑
m=−l

A∗
2ml (r̂)A2ml (r̂) × r̂

= −2l + 1

8π
r̂ × (I3 − r̂r̂) × r̂

= 2l + 1

8π
(I3 − r̂r̂), (A18)

and from (A9) follows that

l∑
m=−l

A∗
3ml (r̂)A3ml (r̂) = 2l + 1

4π
r̂r̂. (A19)

Finally, by adding over all indices τ = 1, 2, 3 we obtain the
result

l∑
m=−l

3∑
τ=1

A∗
τml (r̂)Aτml (r̂) = 2l + 1

4π
I3, (A20)

which is independent of the direction r̂.

3. Lommel integrals for spherical Bessel functions

Let sl (kr) denote an arbitrary linear combination of spheri-
cal Bessel and Hankel functions. Based on the two Lommel
integrals for cylinder functions, cf. [22, Eqs. (10.22.4) and
(10.22.5) on p. 241] and [31, Eqs. (8) and (10) on p. 134],
the following indefinite Lommel integrals can be derived for
spherical Bessel functions:∫

|sl (kr)|2r2dr = r2 Im{ksl+1(kr)s∗
l (kr)}

Im{k2} , (A21)

where k is complex-valued (k �= k∗), cf. [19, Eq. (A15) on
p. 11], and∫

|sl (kr)|2r2dr = 1

2
r3[|sl (kr)|2 − Re{sl−1(kr)s∗

l+1(kr)}],
(A22)

where k is real-valued (k = k∗). Furthermore, by using the
recursive relationships⎧⎪⎨⎪⎩

sl (kr)

kr
= 1

2l + 1
[sl−1(kr) + sl+1(kr)],

s′
l (kr) = 1

2l + 1
[lsl−1(kr) − (l + 1)sl+1(kr)],

(A23)

where l = 1, 2, . . ., cf. [22], it can be shown that∫ (∣∣∣∣ sl (kr)

kr
+ s′

l (kr)

∣∣∣∣2

+ l (l + 1)

∣∣∣∣ sl (kr)

kr

∣∣∣∣2)
r2dr

= 1

2l + 1

∫
[(l + 1)|sl−1(kr)|2 + l|sl+1(kr)|2]r2dr;

(A24)

see also, e.g., [32, Eq. (17) on p. 411] and [33, Eqs. (36) and
(47) on pp. 2359–2360].

4. Orthogonality over a spherical volume

Due to the orthonormality of the vector spherical harmon-
ics (A7), the regular spherical vector waves are orthogonal
over the unit sphere with∫

�0

v∗
τml (kr) · vτ ′m′l ′ (kr)d� = δττ ′δmm′δll ′Sτ l (k, r), (A25)

where

Sτ l (k, r) =
∫

�0

|vτml (kr)|2d�

=

⎧⎪⎨⎪⎩
|jl (kr)|2, τ = 1,∣∣∣∣ jl (kr)

kr
+ j′l (kr)

∣∣∣∣2

+ l (l + 1)

∣∣∣∣ jl (kr)

kr

∣∣∣∣2

, τ = 2.

(A26)

As a consequence, the regular spherical vector waves are also
orthogonal over a spherical volume Va with radius a yielding∫

Va

v∗
τml (kr) · vτ ′m′l ′ (kr)dv = δττ ′δmm′δll ′Wτ l (k, a), (A27)

where

Wτ l (k, a) =
∫

Va

|vτml (kr)|2dv =
∫ a

0
Sτ l (k, r)r2dr, (A28)
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where dv = r2 d� dr and τ = 1, 2.
For complex-valued arguments k, W1l (k, a) is obtained

from (A21) as

W1l (k, a) =
∫ a

0
|jl (kr)|2r2 dr = a2Im{kjl+1(ka)j∗l (ka)}

Im{k2} ,

(A29)

and from (A24) follows that

W2l (k, a)

=
∫ a

0

(∣∣∣∣ jl (kr)

kr
+ j′l (kr)

∣∣∣∣2

+ l (l + 1)

∣∣∣∣ jl (kr)

kr

∣∣∣∣2)
r2 dr

= 1

2l + 1
[(l + 1)W1,l−1(k, a) + lW1,l+1(k, a)]. (A30)

Similar expressions are obtained for real-valued k by using
(A22).

5. Orthogonality over a spherical surface

Based on the properties of the spherical vector waves de-
scribed in Sec. A 1, the following orthogonality relationships
regarding their cross products on a spherical surface can be
derived:∫

Sa

wτml (kr) × z∗
τ̄m′l ′ (kr) · dS

= a2δmm′δll ′

⎧⎪⎪⎨⎪⎪⎩
wl (ka)

(
[kazl (ka)]′

ka

)∗
, τ = 1,

−
(

[kawl (ka)]′

ka

)
z∗

l (ka), τ = 2,

(A31)

and ∫
Sa

wτml (kr) × z∗
τm′l ′ (kr) · dS = 0, (A32)

for τ = 1, 2. Here, Sa is the spherical surface of radius a, and
wl (ka) and zl (ka) are either of jl (ka) or h(1)

l (ka) and wτml (kr)
and zτml (kr) the corresponding spherical vector waves,
respectively.

[1] S. A. Maier, Plasmonics: Fundamentals and Applications
(Springer-Verlag, Berlin, 2007).

[2] C. A. Valagiannopoulos, J. Vehmas, C. R. Simovski, S. A.
Tretyakov, and S. I. Maslovski, Phys. Rev. B 92, 245402 (2015).

[3] S. I. Maslovski, C. R. Simovski, and S. A. Tretyakov, New J.
Phys. 18, 013034 (2016).

[4] C. A. Valagiannopoulos and S. A. Tretyakov, Phys. Rev. B 94,
125117 (2016).

[5] C. F. Bohren and D. R. Huffman, Absorption and Scattering of
Light by Small Particles (John Wiley & Sons, New York, 1983).

[6] R. Progelhof, J. Franey, and T. W. Haas, J. Appl. Polym. Sci.
15, 1803 (1971).

[7] W. Al-Taay, S. F. Oboudi, E. Yousif, M. A. Nabi, R. M. Yusop,
and D. Derawi, Adv. Mater. Sci. Eng. 2015, 1 (2015).

[8] F. A. Duck, Physical Properties of Tissue: A Comprehensive
Reference Book (Academic Press, San Diego, CA, 1990).

[9] X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, Lasers
Med. Sci. 23, 217 (2008).

[10] W. C. Mundy, J. A. Roux, and A. M. Smith, J. Opt. Soc. Am.
64, 1593 (1974).

[11] P. Chylek, J. Opt. Soc. Am. 67, 561 (1977).
[12] C. F. Bohren and D. P. Gilra, J. Colloid Interface Sci. 72, 215

(1979).
[13] A. Lebedev, M. Gartz, U. Kreibig, and O. Stenzel, Eur. Phys. J.

D 6, 365 (1999).
[14] I. W. Sudiarta and P. Chylek, J. Opt. Soc. Am. A 18, 1275

(2001).
[15] S. Durant, O. Calvo-Perez, N. Vukadinovic, and J.-J. Greffet,

J. Opt. Soc. Am. A 24, 2943 (2007).
[16] J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley

& Sons, New York, 1999).
[17] G. Kristensson, Scattering of Electromagnetic Waves by

Obstacles (SciTech Publishing, Edison, NJ, 2016).
[18] A. Osipov and S. Tretyakov, Modern Electromagnetic

Scattering Theory with Applications (John Wiley & Sons Ltd.,
Chichester, UK, 2017).

[19] S. Nordebo, M. Dalarsson, Y. Ivanenko, D. Sjöberg, and
R. Bayford, J. Phys. D: Appl. Phys. 50, 155401 (2017).

[20] S. Tretyakov, Plasmonics 9, 935 (2014).
[21] O. D. Miller, A. G. Polimeridis, M. T. H. Reid, C. W. Hsu,

B. G. DeLacy, J. D. Joannopoulos, M. Soljacic, and S. G.
Johnson, Opt. Express 24, 3329 (2016).

[22] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W.
Clark, NIST Handbook of Mathematical Functions (Cambridge
University Press, New York, 2010).

[23] F. W. J. Olver, Asymptotics and Special Functions (A. K. Peters,
Ltd., Natick, MA, 1997).

[24] L. Hörmander, The Analysis of Linear Partial Differential
Operators I, Grundlehren der mathematischen Wissenschaften
256 (Springer-Verlag, Berlin, 1983).

[25] D. C. Tzarouchis, P. Ylä-Oijala, and A. Sihvola, Phys. Rev. B
94, 140301 (2016).

[26] A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski,
Appl. Opt. 37, 5271 (1998).

[27] R. G. Newton, Scattering Theory of Waves and Particles
(Springer-Verlag, New York, 1982).

[28] G. B. Arfken and H. J. Weber, Mathematical Methods for
Physicists, 5th ed. (Academic Press, New York, 2001).

[29] A. Boström, G. Kristensson, and S. Ström, in Field Represen-
tations and Introduction to Scattering, Acoustic, Electromag-
netic, and Elastic Wave Scattering, edited by V. V. Varadan,
A. Lakhtakia, and V. K. Varadan (Elsevier Science Publishers,
Amsterdam, 1991), Chap. 4, pp. 165–210.

[30] R. G. Newton, Scattering Theory of Waves and Particles, 2nd
ed. (Dover Publications, New York, 2002).

[31] G. N. Watson, A Treatise on the Theory of Bessel Func-
tions, 2nd ed. (Cambridge University Press, Cambridge, UK,
1995).

[32] E. A. Marengo and A. J. Devaney, IEEE Trans. Antennas
Propagat. 47, 410 (1999).

[33] S. Nordebo and M. Gustafsson, IEEE Trans. Signal Process. 54,
2357 (2006).

054301-11

https://doi.org/10.1103/PhysRevB.92.245402
https://doi.org/10.1103/PhysRevB.92.245402
https://doi.org/10.1103/PhysRevB.92.245402
https://doi.org/10.1103/PhysRevB.92.245402
https://doi.org/10.1088/1367-2630/18/1/013034
https://doi.org/10.1088/1367-2630/18/1/013034
https://doi.org/10.1088/1367-2630/18/1/013034
https://doi.org/10.1088/1367-2630/18/1/013034
https://doi.org/10.1103/PhysRevB.94.125117
https://doi.org/10.1103/PhysRevB.94.125117
https://doi.org/10.1103/PhysRevB.94.125117
https://doi.org/10.1103/PhysRevB.94.125117
https://doi.org/10.1002/app.1971.070150724
https://doi.org/10.1002/app.1971.070150724
https://doi.org/10.1002/app.1971.070150724
https://doi.org/10.1002/app.1971.070150724
https://doi.org/10.1155/2015/913260
https://doi.org/10.1155/2015/913260
https://doi.org/10.1155/2015/913260
https://doi.org/10.1155/2015/913260
https://doi.org/10.1007/s10103-007-0470-x
https://doi.org/10.1007/s10103-007-0470-x
https://doi.org/10.1007/s10103-007-0470-x
https://doi.org/10.1007/s10103-007-0470-x
https://doi.org/10.1364/JOSA.64.001593
https://doi.org/10.1364/JOSA.64.001593
https://doi.org/10.1364/JOSA.64.001593
https://doi.org/10.1364/JOSA.64.001593
https://doi.org/10.1364/JOSA.67.000561
https://doi.org/10.1364/JOSA.67.000561
https://doi.org/10.1364/JOSA.67.000561
https://doi.org/10.1364/JOSA.67.000561
https://doi.org/10.1016/0021-9797(79)90103-6
https://doi.org/10.1016/0021-9797(79)90103-6
https://doi.org/10.1016/0021-9797(79)90103-6
https://doi.org/10.1016/0021-9797(79)90103-6
https://doi.org/10.1007/s100530050320
https://doi.org/10.1007/s100530050320
https://doi.org/10.1007/s100530050320
https://doi.org/10.1007/s100530050320
https://doi.org/10.1364/JOSAA.18.001275
https://doi.org/10.1364/JOSAA.18.001275
https://doi.org/10.1364/JOSAA.18.001275
https://doi.org/10.1364/JOSAA.18.001275
https://doi.org/10.1364/JOSAA.24.002943
https://doi.org/10.1364/JOSAA.24.002943
https://doi.org/10.1364/JOSAA.24.002943
https://doi.org/10.1364/JOSAA.24.002943
https://doi.org/10.1088/1361-6463/aa5a89
https://doi.org/10.1088/1361-6463/aa5a89
https://doi.org/10.1088/1361-6463/aa5a89
https://doi.org/10.1088/1361-6463/aa5a89
https://doi.org/10.1007/s11468-014-9699-y
https://doi.org/10.1007/s11468-014-9699-y
https://doi.org/10.1007/s11468-014-9699-y
https://doi.org/10.1007/s11468-014-9699-y
https://doi.org/10.1364/OE.24.003329
https://doi.org/10.1364/OE.24.003329
https://doi.org/10.1364/OE.24.003329
https://doi.org/10.1364/OE.24.003329
https://doi.org/10.1103/PhysRevB.94.140301
https://doi.org/10.1103/PhysRevB.94.140301
https://doi.org/10.1103/PhysRevB.94.140301
https://doi.org/10.1103/PhysRevB.94.140301
https://doi.org/10.1364/AO.37.005271
https://doi.org/10.1364/AO.37.005271
https://doi.org/10.1364/AO.37.005271
https://doi.org/10.1364/AO.37.005271
https://doi.org/10.1109/8.761085
https://doi.org/10.1109/8.761085
https://doi.org/10.1109/8.761085
https://doi.org/10.1109/8.761085
https://doi.org/10.1109/TSP.2006.873503
https://doi.org/10.1109/TSP.2006.873503
https://doi.org/10.1109/TSP.2006.873503
https://doi.org/10.1109/TSP.2006.873503



