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Generalized dissipation dilution in strained mechanical resonators
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Mechanical resonators with high quality factors are widely used in precision experiments, ranging from
gravitational wave detection and force sensing to quantum optomechanics. Beams and membranes are well
known to exhibit flexural modes with enhanced quality factors when subjected to tensile stress. The mechanism
for this enhancement has been a subject of debate, but is typically attributed to elastic energy being “diluted”
by a lossless potential. Here we clarify the origin of the lossless potential to be the combination of tension
and geometric nonlinearity of strain. We present a general theory of dissipation dilution that is applicable
to arbitrary resonator geometries and discuss why this effect is particularly strong for flexural modes of
nanomechanical structures with high aspect ratios. Applying the theory to a nonuniform doubly clamped beam,
we show analytically how dissipation dilution can be enhanced by modifying the beam shape to implement “soft
clamping,” thin clamping, and geometric strain engineering, and derive the ultimate limit for dissipation dilution.
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I. INTRODUCTION

Mechanical resonators with high quality factors are of
both fundamental and applied interest. They are employed in
gravitational waves detectors [1], cavity optomechanics [2],
quantum [3] and classical [4] signal conversion, tests of
wave function collapse models [5], and numerous sensing
applications [6,7]. In all these endeavors, dissipation can be
a limiting factor. As known from the fluctuation-dissipation
theorem [8], dissipation introduces noise, which limits force
sensitivity, frequency stability, and results in decoherence of
quantum states. Reduction of mechanical dissipation is practi-
cally challenging, however, because intrinsic and surface loss
mechanisms are often not well understood or not possible
to control. The quality factor Q of a mechanical resonator
typically does not exceed the inverse of the material loss angle
φ, characterizing the delay between stress and strain. Flexural
modes of beams and membranes under tension are notable
exceptions to this rule: they can have Q far in excess of 1/φ

due to a phenomenon known as dissipation dilution.
The origin of dissipation dilution has been a subject of

debate. The concept was introduced in the gravitational wave
community when, to explain the enhanced Q of test mass
suspension wire, Gonzalez et al. [9,10] reasoned that the lossy
elastic energy of the wire was “diluted” by the conservative
gravitational potential of the test mass. A decade later, similar
behavior was observed in nanometric strings and membranes
made of highly strained materials (most notably, silicon ni-
tride [11–13]); however, the lack of an external potential in
this case necessitated a rethinking of the physical model. In
later works the quality factors of flexural modes of uniform
beams [14] and membranes [15] were calculated from a struc-
tural mechanics perspective and shown to be much greater
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than 1/φ—in excellent agreement with experiments [14–17].
These results partially demystified dissipation dilution, but
due to their lack of generality, the understanding of this effect
remains incomplete. It is still not fully clear what causes dissi-
pation dilution to emerge in a resonator (aside from the mere
presence of tensile strain), whether any nonflexural modes
experience dilution, and to what extent it can be engineered
to produce practical high-Q resonators.

Very recently, dissipation dilution has attracted significant
interest as it enabled nanomechanical resonators, in the form
of patterned membranes and beams, to achieve exceptionally
high Q factors [18,19]. In particular, by localizing a beam
mode away from its supports with a phononic crystal (the “soft
clamping” approach introduced by Tsaturyan et al. [18,20])
and using geometric strain engineering [21] to enhance strain
in the beam constriction, Q factors as high as 8 × 108 were
demonstrated at room temperature [19]—surpassing even the
highest values measured in macroscopic sapphire bars [22].
These advances suggest that a more detailed understanding of
dissipation dilution may be beneficial for optimizing existing
designs and finding new ones, in addition to answering the
open questions mentioned above.

Here we address these questions with a general and consis-
tent theory which does not resort to the concept of an a priori
lossless potential. We derive the dissipation dilution factors
for modes of a mechanical resonator of arbitrary geometry.
We identify geometric nonlinearity of strain in deformations
to be a key component which, together with static strain,
enables dissipation dilution. We extend the classic treatment
of Q dilution in flexural vibrations of a doubly clamped beam
to the case where the beam has a nonuniform width. Using
this theory we show how a nonuniform width can be used
to enhance Q with three strategies: mode localization with
phononic crystals [18], both alone and in combination with
adiabatic tapering [19], and “thin clamping,” introduced here.
We show that in a number of cases engineering dissipation
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dilution is related to geometric strain engineering [23,24]. We
also derive the ultimate limit of dissipation dilution set by
the material yield strain. Our numerical analysis of beams is
based on the one-dimensional Euler-Bernoulli equation and
is in excellent agreement with a full three-dimensional (3D)
treatment. The numerical routines for nanobeam Q factor cal-
culations are implemented in a freely available Mathematica
package [25].

II. GEOMETRIC ORIGIN OF DISSIPATION DILUTION

Dissipation dilution is commonly illustrated by a harmonic
oscillator subjected to an external lossless potential [9], as in
the case of optically trapped mirrors [26,27] or massive pen-
dula in a gravitational field [9]. If ωint is the oscillator natural
frequency, φ is its loss angle [28], and ωdil is the frequency
of motion in the lossless potential, then the oscillator Q factor
is increased compared to the intrinsic value Qint ≡ 1/φ by the
“dilution factor”

DQ ≡ Q

Qint
= ω2

int + ω2
dil

ω2
int

. (1)

For flexural vibrations of tensioned beams or membranes, the
Q enhancement takes place similarly to Eq. (1) with the im-
portant distinction that here the potential energy is stored only
as elastic energy. Instead of introducing an external potential,
the elastic energy is divided into lossy “bending” and lossless
“tension” parts [14,15], related to the curvature and gradient
of the mode shape, respectively. It is not evident a priori,
however, how to make this separation in a general case and
under which conditions the lossless part of energy is nonzero.
Here we answer both questions and show that the effectively
lossless elastic energy emerges if two conditions are satisfied:
(a) static strain is nonzero in the resonator and (b) the average
of strain variation over the oscillation period is nonzero, i.e.,
the geometric nonlinearity of strain is significant.

We now derive the dissipation dilution factor of a generic
vibrational mode. For this we compute the Q factor as the
ratio of the elastic energy stored by the mode to the energy
dissipated per vibrational period. We assume that static defor-
mation is present in the structure along with a part oscillating
at the frequency ωn. Denoting the total deformation field as
Ũi(x, y, z, t ) (i = x, y, z), the strain tensor ẽi j [29] is given by

ẽi j = 1

2

(
∂Ũi

∂x j
+ ∂Ũj

∂xi
+ ∂Ũl

∂xi

∂Ũl

∂x j

)
, (2)

where summation over repeating indices is implied. The last
term in Eq. (2) is nonlinear in the displacement and can be
identified as the geometric nonlinearity. We emphasize here
that this nonlinearity is not due to a nonlinear stress-strain
relation and is not always negligible for infinitesimally small
vibrations.

The strain tensor can be split into static ei j and time-
dependent �ei j (t ) contributions

ẽi j (t ) = ei j + �ei j (t ). (3)

For brevity, when treating the 3D case we present a simplified
model where Poisson’s ratio ν is neglected, so that the stress-

strain relation is given by

σ̃i j[ω] = Ee−iφ ẽi j[ω]. (4)

A full treatment accounting for Poisson’s ratio can be found
in the Supplementary Material (SM) [30] and it is included
below when treating flexural modes of beams.

We find the time-averaged elastic energy density stored by
the mode as

〈�wel(t )〉 = E
〈ẽi j (t )ẽi j (t )〉

2
− E

ei jei j

2

= E

(
ei j〈�ei j (t )〉 + 〈�ei j (t )�ei j (t )〉

2

)
, (5)

and the dissipated power density pdiss as

pdiss = 〈σ̃i j (t ) (ẽi j )
′
t (t )〉 = ωn φ E〈�ei j (t )�ei j (t )〉. (6)

The dilution factor of the vibrational mode is given by the
ratio of the resonator quality factor to Qint as

DQ = 1 +
∫

2ei j〈�ei j (t )〉dV∫ 〈�ei j (t )�ei j (t )〉dV
. (7)

Equation (7) reveals the peculiar effect of static strain ei j on
dissipation. If the static strain is zero, then DQ = Q/Qint = 1
irrespective of the mode shape (we emphasize that correc-
tions due to the imaginary part of Poisson’s ratio are here
neglected). In contrast, DQ can be higher (or lower) than unity
if ei j �= 0 and 〈�ei j (t )〉 �= 0, the latter being possible due to
geometric nonlinearity in Eq. (2).

Comparing Eq. (7) to Eq. (1), one recognizes

〈Wdil(t )〉 ≡ E
∫

ei j〈�ei j (t )〉dV (8)

as an effectively lossless potential that generalizes the “ten-
sion energy” in treatment of beams and membranes [10,15].
The lossy part of the energy is given by

〈Wlossy(t )〉 ≡ E

2

∫
〈�ei j (t )�ei j (t )〉dV, (9)

which generalizes the “bending energy” [10,15] and corre-
sponds to ω2

int in Eq. (1). Unlike the toy model, however, Wlossy

in general depends on the static strain, which implies that the
intuitive picture that tension increases stored energy without
affecting dissipation is not correct in general.

To give an example, we apply Eq. (7) (more precisely, its
counterpart accounting for ν given by Eq. (SI13) in the Sup-
plemental Material [30]) to a clamped 3D resonator made of
prestrained material shown in Fig. 1(a) and calculate dilution
factors for a few representative modes from different families.
It can be seen that among these modes only the flexural ones
experiences dissipation dilution, whereas the torsional and
longitudinal modes do not. A visualization of lossless energy
density 〈wdil(t )〉 in Fig. 1(b) shows that the lossless potential
is concentrated in thin bridges between the blocks. This is
explained by (a) static strain concentration in constrictions
and (b) relatively large geometric nonlinearity of strain in
flexural deformations, as opposed to torsional or longitudinal
deformations.

Strong dissipation dilution of flexural modes in high-
aspect-ratio beams and membranes [12,14] is thus due to the
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FIG. 1. (a) Dissipation dilution factors for vibrational modes of
a 3D resonator, doubly clamped to two quarter-sphere pads (hatched
gray) and subjected to tension. The total length is 20 μm, the block
size is 8.5 × 7 × 4 μm, the bridge diameter is 100 nm, and the
material prestrain is 0.4%. (b) Distribution of effectively lossless
elastic energy in a thin bridge during flexural vibration. (c) Schematic
illustrating how the cycle-averaged dynamic strain 〈�ε〉 can be
nonzero due to geometric nonlinearity.

combination of tension and a large geometrically nonlinear
contribution to the dynamic strain. The latter can be illustrated
by considering flexural deformation of an idealized infinitely
thin beam shown in Fig. 1(c). If the beam is oriented along
the x axis and vibrates along the z direction with magnitude
u, only the diagonal component ẽxx ≡ ε̃ is relevant and the
dynamic variation of strain is quadratic (i.e., fully nonlinear)
in the displacement magnitude:

�ε(x, t ) = [ũ′
x(x, t )]2/2. (10)

Recognizing the role of geometric nonlinearity provides a
warning: it is not correct to assume that the mere presence
of tensile strain in a mechanical resonator increases its Q—
for example, torsional modes of the same structures that
have high-Q flexural modes usually do not experience any
appreciable dissipation dilution [see Fig. 1(a)].

Although it does not seem straightforward to come up
with a general recipe on how to optimally exploit dissipation
dilution in an arbitrary structure, in part because the static
strain distribution and vibrational mode shape are both af-
fected by resonator geometry, two trends can be nevertheless
identified. First, since the nonlinear part of strain tensor is
only non-negligible when the linear part is small, dissipation
dilution does not typically take place for modes in which the
directions of deformation and dynamic strain coincide. To
give an example, for a purely dilatational wave propagating
in x direction Eq. (2) yields

ẽxx = ∂Ũx

∂x
+ 1

2

(
∂Ũx

∂x

)2

. (11)

Here the geometrically nonlinear part is always negligible,
unless the static elongation exx is greater than one, which
greatly exceeds the yield strains for most conventional mate-
rials. Second, a mechanical resonator of strongly nonuniform
shape has a strongly inhomogeneous strain distribution with
peak values greatly exceeding the average. This limits the
acceptable average strain as the peak needs to stay below
the material yield value. Therefore, unless the vibrational
mode is confined inside a region of locally high strain, an
overly strong inhomogeneity of the resonator shape is always
disadvantageous. This is even more true for the case where
the resonator is patterned from a material with fixed prestrain,
as here the average relaxed strain is reduced more for highly
nonuniform shapes.

III. DISSIPATION DILUTION OF BEAM RESONATORS

For the rest of the paper we consider in detail the flexural
modes of beams, as extreme dissipation dilution is achievable
in this case and at the same time a number of analytical results
are possible to obtain in addition to those reported in earlier
works [10,16]. Applying Eq. (7) we arrive at a dilution factor
given by

DQ = 1 +
∫

2ε〈�ε(t )〉dV∫ 〈�ε(t )2〉dV
, (12)

where ε is the static strain along the beam, terms proportional
to ε〈�ε(t )〉 and 〈�ε(t )2〉 correspond to the lossless “tension”
and lossy “bending” energy, respectively [10,15]—both are
of elastic origin. Note that while Eq. (7) neglects Poisson’s
ratio, Eq. (12) does not, and is formally exact in the one-
dimensional (1D) case.

So far we have not made any assumptions about the beam
cross section, but in the following we focus on geometries di-
rectly accessible by nanofabrication. Specifically, we assume
that the beams are made of a suspended film with thickness
h and prestrain exx = eyy = εfilm (which redistributes upon
suspension). The beam width w(x) is in general nonuniform
and its variation can be used to improve vibrational quality
factors.

For modes of a uniform rectangular beam evaluation of
Eq. (12) yields the well-known result [10,16]

DQ,n = 1

2λ + π2n2λ2
. (13)

Here n is mode number and λ is defined as [15,16]

λ2 = 1

12εavg

h2

l2
, (14)

where εavg is the volume-averaged static tensile strain and l is
the beam length.

The derivation of Eq. (13) is based on a key insight: the
flexural modes of a beam contain two vastly different length
scales [9,10]. Away from the clamping points (clamps), modes
form standing waves with wavelengths on the order of 2l/n,
while near the clamping points they experience sharp bending
at the length scale of λl , which is responsible for fulfilling the
clamped boundary conditions u′ = 0. As a result, the majority
of the elastic energy is distributed over the mode away from
the clamping points, while the small regions around them
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make a large (dominant for lowest-frequency modes) contri-
bution to the intrinsic losses [14,15]. These losses, although
originating from the clamped resonator boundary, should not
be confused with losses due to modal coupling to the support-
ing frame [31–33] or acoustic radiation [17,34].

In the following we refer to intrinsic loss occurring away
from the clamps as the “distributed contribution” to separate
these losses from the losses due to bending around the clamps.

We now generalize the multilength scale approach for the
case of nonuniform beams and derive the dissipation dilution
factors as (see details in SM)

DQ,n = 1

2αnλ + βn
2
nλ

2
, (15)

where we introduced dimensionless frequency of nth mode

n given by


2
n = ρl2ω2

n

εavgE
, (16)

and beam shape-dependent clamping and distributed loss co-
efficients αn and βn are found as

αn =
√

vcl(u′
cl,n)2

2
2
n

( ∫ 1
0 v(s)un(s)2ds

) , (17)

βn =
∫ 1

0 v(s)3un(s)2ds∫ 1
0 v(s)un(s)2ds

. (18)

Here s = x/l is the scaled coordinate along the beam, un(s) is
the mode shape, v(s) = w(s)/wavg is the beam width variation
normalized to its average width, and quantities with subscript
“cl” are computed near the clamps (see SM).

Dissipation dilution of a nonuniform beam can be dis-
cussed entirely in terms of the reduction of the αn and βn

coefficients by varying the beam shape w(x); however, some
results are more intuitively interpreted from the perspective
of geometric strain engineering [19,23,24], a technique that
exploits the relaxation of a suspended film to locally enhance
the strain. Formally, the treatment in terms of the transverse
beam shape w(x) or the static strain distribution along the
beam ε(x) is equivalent as these quantities are uniquely related
as (see SM for details)

ε(x)/εavg = wavg/w(x), (19)

through the condition that the tension force must be constant
along the beam.

IV. DISSIPATION DILUTION LIMIT

Before showing how dissipation dilution can be enhanced
in a nonuniform beam, we derive a rigorous upper bound for
DQ. This bound is set by the yield strain, material parameters,
beam thickness, and the vibration frequency, but does not
depend on the beam length nor the mode order. The bound
is obtained by assuming the clamping contribution to intrinsic
loss to be negligible (αn = 0) and evaluating the distributed
loss coefficient βn using the strain-width relation [Eq. (19)]
and the condition that the maximum strain in the beam cannot
exceed the yield strain εyield. As a result we obtain (see SM for

details)

βn �
(

εavg

εyield

)2

, (20)

and thus the ultimate dissipation dilution bound is given by

DQ �
12Eε2

yield

ρh2ω2
. (21)

Interestingly, while being a rigorous and general result,
Eq. (21) has a simple and intuitive interpretation: dissipation
dilution cannot exceed the value for an idealized clampless
uniform beam strained to the yield point.

V. NONUNIFORM BEAMS WITH ENHANCED
DISSIPATION DILUTION

We consider three beam designs which produce vibrational
modes with enhanced dissipation dilution compared to a uni-
form beam—phononic crystal (PnC) beams, beams with thin
clamps, and tapered PnC beams. We first analytically estimate
the attainable DQs with these designs and then numerically
calculate them by solving the Euler-Bernoulli equation [25]
(see SM). Numerical calculations of dissipation dilution and
quality factors are presented in Fig. 3 for beams with length
l = 3 mm and thickness h = 20 nm. DQ factors apply to
beams made of any material with given prestrain (0.46% in the
figure), whereas the absolute Q factors are calculated assum-
ing parameters typical to stoichiometric Si3N4 films [17,35]
(E = 250 GPa, ν = 0.23, σfilm = 1.14 GPa, Qint = 1.4 × 103

for h = 20 nm), a well-established material for strained
nanomechanics [16]. Note that with these extreme parameters
the maximum dilution factor is large (DQ > 104) even for a
uniform beam.

The first strategy we consider is soft clamping [18,19]—
suppression of intrinsic loss around the clamps by localizing
a flexural mode in a phononic crystal. A 1D phononic crystal
can be formed by periodically modulating the beam width [17]
(with wmax = 2wmin for the design in Fig. 3). Localized modes
of a PnC beam can closely approach the performance of ide-
alized clampless beams with purely sinusoidal mode shapes,
which would have dilution factors given by

DQ = 12Eε2
film

(1 − ν)2ρh2ω2
. (22)

Here Poisson’s ratio accounts for relaxation of film stress in
transverse direction upon suspension. Importantly, the strong
suppression of mechanical mode amplitude near the clamps
requires a large number of PnC unit cells and thus a high order
n of the localized mode. For high-order modes, distributed
losses increase as n2 due to increased bending curvature for
shorter acoustic wavelengths and at some point exceed the
suppressed intrinsic loss from around clamps. These trends
can be seen in Fig. 3, where the DQ factor of the localized
mode is plotted versus frequency. DQ can be optimized by
changing the localized mode order n while keeping all the
parameters fixed except for the unit cell length (which changes
approximately as l/n). The amplitude of a localized mode
decays exponentially with the distance from the defect, such
that the coefficient for intrinsic loss around clamps can be
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(a)

(b)

FIG. 2. Geometry, strain distribution, and DQ in micropatterned
beams, illustrating the concepts of soft-clamping, thin clamping, and
strain engineering. Dilution factors (DQ) are calculated assuming
beam length l = 3 mm and thickness h = 20 nm. (a) Beams with thin
(above) and thick (below) clamps, resulting in enhanced and reduced
dissipation dilution, respectively. DQ,max is maximum over modes.
(b) Strain (top) and localized mode displacement field (bottom) in a
tapered phononic crystal beam.

estimated as αn = e−(n−1)/nL , where nL is the mode amplitude
decay length in units of acoustic half-wavelengths. Optimiza-
tion of DQ in Eq. (15) with respect to n, yields

DQ,max ≈ 1

π2n2
maxλ

2
, (23)

where nmax is the optimum localized mode order, which in-
creases only logarithmically slowly with 1/λ (see SM for the
explicit expression). This result demonstrates that patterning
a beam with a phononic crystal can provide an improvement
in DQ by a factor of ∼1/(n2

maxλ) compared to a uniform
beam of the same size. Note that the maximum attainable
DQ is far below 1/λ2—the enhancement expected from the
suppression of the clamping contribution to intrinsic loss for a
fundamental mode—as nmax is in practice much greater than
1. It also follows from Eq. (23) that in order for soft clamping
to provide an increased quality factor, λ needs to be much
smaller than 1, i.e., dissipation dilution factors needs to be
high even for nonlocalized modes.

The second strategy we consider is reduction of the beam
width near the clamps vcl = w(0)/wavg, in order to create lo-
cal strain enhancement in the clamping regions [see Fig. 2(a)
top]. Equation (17) shows that αn is proportional to

√
vcl

and thus can be reduced by thinning down the clamps (u′
cl,n

and 
n are almost unaffected by vcl as long as the clamping
region length is small). This can be interpreted as an effective
decrease of λ over the clamping region to

λcl =
√

h2/12εcll2, (24)

where εcl = εavg/vcl is the local strain. The dissipation dilu-
tion of beams with thin clamps is thus given by

DQ,n ≈ 1

2λcl + (nπ )2λ2
. (25)

In contrast to the PnC approach, thin-clamping beams are
predicted to have improved quality factors for low-order beam

FIG. 3. Dissipation dilution in beams with different transverse
profiles, assuming a fixed length l = 3 mm and thickness h = 20 nm.
Points correspond to DQ (left axis) and Q (right axis) for specific
flexural modes, assuming Qint = 1.4 × 103. Blue and green points
correspond to modes of uniform and thin-clamped (vcl = 0.14)
beams. Dark red and red points correspond to localized modes of
PnC beams and tapered PnC beams, respectively. Note that each
localized mode corresponds to a different beam shape. Blue line:
Limit for a soft-clamped beam [Eq. (22)]. Gray line: Ultimate limit,
same as DQ for a clamp-free beam strained to the yield point
[Eq. (21)].

modes, including the fundamental mode (see Fig. 3, green
points).

One caveat needs to be mentioned when considering the
effect of local strain on dissipation dilution: geometric con-
centration of strain in one region unavoidably results in the
reduction of strain elsewhere. To improve dilution factors be-
yond those of a uniform beam, the region(s) of enhanced strain
must overlap with the region(s) which dominate dissipation
in the vibrational mode, in this case the clamps. A common
beam geometry which does not satisfy this requirement, a
beam with filleted (thick) clamping points, is shown in the
bottom of Fig. 2(a). This result is at odds with recently
reported enhanced Qs in trampoline membranes with filleted
tethers [36].

In both uniform PnC and thin-clamped beams, the clamp-
ing contribution to intrinsic loss is reduced, but the dis-
tributed contribution is not. The latter can be addressed by
co-localization of both the flexural mode and the strain away
from the clamps as shown in Fig. 2(b). Following the strategy
described in [19], here the width of the PnC is changed
cellwise according to

wcell,i ∝ 1 − (1 − a) exp
( − i2/i2

0

)
, (26)

where i = 0, 1, . . . is the cell index starting from the beam
center, and a and i0 respectively define the transverse and
longitudinal sizes of the waist region. Importantly, the PnC
cell lengths must also be scaled proportional to 1/

√
wcell in

order to compensate for the band gap frequency shift due to
the nonuniform strain distribution.

An estimate of DQ for the tapered PnC is obtained by
assuming that the mode is localized in the waist region of
width vwaist and that the clamping contribution to intrinsic loss
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is negligible:

DQ,n ≈ 1


2
waistλ

2
waist

, (27)

where


waist =
√

ρl2ω2/(εwaistE ), (28)

λwaist =
√

h2/(12εwaistl2), (29)

and εwaist = εavg/vwaist. It follows that by increasing the waist
strain to the yield value, the ultimate limit of dissipation dilu-
tion [Eq. (21)] is attainable with tapered PnC beam designs,
in contrast to the previous two methods.

A practical limitation for dissipation dilution enhancement
by strain concentration in this case originates from the tradeoff
between εwaist and the waist length. Substantially increased
strain is only achievable over a small fraction of the beam
length, therefore only short wavelength and high-frequency
modes can benefit from such global geometric strain engi-
neering. In Fig. 3 we plot DQ versus frequency for localized
modes of tapered beams, where the taper waist has been
adjusted to match the wavelength of the localized mode. It can
be seen that as the mode frequency increases, its dilution is
progressively enhanced relative to conventional soft-clamped
modes (red points).

VI. THERMAL NOISE LIMITS FOR FREQUENCY
AND FORCE MEASUREMENTS

The quality factor of a mechanical resonator determines the
uncertainty in frequency and force measurements due to the
resonator’s Brownian motion [28,37,38]. Therefore dissipa-
tion dilution directly improves these fundamental sensitivity
limits. In the case of force measurements, a nanobeam is a
particularly advantageous kind of resonator due to its low
mass. For the highest-Q nanobeams that were experimentally
demonstrated at room temperature [19], with a Q of 8 × 108

at 1.3 MHz (in agreement with the theory presented here
within 30%) and effective mass of 11 pg, the thermal noise
limit is

δFth =
√

4kBT m�n = 1.4 aN/
√

Hz (30)

at T = 300 K. Here �n = ωn/Q is the resonance linewidth.
For the highest-Q soft-clamped mode in Fig. 3 [ωn/(2π ) =
1.3 MHz, Q = 3.3 × 108], assuming a beam center width of
400 nm, the force sensitivity is δFth = 2.1 aN/

√
Hz. These

low numbers are not only a consequence of high Q, but also
of the mode localization by the phononic crystal. Modes of
a beam with thin clamping points (green points in Fig. 3)
have three times higher thermal noise, δFth = 6.6 aN/

√
Hz for

the mode with Q = 1.1 × 108 at ωn/(2π ) = 1 MHz assuming
the same beam width. The mode of a uniform beam of the
same dimensions at the same frequency has quality factor
Q = 3.3 × 107 and force sensitivity δFth = 12 aN/

√
Hz.

The thermal noise limit for an oscillator frequency mea-
surement is more ambiguous to define in absolute terms, since
here the resolution in general depends on the amplitude of
the drive [37,39] which is typically limited by the onset of
nonlinearity. For flexural modes of thin beams and membranes

the dominant source of nonlinearity at large amplitudes is
not material but geometric nonlinearity [40], the same which
creates dissipation dilution. Therefore we can estimate the
contribution of Brownian motion to oscillator frequency noise
by assuming that the amplitude of driven motion is such
that the nonlinear part of the energy is of the same order of
magnitude as the linear part. This is equivalent to the condition
that the average kinetic energy approaches the static elastic
energy 〈Wkin〉 = Wel.stat.,

meffω
2
n

〈
X 2

osc

〉 � Veffε
2
avg/E . (31)

Here meff and Veff = meff/ρ are the effective resonator mass
and volume, respectively, X is the oscillator position, and
〈X 2

osc〉 is the magnitude of driven motion. The frequency noise
spectrum due to Brownian motion is given by[39]

Sωω[ω] = 2

〈
X 2

th

〉
〈
X 2

osc

〉�n
ω2

ω2 + (�n/2)2
, (32)

where 〈X 2
th〉 is the magnitude of the thermal fluctuations.

Using Eq. (31), we estimate the minimum frequency noise (at
ω � �) as

Sωω � kBT

Wel.stat.
�n. (33)

From Eq. (33) we see that static strain reduces Brownian
frequency noise in two ways—by reducing the resonator
linewidth and by increasing the driving amplitude threshold
at which nonlinearity comes into play. Plugging in num-
bers from Fig. 3 we find that the highest-Q soft-clamped
mode has minimum frequency noise

√
Sωω/(2π ) � 4 ×

10−7 Hz/
√

Hz. If converted to phase noise, this is equivalent
to −230 dBc/Hz at 20 kHz offset, which is an extremely low
level.

Practically, other factors than Brownian motion almost
always limit the frequency stability of mechanical resonators,
in particular of silicon nitride nanobeams [40]. On the other
hand, in nanobeams extraneous frequency noises of differ-
ent modes are highly correlated, which made it possible to
demonstrate Brownian-noise limited frequency measurements
with moderate-Q resonators using feedback [39]. Therefore
the attainability of the Brownian noise limit in frequency mea-
surements using ultrahigh Q beams remains an open question.

VII. CONCLUSIONS AND OUTLOOK

We have presented a theoretical framework to analyze the
quality factors of strained mechanical resonators of arbitrary
three-dimensional geometry and shown that a lossless con-
tribution to the elastic energy, giving rise to Q enhancement
by dissipation dilution, emerges in the presence of static
strain and geometric nonlinearity. High aspect ratio beams
and membranes can produce particularly large dissipation
dilution, though it is not impossible that other geometries can
do it as well.

For the specific case of variable cross-section beams sub-
jected to axial tension we presented an analytical model. We
showed that by corrugating the beam it is possible to create
modes with quality factors enhanced by more than an order
of magnitude compared to a uniform beam. We interpret
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the Q enhancement in terms of the suppression of clamping
contribution to intrinsic loss and local strain engineering, de-
riving the limits of each approach, and estimating practically
achievable absolute Q factors for devices made of high-stress
Si3N4 . In order to perform numerical calculations for beams
we developed a freely available Mathematica package [25].

We note that while Si3N4 is currently the most popular
material for strained nanomechanics—particularly for appli-
cations in optomechanics [41–44]—the principles described
here apply to resonators made of any material under strain,
whether produced by external force [45], lattice mismatch
(e.g., during epitaxial growth) [46,47], or mismatch of thermal
expansion coefficients [48].
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