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Kelvin-Helmholtz instability of AB interface in superfluid 3He
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The Kelvin-Helmholtz instability is well known in classical hydrodynamics where it explains the sudden
emergence of interfacial surface waves as a function of the flow velocity parallel to the interface. It can be
carried over to the inviscid two-fluid dynamics of superfluids, to describe the stability of the phase boundary
separating two bulk phases of superfluid 3He in rotating flow when the boundary is localized with a magnetic-
field gradient. The results from extensive measurements as a function of temperature and pressure confirm that
in the superfluid the classic condition for stability is changed and that the magnetic polarization of the B phase at
the phase boundary has to be taken into account, which yields the magnetic-field-dependent interfacial surface
tension.
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I. INTRODUCTION

The Kelvin-Helmholtz (KH) instability is one of the cel-
ebrated instabilities of classical hydrodynamics [1]. The tra-
ditional example is that of two horizontal fluid layers of
different densities flowing at different velocities parallel to
their common interface. This state of relative laminar shear
flow is stable at low velocities, i.e., the interface remains flat
and smooth, but an instability in the form of an interfacial
surface wave develops when the difference in the velocities
reaches a critical value. Originally [2,3], the two flows were
assumed inviscid, but countless manifestations of the KH
instability in different systems illustrate that the instability
also survives in viscous settings.

In superfluids, the phase boundary separating the two bulk-
liquid phases of superfluid 3He, the A and B phases, pro-
vides an extraordinary opportunity for examining interfacial
dynamics. Here, the flow of the superfluid components can
be truly inviscid; the difference in mass density is negligible
as the interface is formed as a sharp but continuous change
in the order parameter of the superfluid state with a width on
the order of the superfluid coherence length of (10–100) nm,
depending on the liquid pressure. Measurements have shown
[4] that the KH instability does not lead to an oscillating
response but, owing to large damping from orbital viscosity,
only to a bulge in the interface contour which protrudes into
the B phase and enables the formation of quantized vortices
in the B phase. The newly created vortices reduce the flow
velocity to subcritical levels at the interface, and the bulge
decays. This phenomenon has been explained by reformulat-
ing the classical instability condition for the superfluid case
[5] by taking into account the coupling to the fixed reference
frame via the normal component. Here, we summarize the
results over a broad range of measurements and examine their
agreement with the superfluid instability condition.
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II. KH INSTABILITY IN SUPERFLUID 3He

Our KH measuring arrangement is illustrated in Fig. 1. The
two-phase configuration is stabilized in an inhomogeneous
magnetic field which exceeds the critical-field HAB(T, P)
above which 3He-A becomes energetically preferable to
3He-B at temperature T and pressure P. The initial state
in rotation is engineered to have the equilibrium number
of quantized vortices in the A phase, providing its solid-
body-like rotation, whereas the superfluid component in the
B phase is vortex free and thus nonrotating (stationary in
the laboratory frame). This metastable nondissipative state
persists to relatively high rotation until at a critical rotation
velocity �c an interfacial mode is excited and a number
of vortices from the A phase manage to cross into the B
phase. The sudden appearance of new B-phase vortices is
the experimental signal for the instability. The dependence
of �c on rotation, temperature, pressure, and magnetic-field
gradient at the AB interface is measured in these experiments.

The metastable starting situation is reached by increasing
rotation slowly at constant temperature from rest to some
angular velocity � which is below �c. The A-phase section
of the long sample cylinder has by then become filled with
rectilinear doubly quantized vortices [6]. These vortices have
an extended “soft” core (of radius ∼10 μm) with a continuous
order parameter distribution in a skyrmion texture and, corre-
spondingly, a low critical rotation velocity for their formation.
At the AB interface, their double-quantum cores dissociate,
bend parallel to the interface, and extend radially out to the
cylinder wall forming thereby a vortex sheet which covers the
interface [7]. In contrast, B-phase vortices have an order of
magnitude higher critical velocity and are not formed below
�c of the KH instability. The reason [8] is the narrow “hard”
core of the B-phase vortex with a radius comparable to the su-
perfluid coherence length ξ0 ≈ h̄vF/(kBTc) � 10 nm (where
vF is the Fermi velocity and Tc is the superfluid transition
temperature). Thus, the B-phase section on the left in Fig. 1
remains vortex free. This metastable starting configuration
persists because energetically a sizable local concentration of
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FIG. 1. KH instability in superfluid 3He. The two bulk phases of
superfluid 3He can coexist in a cylinder rotating at constant angular
velocity � in an inhomogeneous axially oriented “barrier” magnetic-
field Hb(z)ẑ. The interface is at the location z0, where Hb(z0) =
HAB(T, P): In the high-field region Hb � HAB, the A phase is stable
(top section), whereas at lower-fields Hb � HAB, the B phase is stable
(bottom section). (Left) When � is increased at constant temperature
from zero to some value less than �c(T, P), the A-phase section is
filled with rectilinear double-quantum vortices at the equilibrium
density �/κ . At the AB interface, these curve to form a vortex
sheet covering the interface, leaving the B-phase section vortex free.
(Right) When � is increased past �c, the KH instability mediates the
transfer of a bundle of small vortex loops through the AB interface
into the B phase. In the temperature regime of laminar flow above
0.6Tc, these grow to rectilinear single-quantum vortices which extend
across the AB interface and form a cluster at the equilibrium density
2�/κ in the center of the cylinder (as shown here). In the turbulent
regime below 0.6Tc, the loops interact in a turbulent burst, filling the
B-phase section ultimately with the equilibrium number of rectilinear
vortices.

kinetic energy would be required to constrict the two orders
of magnitude fatter core of the A-phase vortex to a narrow
B-phase core.

When the rotation drive � is next increased by a small
increment �� to �c (where �� � �) or slightly above, the
phase boundary loses stability, and a surface wave is triggered.
It unleashes the escape of a variable number of small vortex
loops, each carrying a single quantum of superfluid circulation
κ = h/(2m3). These loops protrude from the A-phase vortex
sheet into the B phase and lie initially closely packed, covering
one surface depression of the interfacial wave [8]. At high
temperatures T > 0.6Tc, the large mutual friction damping in
vortex motion limits interactions among the loops and their
number remains constant while they grow to rectilinear vortex
lines. In the final state, they are arranged as a central cluster
of rectilinear singly quantized B-phase vortices as seen on
the right in Fig. 1 with a topological “boojum” point defect
at the AB interface where they connect to dissociated halves
of the A-phase vortex [9].

Towards lower temperatures, the mutual friction damping
α(T, P) decreases [10] ultimately exponentially in the B
phase. Below 0.6Tc, α � 1, and the B phase enters the turbu-
lent regime. Here, the number of vortex loops escaping within
the interfacial surface depression is not conserved, when the
loops evolve to rectilinear B-phase vortex lines. Instead the
closely packed loops interact and proliferate via reconnections

to a turbulent burst [11]. In the rotating counterflow, the
turbulent burst ultimately evolves [12] to the equilibrium
vortex state where the number of vortex lines Neq ≈ πR2nv.
Here, R is the radius of the cylinder, and nv = 2�/κ is the
areal density of rectilinear lines in the B-phase vortex array in
solid-body rotation.

Experimentally, it is the number of vortex lines which is
monitored continuously noninvasively with NMR spectrome-
ters. Their detector coils are located outside the rotating sam-
ple cylinder above and below the AB interface, displaced far
enough from the interface so that they reside in homogeneous
axially oriented polarizing magnetic fields.

In helium liquids, the superfluid KH instability was in-
voked as an explanation for the threshold to capillary wave
formation on the free surface of superfluid 4He [13]. A com-
parison to measurements was later performed in Ref. [14]. The
KH instability has also been proposed as a tool to explore
the interface of the superfluid dilute 3He-4He liquid mixture
with its normal concentrated phase [15]. A flurry of theoret-
ical investigations have appeared which recommend the KH
instability as a means to study mixtures of different cold-atom
Bose-Einstein condensates (see, e.g., Refs. [16–19]). Another
intriguing suggestion is to use the KH instability for modeling
a hydrodynamic analog of the event horizon of a gravitational
black hole [20,21].

In neutron star physics, the superfluid KH instability has
emerged as a possible mechanism by which equilibrium can
be reached in one “glitch” between the angular momentum
reservoirs of the superfluid and the normal fractions of a
spinning neutron star [22]. The sudden discontinuous glitch-
like “spin-up event” in the neutron star’s rotation velocity
has been compared to the angular velocity jump which one
expects in a KH instability event when the outward directed
motion of quantized vortices across an interface between
two different neutron condensates is calculated. Estimates of
the superfluid fraction and its degeneracy temperature in the
interior of a neutron star indicate that superfluidity extends
across the boundary of the inner crust and the central core
[23]. Unfortunately, the phase diagram of neutron superfluids
in a strong density gradient much above nuclear densities
is largely unknown. The spherical geometry of the neutron
star’s interior complicates the KH response from that of the
simple example in Fig. 1. This is illustrated by superfluid 3He
measurements where the AB interface is a near concentric
cylindrical surface within the rotating cylinder [24].

Here, we start with a brief overview of the superfluid
KH model at the AB-phase boundary, recalling its analytical
definition in Sec. III and experimental aspects in Sec. IV.
For further details, we refer to Ref. [8]. Measurements on
the critical rotation velocity �c are summarized in Sec. V.
In Sec. VI, the implications from the analysis are discussed.
The results display good agreement with the theory for the
KH instability and provide a powerful illustration of the 3He
superfluids as quantum model systems.

III. KH THEORY

The classic example of the KH instability takes place at
the horizontal interface of two inmiscible and inviscid fluid
layers with densities ρ1 and ρ2. Assigning v1 and v2 as
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the corresponding flow velocities parallel to the interface,
the instability develops when the relative velocity |v1 − v2|
satisfies Lord Kelvin’s condition [2],

ρ1ρ2

ρ1 + ρ2
(v1 − v2)2 = 2

√
σF , (1)

where the interface is characterized by its surface tension σ

and its restoring force F which often is the gravitational force
F = g(ρ2 − ρ1). The interface becomes unstable when the
free energy of the perturbed interface drops below that of the
flat surface and an interfacial capillary wave is formed with
the wave vector,

k0 =
√

F/σ . (2)

A. Instability at low magnetic field

At an interface separating two superfluids, the situation is
different since the normal component also becomes important.
It has two roles: (1) as a source of dissipation in interface
motion and (2) in establishing a link between the superfluid
flow and the external reference frame. The dissipation arises
from quasiparticle scattering from the sharp order parameter
anomaly at the interface [25] and from orbital viscosity when
the interface is set into motion [26]. The external reference
frame is represented by the velocity vn = |� × r| of the
normal component which enters as a third velocity in the
instability condition [5]. It couples the superfluid fractions
to the reference frame of the cylinder rotating at constant
angular velocity � so that solid-body corotation with the
container walls is preferred. In the Galilean invariant form,
the instability condition becomes

1
2ρs1(vs1 − vn)2 + 1

2ρs2(vs2 − vn)2 =
√

σF . (3)

We see here that the superfluid instability becomes possible
also when the relative superfluid velocity vanishes vs1 = vs2

and the two streams parallel to the interface flow at the same
velocity. The shape of the AB interface is maintained by
the interfacial surface tension σ and the restoring force F
arising from the inhomogeneous magnetic stabilizing field:
F = 1

2 (χA − χB)∇H2 ≈ (χn − χB)Hz(dHz/dz), where χn ≈
χA and χB are the normal phase, the A-phase, and the B-phase
susceptibilities. The deformation of the interface starts with
the wave-vector k0 given by Eq. (2).

A simplification can be introduced in Eq. (3) since the crit-
ical velocity of spontaneous vortex formation in the A phase
is low on the order of 0.1 rad/s [27], whereas in the B phase,
it is much higher �2 rad/s, depending on the smoothness of
the cylinder wall [28]. We approximate the A phase as being
in the equilibrium rotating state vsA ≈ � × r = vn (in the
laboratory coordinate system) so that only the flow velocity in
the vortex-free B phase counts: vsB = −� × r (in the rotating
coordinate system). Equation (3) is thereby reduced to

�2
c = 2

√
σF

ρsBR2
. (4)

Here, ρsB is the density of the superfluid component in the B
phase at the interface. Note that compared to the correspond-
ing value from Eq. (1) for the ideal inviscid fluid, �2

c in Eq. (4)
is smaller by a factor of 2.

For analyzing measurements, the instability criterion can
be divided in predominantly experimental and theoretical
parts wexp and wtheo,

wexp = (�cReff )4

2|∇H2|H=HAB

= σ �χ

ρ2
sB

= wtheo. (5)

Here, Reff = vc
sB/�c is used for the radial location of the

instability site at the interface. In Ref. [7], it was experi-
mentally determined to be displaced from the cylinder wall
at Reff ≈ 0.87R. The left side of Eq. (5) contains quantities
which we determine experimentally, whereas on the right, the
three quantities σ, �χ = χA − χB, and ρsB we obtain from
the literature or calculate from their theoretical expressions.

From Eqs. (2) and (4) the wavelength λ of the overdamped
interfacial excitation mode created at the instability is seen to
be

λ = 4π
σ

ρsB
(�cReff )−2 . (6)

This quantity obtains experimental significance in the mea-
surement of Fig. 1. The instability is signaled by the transfer
of vortices across the interface when vortex loops escape from
an interfacial surface wave depression which protrudes on the
B-phase side [8]. Initially, the escaping vortices are part of the
interfacial vortex sheet and coat the surface wave depression,
i.e., the number �N of such vortex loops is that which fits in
one-half of the wavelength λ of the surface excitation mode.
The instability is a complex nonequilibrium event, but the
escaping circulation �N is well defined with a measurable
statistical distribution function [29].

This can be confirmed at temperatures above the tran-
sition to turbulence T > 0.6Tc where the number of loops
expanding in the B-phase section to rectilinear vortex lines
is conserved and, thus, can be counted in the final state after
the instability. The number of circulation quanta, which, in the
interfacial vortex sheet, flare out to the cylinder wall, is Neq ≈
πR2(2�c/κ ). Per unit length measured along the perimeter,
one then has ∼R�c/κ quanta flaring radially outward so that
one-half of the wavelength of the surface wave fits �N ≈
1
2λReff�c/κ quanta. Taking typical numbers, we arrive at an
estimate of λ ∼ 0.4 mm [30].

Measurements on the instability condition (4) are con-
ducted at the critical-field HAB(T, P). They are preferably
performed at constant pressure by either scanning temperature
or the magnetic-field gradient at constant temperature (i.e.,
by changing Ib, see Fig. 2). At constant pressure P, HAB

increases with decreasing temperature, approaching values as
large as �0.6 T at the lowest temperatures [the unit tesla (T)
is used for the magnetic field]. With typical values for the
superfluid 3He properties at low fields, reasonable agreement
can be reached with Eq. (4) at high temperatures above
about T/Tc > 0.7–0.8, corresponding to HAB � 0.1 T [4]. At
lower temperatures, the magnetic polarizability of the B phase
reduces the stability of the AB interface, and the measured �c

falls increasingly below that calculated with low-field values
(see the illustration, e.g., in Fig. 14 of Ref. [8]). At ∼ 0.4Tc,
the difference is on the order of ∼0.1�c.
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FIG. 2. Measurement of KH instability. The liquid 3He sample is
contained in a long quartz glass cylinder with smooth walls. The sec-
tion in the middle is magnetically maintained in the A phase, whereas
NMR detectors with single-vortex measuring resolution are located
at both ends of the cylinder. The axially oriented magnetic fields are
generated with superconducting solenoids [45] which are thermally
connected to the mixing chamber of the dilution refrigerator, used for
precooling the copper nuclear cooling stage. A division plate with a
small aperture separates the experimental volume from the thermal
connection to the nuclear cooling stage, a sintered heat exchanger
with rough surfaces. Two examples of AB interfaces are shown at
29-bars pressure and 0.55Tc: The inner concave phase boundaries
are stabilized with a current of Ib = 4 A in the barrier solenoid and
the outer flatter boundaries with Ib = 8 A.

B. Magnetic-field dependence

Towards low temperatures, HAB(T, P) increases and intro-
duces changes in the B-phase properties. To gain qualitative
understanding, consider the Ginzburg-Landau (GL) expansion
of the magnetic-field-induced gap deformation which in first
order is parabolic (�‖/�B0)2 ≈ 1 − 2a1H2(1 − T/Tc) and
(�⊥/�B0)2 ≈ 1 + 1

4 a1H2(1 − T/Tc). Here, the anisotropic
gap widths �‖ parallel and �⊥ perpendicular refer to the gap
axis which lies along the unit vector �̂ = Ĥ · R̄, where the
unit vector Ĥ = H/H points in the direction of the applied
field H and R̄(n̂, θ ) is a rotation matrix which rotates around
the axis n̂ by the angle θ = arccos (− 1

4�‖/�⊥). In the GL
expansion of the gap, the parabolic correction scales with
pressure as a1 ∝ T 2

c [31]. The corresponding suppression of
the axial component of the superfluid density is ρs‖/ρB0 =
1 − a2H2/(1 − T/Tc) + · · · , where a2 ∝ a1.

Little quantitative experimental information exists on the
field dependences of the relevant B-phase properties at tem-

peratures below the GL regime, but the changes can be esti-
mated with numerical weak-coupling calculations [32,33]. At
zero pressure in the zero-temperature limit, such calculations
give a gap distortion [33] which agrees well with vibrating
wire measurements on the onset of pair breaking as a function
of the applied magnetic field as reported by Fisher et al.
[34]. In comparison to the magnetic polarization effects, the
depairing and gap suppression expected from superfluid flow
is small in the range of the present KH measurements.

In addition, magnetic fields affect B-phase textural orienta-
tions and require a reconsideration of the boundary conditions
at the AB interface. Generally, in the B phase, the order
parameter texture has less of an influence on the hydrody-
namic stability than in the A phase where the texture at the
wall of the rotating cylinder determines, e.g., the critical flow
velocity of vortex formation [27]. Nevertheless, orientational
considerations lead to corrections which can be built into
Eq. (4) in terms of a renormalized superfluid density ρs,eff

[35].
At the interface, one requires: (1) continuity of mass flow

∇ · (ρ↔sB · vsB) = 0 and (2) stability of the phase boundary
such that no mass flow takes place through the interface in the
direction of its unit normal ŝ, i.e., ŝ · (ρ↔sB · vsB) = 0. Writing
the B-phase mass density tensor in the form ρ

↔
sB = ρ

↔
s =

ρxx̂x̂ + ρyŷŷ + ρzẑẑ and choosing the Cartesian coordinate x̂
to lie along the flow and along the interface whereas ẑ is the
direction perpendicular to the interface, then Eq. (4) can be
amended in the form

�2
c = 2

√
σF

ρs,eff R2
, (7)

where the superfluid density ρsB has been replaced by an
effective quantity [35],

ρs,eff = ρx

√
ρx/ρz. (8)

The magnetic-field-distorted B-phase superfluid density is
of the symmetric uniaxial form

ρi j = ρ‖̂î j + ρ⊥(δi j − ̂î j ), (9)

when expressed with respect to the anisotropy axis of the gap.
A number of interactions act to orient the anisotropy axis

�̂, giving rise to an order parameter texture �̂(r), which is
of the axially symmetric “flare-out” configuration in a long
cylinder with the bulk B phase. At moderate magnetic fields
in the regime of typical NMR measurements [36], the flare-
out textures have been examined in numerous studies, and
the magnitude of the various textural interactions is well
documented [37]. This applies to the B-phase textures within
the two NMR detector coils in Fig. 2 where the field is on
the order of H ∼ 30 mT, i.e., well above the field HD � 1 mT
corresponding to the dipolar spin-orbit interaction but well
below the critical-field HAB needed for stabilizing the AB
interface. The flare-out texture is formed by the coupling to
the magnetic field, to rotation, and by the boundary condition
at the cylinder wall. Owing to the presence of a gradient
energy, in spatially inhomogeneous conditions, these interac-
tions have a characteristic range or “healing length.” These
lengths have been measured in low-field NMR conditions,
but at high fields on the order of HAB, texture studies require
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extremely high homogeneity of the magnetic field and become
experimentally demanding. It is not accurately known what is
the relative range of the interactions determining the config-
uration of �̂(r) in the vicinity of the AB interface and what
alignment, therefore, should be assigned to ρs,eff in Eq. (8).

Close to the interface, one finds regions in the B-phase
texture where the orientation can be along any of the Cartesian
axes x, y, and z. As the dominant orienting interaction is the
magnetic field, the gap axis is predominantly aligned parallel
to the field �̂ = Ĥ = ẑ, and the effective B-phase superfluid
density in Eq. (8) becomes

ρ�̂‖ẑ = ρ⊥
√

ρ⊥/ρ‖. (10)

Since the isotropic zero magnetic-field superfluid density
ρs0 ≈ ρ⊥ > ρ‖, the effective superfluid density is magnified:
ρ�̂‖ẑ > ρs0. In the high fields close to the interface, the

alignment �̂ ‖ ẑ is expected to prevail and to occupy most
of the flare-out texture. Right at the interface, on the other
hand, the boundary condition on �̂ requires parallel alignment
with the AB interface [7]. To minimize the flow energy, �̂ will
then also align itself along the flow �̂ = x̂, and

ρ�̂‖x̂ = ρ‖
√

ρ‖/ρ⊥. (11)

In this part of the texture, the effective superfluid density is
reduced: ρ�̂‖x̂ < ρs0. Alignment along the third Cartesian axis

�̂ = ŷ = r̂ is realized in a boundary layer at the cylinder wall,
enforced by a boundary condition which orients �̂ perpendic-
ular to the wall so that

ρ�̂‖r̂ = ρ⊥. (12)

In this case, the effective superfluid density remains practi-
cally unchanged from its low-field value since ρ⊥ � ρs0.

Hence, the B-phase order parameter texture may influence
the hydrodynamic stability of the AB interface. The magnetic
healing length ξH (T, H ), the length scale on which �̂ bends
from �̂ = Ĥ = ẑ in the bulk to �̂ = x̂ at the interface, is ob-
tained by comparing the magnetic orientation energy density
on the order of [(�‖ − �⊥)�⊥/H2](n̂ · H )2 to the gradient
energy density, which resists distortions from uniform �̂ ori-
entation.

At the low fields of conventional NMR measurements, ξH

is found to be ∝1/H and in magnitude a sizable fraction of
the sample cylinder radius R [38]. At higher fields, accurate
information on ξH is lacking. Recent measurements on the
dissipation recorded while the AB interface is oscillated with
an ac magnetic field were explained assuming the heating
to arise from orbital viscosity of the oscillating �̂ orientation
[39]. Good agreement with measured heating levels at differ-
ent frequencies was obtained assuming a short healing length
of ξH ∼ 0.1 mm and a uniform bulk texture with �̂ = Ĥ = ẑ
in HAB = 0.34 T magnetic field at zero pressure and 0.16Tc.
This suggests that, on moving away from the AB interface into
the bulk B phase, the �̂ orientation recovers rapidly within a
short distance �R from being parallel to the interface to being
oriented along the field. Owing to this parallel alignment �̂ =
x̂ at the interface, it is χ⊥ ≈ χB0 which enters in the magnetic
restoring force F .

Actually, the development of the instability is a complex
nonlinear phenomenon [40] which involves a range of length

scales: R � R − Reff ∼ λ > ξH . For instance, when the am-
plitudes of the perturbations sampling the interface stability
become comparable to λ, they have already exceeded ξH ,
and the effective density increases to that in Eq. (10). This
reduces the critical velocity �c. Experimentally, the site of the
instability becomes the spot in the texture where the required
rotation velocity is the lowest.

To explain the reduced interface stability at large fields,
we note that, at intermediate temperatures, the enhancement
ρs,eff/ρs0 amounts to several percent and increases towards
low pressures, but at the lowest temperatures �0.2Tc, it
vanishes exponentially. It, therefore, becomes evident that
the changes in ρsB and χB must be smaller compared to the
reduction in the surface tension σ .

The interface tension is experimentally accessible only at
the critical-field HAB(T, P). Being a sharp interface in the
order parameter distribution with a width on the order of the
superfluid coherence length ξ (T, P) = ξ0/

√
(1 − T/Tc), the

surface tension is on the order of ∼ξ fc. Here, fc is the conden-
sation energy which in the GL regime can be expanded in the
form ∝ (1 − T/Tc)2[1 − a3H2/(1 − T/Tc)] [41]. Thus, the
surface tension is often expressed as σAB(T, P) ≈ σ0(P)(1 −
T/Tc)3/2 at pressures above the polycritical point where the
A phase is stable in the zero field. This was demonstrated
by Osheroff and Cross in their classic surface tension mea-
surement at melting pressure [42]. At high fields, the surface
tension σAB(T, H, P) has only been measured by Bartkowiak
et al. at zero pressure and 0.15Tc [43]. Its calculation is a more
complex task since one has to find the minimum-energy order
parameter trajectory from the A- phase to the field-distorted
B-phase energy minimum [44]. Overall, in the increasing
magnetic field, the energy barrier is reduced, and the surface
tension decreases.

IV. EXPERIMENTAL METHOD

A. Measuring setup

Our KH measurements have been performed in the experi-
mental setup of Fig. 2. This is a versatile platform for different
types of studies if the placement of apertures and sensors is
varied according to different needs. The heart of the setup
is a fuzed quartz glass cylinder of 11-cm length and 0.6-cm
inner diameter, which is used as sample container. A small
superconducting solenoid around the middle section of the
long tube carries a current Ib and generates the magnetic field
for stabilizing a layer of the A phase which acts as a barrier
between B-phase sections at each end of the tube. We call
this the BAB stacking configuration of phases, in contrast to
the metastable AB configuration where the entire top section
above the lower AB interface is filled with the A phase. Thus,
depending on the magnetic field, temperature, pressure, and
prehistory, these two different configurations of the A and B
phases can be realized in the cylinder.

Figure 3 shows the axial distribution of the barrier field.
The magnetic field is rapidly changing both within and outside
the A-phase barrier layer, whereas further away, at both ends
of the sample tube, end-compensated solenoids create homo-
geneous polarizing fields for monitoring the superfluid order
parameter field with low-field NMR spectrometers. Low-field
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FIG. 3. Axial distribution of the barrier magnetic field at Ib =
4 A (on the left). On the right, the A-phase layer in the BAB
configuration is shown at 29-bars pressure, 1.62 mK = 0.67 Tc, and
HAB = 0.276 mT. The calculated shape of the concave AB interface
meniscus [46] is mainly determined by the magnetic energy (owing
to �χ = 5.25 × 10−8 cgs) in the solenoidal field which increases
radially, but also to a smaller extent by the surface tension σAB =
9.3 μerg/cm2, by vortex-free rotation at 1 rad/s in the B-phase
sections and an equilibrium vortex state in the A layer (with the
vortex formation starting at �cA = 0.15 rad/s). The contact angle at
the cylinder wall is fixed at θAB = 68◦.

NMR is the realm where experiment and theory of order
parameter textures is well established [36]. Here the relative
amplitudes of the measured continuous-wave NMR signal
provide information about the number of vortices and the
frequency shifts of the satellite peaks can be calibrated to
provide a temperature reading.

In rotation, the section with the A phase is filled with
approximately the equilibrium number of vortices in the form
of lines or sheets with continuous order parameter distri-
butions and low critical velocity (�cA ≈ 0.1 rad/s) of the
vortex formation. In contrast, in the B-phase sections, an
important aspect is the surface quality of the inner cylinder
wall as the critical velocity of singular-core vortex formation
depends crucially on the smoothness of the wall. With careful
cleaning and etching, combined with visual screening in a
microscope, isolated surface defects can be eliminated which
makes critical velocities �cB � 2 rad/s possible. In addition,
careful cool-down procedures are required to avoid frozen
water or gas accumulations on the walls. Moreover, to isolate
from contact with the rough sintered heat exchanger surface
below the sample tube, the cylinder is terminated with an
orifice on the cylinder axis, which here has a diameter of
0.75 mm. The upper limit of the vortex-free rotation, which
corresponds to an apparent effective velocity of the vortex
formation, was measured at 33.7-bars pressure in the absence
of the A-phase barrier layer (i.e.,when Ib = 0). It proved to
have a temperature-independent value of (2.2 ± 0.25) rad/s

in the range of (0.55–0.75) Tc. Thus a KH instability where �c

exceeds this value, would not be accessible with this sample
cylinder.

The obvious drawback from the orifice is the large thermal
resistance which it presents to axial heat flow. Heat leaks on
the order of 10–100 pW flowing from the sample cylinder
through the orifice to the much colder heat exchanger volume
(maintained at roughly 0.14Tc) limit the lowest achievable
temperature to ∼0.20Tc in the experimental volume above the
orifice.

B. Measuring procedures

We use continuous-wave excitation for recording the NMR
spectrum by sweeping the polarization field. In a KH instabil-
ity event, the B-phase line shape changes discontinuously as
some NMR absorption is shifted to the Larmor edge, whereas
the total integrated NMR absorption remains constant. As
seen in Fig. 4, the resulting signal from a single instabil-
ity event is quite prominent. Here, the NMR absorption is
recorded continuously close to the Larmor edge where the
absorption increases discontinuously when � is increased at
a slow rate past the consecutive KH instabilities. The first
discontinuity defines the critical velocity �c, whereas the
succession of the following new instability events defines the
critical line,

vc = �cReff =
(

� − κN (�)

2πR2
eff

)
Reff , (13)

where the KH critical flow velocity vc is a constant and
N (�) is the number of vortices which have broken through
the AB interface by the time rotation has been increased to
the value of � � �c. The dashed line has been fitted to the
critical end points of the staircase pattern and provides the

slope �N/�� = 2πR2
eff/κ which yields Reff =

√
κ

2π
�N
��

≈
2.5 mm. It should be compared to the cylinder radius R =
3 mm.

As seen in Fig. 4, the number of circulation quanta �N can
be even or odd. Thus, despite the fact that the A phase is filled
with doubly quantized vortex lines, the circulation covers the
AB interface on the A-phase side as a vortex sheet which is
made up of single-quantum structures [7]. On average, one
finds that �N ≈ 8 [7]. In the BAB stacking configuration,
the instabilities of the two AB interfaces occur independently
and randomly but follow the same critical line. The scatter of
the critical points in Fig. 4 is related to the stability of the
measuring conditions, i.e., temperature and pressure, whereas
inherent fluctuations do not appear to be influential. Thus, the
precision in Fig. 4 can be improved by recording the full NMR
spectra at constant rotation just before and after triggering an
instability event with an incremental rotation increase by ��

which makes it possible to correct for drifts afterwards.
The response time of the measurement is limited by the

velocity with which the information about an instability event
travels to the NMR spectrometers, i.e., by the expansion of
the newly formed B-phase vortices from the AB interface
to the NMR region. A single-vortex line expands in vortex-
free rotation such that it extends from the AB interface as a
rectilinear line along the cylinder axis to its curved end which
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FIG. 4. NMR signal from KH measurements. Three series of
measurements are shown as a response to a slow increase of rotation
at a rate of 2 × 10−4 rad/s2. This is slow enough to maintain near-
equilibrium conditions. The NMR output plotted on the vertical
axis monitors the absorption level at the Larmor edge of the NMR
spectrum. In the vortex-free rotation at � < �c, the NMR absorption
is shifted in a counterflow peak, far from the Larmor edge. When
�N vortices are created in a KH event, part of the absorption is
shifted to the Larmor edge. At small vortex numbers N � Neq, the
changes in absorption from the counterflow peak to the Larmor
edge are approximately ∝�N as illustrated by the grid where the
spacing corresponds to one vortex. The numbers next to each KH
discontinuity give �N .

connects to the cylinder wall. The curved end precesses in
spiral motion, moving away from the AB interface towards
increasing counterflow. The velocity of the spiral motion is
largely determined by that section of the vortex end which is
perpendicular to the cylinder wall [47]. Its velocity has the
axial and azimuthal components,

vvvL = −α�Rẑ − (1 − α′)�Rφ̂, (14)

where α(T ) and α′(T ) are the dissipative and reactive mutual
friction coefficients. Thus, the axial expansion time is �t ≈
d/(α�R) for bridging the distance d from the AB interface to
the NMR coil. This estimate is a good approximation, even in
the case when many vortices are expanding simultaneously. At
high temperatures, for instance, at 0.85Tc at 29-bars pressure
where the AB interface is in thermodynamic equilibrium, the

FIG. 5. Response time of the KH measurement. For each data
point, rotation is increased from zero at constant rate �̇, plotting
the square of the apparent KH critical velocity �∗

c as a function
of the rate �̇, when T = 0.71Tc, P = 33.7 bars, and Ib = 4 A are
maintained constant. The vertical intercept gives the true critical
velocity �c and the slope gives the dissipative vortex mutual friction
coefficient α. The lowest data point (filled circle) was recorded, when
the A-phase vortex structure was the vortex sheet [48]. In all other
cases, the A-phase vortex structure was the doubly quantized vortex
line [6]. The response is independent of the A-phase vortex texture.

delay �t is a few seconds, but below 0.2Tc, in the regime of
ballistic quasiparticle motion where α(T ) tends exponentially
towards zero and the vortex response is turbulent, �t is more
than an hour [10].

In a measurement where rotation is increased at a constant
rate of d�/dt = �̇, the apparent measured critical velocity
�∗

c is shifted higher by the equivalent of the delay,

[�∗
c ]2 = �2

c + 2d

αR
�̇. (15)

In Fig. 5, an example of laminar vortex motions is shown
where [�∗

c ]2 is plotted at different accelerations �̇, starting
from a minimum rate of 10−4 rad/s2. The intercept at �̇ = 0
gives the true critical value of �c = 1.34 rad/s, whereas from
the slope 2d/(αR), one obtains the mutual friction damping
of vortex motion α = 1.1 at 1.76 mK, which is in good agree-
ment with other measurements. This “flight-time” corrected
method of identifying �c works well for accelerations up to
�̇ ∼ 0.01 rad/s2.

The spiraling vortex motions in the long rotating cylinder
after a KH event become most interesting in the turbulent
regime below 0.6Tc (see, e.g., Ref. [49]). Here, the KH
instability is followed by a sudden turbulent burst where the
vortex loops transferred across the AB interface interact in
the B phase by reconnecting [12]. The burst takes place in
the vicinity of the AB interface within a space comparable
in size to the cylinder radius R. It increases the number of
spiraling vortices and removes thereby much of the rotating
counterflow in this section of the cylinder. The expansion
into the vortex-free flow then continues as a spiraling turbu-
lent vortex front with an axial length ∼R [50,51]. It leaves
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behind a twisted vortex bundle [52], a state which later slowly
unwinds.

In principle, �c can be located by sweeping one of the
variables �, T, P, or Ib. In practice, three different tech-
niques have been used. (1) The measurement in Fig. 4 is
the most straightforward for locating �c. Most of the data
in this paper were measured this way. Here, � is increased
from zero until the first vortices are detected in the B phase
using constant slow acceleration. (2) Since �c(T, P, Ib) is
highly predictable and often already approximately known, a
faster more accurate technique is a rapid increase across �c

by an increment which can be as small as �� ∼ 0.02 rad/s
(consult Fig. 4), followed by a longer waiting time at constant
� (exceeding the duration of vortex expansion) to make sure
that no further vortices follow. This waiting time can be used
for monitoring the NMR line shape to correct for drifts. (3)
Since the heat leak to the sample depends on � [50], drifts
can be reduced by scanning instead of � the barrier current
Ib, i.e., by sweeping the current slowly downward until the AB
interface becomes unstable in the reduced field gradient.

V. KH MEASUREMENTS

A. General characterization

Figure 6 illustrates measurements of the KH critical ve-
locity �c(T, Ib) by plotting wexp(T ) [from Eq. (5)] as a
function of temperature at a fixed pressure of 29 bars. This
plot provides a convenient way of inspecting most of the
results. The slowly declining trace of data points represents

FIG. 6. KH measurements at 29.0-bars pressure. The experimen-
tal part wexp from Eq. (5) is plotted as a function of temperature T/Tc.
The majority of the data come from measurements of �c as a func-
tion of temperature at fixed barrier-magnet current Ib. The vertical
sets of data points represent measurements at constant temperature
as a function of Ib. These data illustrate the total range of the KH
phenomenon available with the present experimental setup at differ-
ent temperatures. The dashed and solid curves correspond to wtheo

calculated without and with the fitted magnetic-field dependence of
the surface tension, respectively. The comprehensive agreement of
the data with the KH model (solid curve) can be conveniently judged
with this plot.

FIG. 7. KH critical rotation velocity �c(T ) at 29 bars. Here,
the first KH instability event is plotted, obtained while rotation is
slowly increased from zero at constants T, P, and Ib. Temperature is
changed incrementally from one constant value to the next. The dif-
ferent sets of data represent measurements at different fixed currents
Ib. The Ib curves of (2−4) A terminate at low temperatures where the
AB interface is not maintained at these currents. The solid curves
represent fitting [to Eq. (16)] with the magnetic-field-dependent
surface tension.

measurements at different but constant Ib. In contrast, data
measured at constant temperature and variable Ib fall in this
plot on vertical lines which have been included to visualize
the entire measurable range of the KH instability.

In Fig. 7, a more generic plot is shown with �c versus
T . In this plot, the data fall on curves with a character-
istic “umbrella” shape, which start at high pressures (P >

21.2 bar) from TAB or at lower pressures from Tc. Towards
low temperatures at large Ib, the curve flattens out towards
a constant, whereas at smaller Ib, the AB interface might not
be maintained at low temperatures, and the curve plummets
down to a termination point.

The umbrella shape is dictated by the field distribution of
the cylindrical barrier solenoid: (1) With decreasing temper-
ature, the critical-field HAB increases approximately paraboli-
cally, and the AB interface moves towards higher fields inside
the solenoid where it follows the field contour H (r, z) =
HAB(T, P). In other words, the location zAB of the AB interface
moves with decreasing temperature closer to the magnet cen-
ter, and the field gradient increases. Measurements at Ib = 8 A
represent this behavior where the data ultimately at the lowest
temperatures tend towards a constant value. (2) At lower
Ib, the AB interface reaches the inflection point in the field
distribution at some temperature. Below this temperature,
the gradient |∇H |H=HAB starts decreasing until at some low-
temperature limit the A phase disappears. This behavior is
exemplified by the data measured at (2–4) A in Fig. 7.

In the wexp(T ) plot in Fig. 6, all data collapse on one
common curve which at high pressures is monotonically de-
creasing with decreasing temperature. At low pressures where
the zero-field TAB moves to Tc, the curve displays an initial
steep rise just below Tc where the rapid increase in �c(T )
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first dominates before settling down on a slowly descending
dependence with decreasing temperature.

The vertical columns of data points in Fig. 6 represent mea-
surements at constant temperature (and thus fixed HAB), when
the current Ib is varied. They display the range of variation
in wexp obtainable with the present barrier solenoid where
the maximum operating current in the CuNi-clad filamentary
NbTi superconducting wire is limited to 8 A. This limits
the maximum of the vertical column, which corresponds to
the situation when zAB is furthest away from the magnet
center [well beyond the inflection point of the field distri-
bution Hz(z)]. At lower Ib, zAB resides closer to the magnet
center. The bottom end of the column corresponds to the
lowest current Ib at which the magnetic restoring force ∝
HAB(T )|∇H |z=zAB still maintains an interface and zAB is closest
to the magnet center. Owing to the fixed upper limit Ib � 8 A
and the termination at low Ib, which moves to higher Ib values
when the temperature is reduced, the height of the vertical data
columns decreases towards low temperatures.

Hence, both types of measurement series terminate in a col-
lapse of the interface if the magnetic restoring force becomes
too weak. Careful measurements around such termination
points display more complex behavior than described above
[46]. When the termination is approached from above, the
thickness of the A-phase layer in Fig. 2 decreases until a
hole is punched into the final thin A-phase membrane. In this
final state, the A-phase volume collapses to a narrow annulus
coating the cylinder wall where the interface is still sustained
by a slightly larger restoring force. Owing to this change in
the topology of the AB interface and the associated barriers
in nucleating the first-order AB-phase transition, �c(T, Ib)
displays in the vicinity of a termination point both thermal
and magnetic hystereses. Thus, around a termination point
the measured �c appears to show more scatter and lie below
the regular dependence (see, e.g., the Ib = 4-A data at low
temperatures in Fig. 6).

The high-pressure data in Figs. 7 and 8 were collected in
the AB configuration of phase stacking (see Fig. 2) where
the instability of only one AB interface can be recorded.
The measurements at 10.2 bars (Fig. 9) and at zero pressure
(Fig. 10) were performed in the BAB stacking configuration
where the independently occurring instabilities at the two
AB interfaces were separately monitored. When comparing a
measured data point of �c to its calculated estimate [obtained
from Eq. (16)], the input data are T, Ib, and P. Since the
experimental setup is not exactly identical with respect to the
two AB interfaces (see Fig. 3), �c is calculated separately for
the upper and lower phase boundaries. In Fig. 9, both data sets
have been plotted as solid-line curves. The agreement of the
two curves at each value of Ib is good which serves to show
that the magnetic-field configuration is in good control.

Below, we analyze the two types of measurements, ex-
amining first measurements at constant Ib and comparing the
result then to measurements at constant T .

B. KH instability at constant magnet current

Here, we describe how the solid-line curves in Figs. 6–10
have been generated, i.e., our fitting procedure for comparing
the measured data to the instability criterion (4).

FIG. 8. Critical rotation velocity of KH instability at 32.0 and
33.7 bars. The same conventions are used as in Fig. 7. The 32.0-bars
measurements were conducted after the solid 3He plug in the fill line
of the sample container had accidentally slipped. The slip reduced the
pressure to an unknown value. The assignment (32.0 ± 0.25) bars
was determined from the measured temperature of the B → A tran-
sition at zero field: TAB/Tc � 0.81.

At constant pressure, the measured �c(T, P, Ib) is
compared to its calculated estimate from

�c(T ) = 1

Reff

[
4HAB|∇H |H=HAB

σ �χ

ρ2
s,eff

]1/4

. (16)

As noted in Sec. III B, reasonable agreement can be reached
at high temperatures, but towards low temperatures, the

FIG. 9. KH rotation velocity at 10.2 bars, measured in the BAB
phase stacking configuration. No systematic differences were noted
between the �c values recorded at the two interfaces. For clarity, the
figure does not identify from which section a data point originates.
�c is calculated for both interfaces separately [from Eq. (16)], which
gives two closely agreeing values plotted as solid-line curves for each
value of Ib.
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FIG. 10. KH rotation velocity at zero pressure. The instabilities
of the two AB interfaces (see Fig. 2) occur independently, and their
critical velocities show no systematic deviations from a common
dependence. The scatter is larger than at elevated pressures, owing
to lower rotation velocities and smaller frequency shifts in the NMR
measurement [36].

extrapolation of Eq. (16) increasingly overestimates �c,
being above the measurements by about 10% at 0.5Tc at the
pressures of 29–34 bars (see the dashed curve in Fig. 6).
We attribute the deviation to the magnetic polarization of
the B phase at high HAB fields, with the largest contribution
resulting from the surface tension σAB(T, P, H ).

The critical-field HAB(T, P) is taken from Ref. [53], the
field gradient ∇H |H=HAB is calculated from the information
given for the barrier solenoid in Ref. [46], the B-phase suscep-
tibility χB⊥(T, P) is interpolated from the results measured
by Scholz [54], and the superfluid densities ρ‖ and ρ⊥ are
calculated numerically in the weak-coupling approximation.
The magnetic-field dependences are, thus, approximately ac-
counted for except in the surface tension, which is the quantity
we determine by fitting.

The low-field surface tension is introduced in the form
σAB(T, P) = σ0(P)(1 − T/Tc)3/2. The initial estimate of
σ0(P) is obtained by fitting the high-temperature data at
HAB � 0.1 T for each constant pressure measurement sepa-
rately. The residual deviation beyond this estimate proves to
be ∝H2

AB at lower temperatures; in other words, a good fit
at low temperatures is obtained assuming a surface tension
of the form σ (T, P, HAB) = σ0(P)(1 − T/Tc)3/2(1 − aH2

AB).
Since the experimental data sets at each pressure are sizable,
the final step is to improve the fitting for σ0(P) and a by
searching for an overall minimum squared deviation using a
smooth polynomial for σ0(P) as a function of pressure. The
error analysis shows that the dominant uncertainty arises from
locating properly the best combination of these two parameter
values in the shallow minimum of the sum of the squared
deviations. This procedure leads to uncertainty limits of a few
percent for σ0(P) and somewhat larger for a, �10%.

While searching for the best value of σ0(P), it is actually
the scale factor �c ∝ σ

1/4
0 /Reff which is fitted. The only re-

ported low-temperature measurement of surface tension [43]

FIG. 11. Surface tension of the AB interface in the magnetic field.
The coefficient a in the parabolic suppression of the surface tension
with the magnetic field is plotted at different sample pressures:
σAB(T, P, H ) = σ0(P)(1 − T/Tc )3/2(1 − aH2). The fitted line corre-
sponds to a = 1.91 − 0.0185P/bars (in T−2). The square data point
represents a fit to the measurements in Ref. [42] (see Fig. 12). The
error bars reflect the overall uncertainty in fitting the measurements
at each pressure.

gives σ (0.15Tc, P = 0) = (3.03 ± 0.28) × 10−9 J/m2 in a
field of HAB = 338 mT. We use this value to extract from the
fitted scale factor at zero pressure an effective radius of Reff =
2.67 mm. This number is in line with Reff = 2.5 mm deter-
mined in Fig. 4 or with Reff = 2.6 mm measured in Ref. [7].
With the assumption that Reff is pressure independent, we ex-
tract from the fitted scale factors the surface tension σ0(P) �
(5.02 + 3.40P − 0.112P2 + 0.001 23P3) × 10−9 J/m2 (P in
bars). We recall that this expression represents the surface
tension measured at low-field H < 0.1 T and not a true zero-
field-limit value. In fact, at pressures below the polycritical
point, the AB interface is not even stable at H = 0. The
first-order magnetic-field-dependent correction is depicted in
Fig. 11.

Adjusting our analysis to the surface tension measured
in Lancaster thus appears to give consistent answers. In
Ref. [42], Osheroff and Cross measure the surface tension at
melting pressure from TAB = 0.78Tc down to 0.53Tc. Their
data points are plotted in Fig. 12. A fit to their high-
temperature points with T > 0.76Tc yields σ (T ) = 5.87 ×
10−8(1 − T/Tc)3/2 J/m2, whereas from our fitted polynomial,
we get the prefactor 3.95 × 10−8 J/m2, a 30% smaller value.
The reason for this difference has not been identified. In con-
trast, our parabolic magnetic-field correction with a � 1 T−2

can be regarded to be consistent with the data of Osheroff and
Cross as seen in Figs. 11 and 12.

In Ref. [55], the consistency of the Osheroff-Cross sur-
face tension with Thuneberg’s GL expansion is examined by
searching for a proper combination of strong-coupling cor-
rected GL β parameters. Such curves have the temperature de-
pendence of the black curve in Fig. 12. However, temperatures
as low as ∼0.5Tc in Ref. [42] are not adequately represented
by a zero-field GL expansion. This is seen in Fig. 12 where
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FIG. 12. Measurements of AB interface surface tension at melt-
ing pressure (34.4 bars) in Ref. [42]. The solid curve represents
σAB(T, H = 0) = σ0(1 − T/Tc )3/2, derived from a fit to those data
points with T > 0.76Tc. This gives σ0 = 5.87 × 10−8 J/m2. The
dashed curve for σAB(T, H ) is obtained by fitting for the magnetic-
field correction using all data points. This gives the data point marked
with a square in Fig. 11.

the magnetic polarization from HAB(T ) enforces an increasing
wedge between the black and the red curves. We recommend
that the low-temperature data points below ∼0.65 Tc should
be excluded from the fitting in Ref. [55]. This improves the
reliability of the fitting procedure. By comparing Fig. 12 to
Fig. 4 in Ref. [55], one can estimate how this affects the choice
of the β parameters.

Finally, we note in passing that the A-phase section was
generally prepared to contain the equilibrium number of
doubly quantized vortex lines which have a continuous order
parameter distribution [6]. For reference, in some cases also
a second continuous vortex texture, the equilibrium vortex
sheet, was grown [48]. Within the experimental scatter, �c(T )
was found to be unaffected by the choice of the A-phase
vortex structure. This conclusion is expected: The instability
in Eq. (4) depends on the tangential flow velocities at the
interface which are not affected by the vortex structure if the
flow conditions remain otherwise unchanged.

C. KH instability at constant temperature

In measurements at constant temperature as a function of
Ib, the linear dependence �4

c ∝ |∇H |H=HAB in Eq. (16) can
be tested. This linear relation is illustrated in Fig. 13 at three
different temperatures. At each of these temperatures, the field
HAB remains constant, when Ib increases, and the location of
the AB interface moves further away from the magnet center.
The measurement of the slope requires accurate temperature
control as demonstrated by the illustration in Fig. 14. The
instability can be traversed by sweeping � upward at constant
Ib or by sweeping Ib downward at constant �. In both cases,
the rotation has to be stopped after each instability event to
remove the vortices from the B-phase sections and to initialize
the measuring setup for the next round of measurements.
As the heat leak depends on � [56], maintaining precise

FIG. 13. KH instability measured at constant temperature as a
function of the current Ib in the barrier magnet at 29.0 bars. At all
three temperatures, the low-current termination includes data points
where the A-phase volume is not a singly connected complete layer.
The lines represent Eq. (16). (Note that the vertical scales of the two
upper data sets have been moved upward.)

temperature stability requires careful work. In Fig. 14, a 2%
variation in the measuring temperature is seen to lead to a 5%
uncertainty in the determination of the slope �4

c versus ∇H .

FIG. 14. KH instability measured at a constant temperature of
∼0.70Tc at 33.7 bars. The data were collected in three separate
measuring sessions within slightly differing temperature ranges as
indicated in the plot. The lines with slightly differing slopes display
Eq. (16).
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A further concern in the measurements of Fig. 14 is
magnetic remanence trapped in superconducting materials,
which might contribute to the value of the field gradient. The
most sensitive place to search for remanent flux motion is the
vicinity of a low-current termination point (see Ref. [46]).
However, sweeping Ib up and/or down does not increase the
scatter of the measured �c in Fig. 14, which means that
any trapped flux has to be strongly pinned. Nevertheless, it
is possible that persistent remanent fields are trapped in the
initial cool down of the apparatus while charging the various
superconducting magnets. These could explain possible sys-
tematic deviations between different cool downs. However, in
this context, it suffices to summarize that we find reasonable
agreement of the data as a function of Ib with Eq. (16) using
the surface tension obtained in Sec. V B.

VI. CONCLUSION

The KH instability of the AB interface takes place between
two stable bulk states of the superfluid 3He order param-
eter manifold. The interface resides at the magnetic-field
HAB(T, P) and is firmly localized by a steep field gradient
|∇H |H=HAB . At high temperatures, corresponding to HAB <

0.1 T, the theoretical instability criterion (4) provides a good
explanation of the measurements with superfluid 3He prop-
erties expected for the zero magnetic field. At low temper-
atures, fields as large as H � 0.6 T are encountered, and
an increasing influence of the magnetic polarization of the
B-phase properties becomes apparent as a sizable reduction
of the interface stability.

Little quantitative experimental information exists for
comparing the magnetic deformation of the energy gap and
its influence on the properties responsible for the interface

stability. The first attempt to improve agreement by consider-
ing the boundary conditions at the interface and changes in the
B-phase order parameter texture as a function of the applied
field showed [35] that the stability criterion had to be amended
by a renormalized superfluid density (8). However, compari-
son with measurements also revealed that the magnetic-field-
induced reduction in the surface tension became an even more
important consideration. Its first-order parabolic correction
with the magnetic field has here been extracted at different
pressures down to a temperature of 0.4Tc. It is found to be in
good agreement with the value of surface tension measured by
Bartkowiak et al. [43] at zero pressure and 0.15Tc.

This agreement lends support to our conclusion that the
KH instability provides a new noninvasive technique for ex-
tracting the AB-interface surface tension, a technique which
is different from the classic measurement of the interface
popping through an orifice, the case in Refs. [42,43]. The
magnetic-field-dependent correction of the AB-interface en-
ergy in Fig. 11 can now be used for simple estimates of
the reduction in B-phase stability in an increasing field. But
more importantly, the surface tension is calculable at low
temperatures, and the present results, we hope, provide an
incentive for such comparison.
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