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Coupled-wire construction of static and Floquet second-order topological insulators
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Second-order topological insulators (SOTI) exhibit protected gapless boundary states at their hinges or
corners. In this paper, we propose a generic means to construct SOTIs in static and Floquet systems by coupling
one-dimensional topological insulator wires along a second dimension through dimerized hopping amplitudes.
The Hamiltonian of such SOTIs admits a Kronecker sum structure, making it possible for obtaining its
features by analyzing two constituent one-dimensional lattice Hamiltonians defined separately in two orthogonal
dimensions. The resulting topological corner states do not rely on any delicate spatial symmetries, but are solely
protected by the chiral symmetry of the system. We further utilize our idea to construct Floquet SOTIs, whose
number of topological corner states is arbitrarily tunable via changing the hopping amplitudes of the system.
Finally, we propose to detect the topological invariants of static and Floquet SOTIs constructed with our approach
in experiments by measuring the mean chiral displacements of wavepackets.
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I. INTRODUCTION

Topological phases of matter have emerged as an active
research topic studied by both theorists and experimentalists
since the last decade. As the name suggests, such phases of
matter are characterized by the topology of their bulk states,
the last of which manifests itself as physical observables at
their boundaries. For example, quantum spin Hall insulators
can be distinguished from normal insulators by the value of
the Z2 topological invariant that their bulk states possess,
which determines the presence or absence of the topologi-
cally protected helical edge states at the boundaries of the
systems [1–3]. The edge properties of topological phases are
thus robust to local perturbations that preserve their topology
as well as the symmetries protecting them. Consequently,
topological phases are considered as a promising platform
for designing robust electronic/spintronic devices, offering
(almost) dissipationless and faster charge transfers [4], as
well as providing protections at the hardware level in the
realization of fault-tolerant quantum computations [5].

In recent years, a new type of topological phase whose
topology manifests itself at the boundaries of their bound-
aries has been discovered and termed higher-order topo-
logical phases [6–30]. In particular, a d-dimensional nth-
order topological insulator (where d � n) is characterized by
the existence of topologically protected (d − n)-dimensional
boundary states and gapped higher-dimensional boundary and
bulk states.

Most of the existing proposals of higher-order topological
phases rely on the presence of spatial (reflection, inversion,
and/or rotational) symmetries. By contrast, it is well known
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that first-order topological phases may exist even in the
absence of these spatial symmetries, which can be further
characterized solely by the presence of time-reversal, particle-
hole, and chiral symmetries through the Altland-Zirnbauer
(AZ) classification scheme [31]. It thus raises a fundamental
question regarding the existence of higher-order topological
phases in the absence of any spatial symmetries, which may
provide further insight into the similarity between first- and
higher-order topological phases. This question has been ex-
plored recently in Ref. [27], which proposes the construction
of higher-order topological insulators in square and cubic lat-
tices by coupling together four and eight Su-Schrieffer-Heeger
(SSH) systems [32], respectively. Each of them describes a
one-dimensional (1D) topological insulating model charac-
terized by a topological winding number that determines the
presence or absence of zero energy states at each end of the
system. By construction, such models are protected solely
by chiral symmetry without the need for additional spatial
symmetries. However, it remained an open question if a
more general construction based on 1D topological insulating
models other than the SSH model is possible.

In this paper, we propose a general framework for con-
structing second-order topological insulators (SOTI) in a
square lattice by means of coupling an array of 1D topo-
logical insulators with dimerized interarray hopping ampli-
tudes, as illustrated in Fig. 1. As will be shown below,
the total Hamiltonian of such a system can be written as a
Kronecker sum of two 1D topological insulating Hamiltoni-
ans, enabling one to characterize the topology of the full sys-
tem from that of its 1D Hamiltonian constituents separately.
In particular, we show that topological corner modes exist
only if both 1D Hamiltonian constituents are topologically
nontrivial, which persist even in the presence of perturba-
tions breaking all but the chiral symmetry, as well as small
perturbations breaking the Kronecker sum structure of the
system.
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FIG. 1. Constructing SOTI by stacking an array of 1D topolog-
ical insulators (such as SSH model as shown in each longitudinal
box). Each circle represents a lattice site. Red solid and green dotted
lines denote different coupling strength between pairs of lattice sites
within each array, whereas blue dashed and cyan dash-dotted lines
depict different interarray coupling strength.

By the same mechanism outlined above, Floquet (period-
ically driven) SOTIs can be obtained by coupling an array
of 1D Floquet topological insulators with the same (static)
dimerized interarray hopping amplitude. It is noted that the
studies of Floquet topological phases have attracted tremen-
dous interest in recent years due to their capability to exhibit
properties with no static analog, such as the existence of edge
states pinned at quasienergy (the analog of energy in Floquet
systems) π

T [33–38] and anomalous edge states which do
not satisfy the usual bulk-edge correspondence [39]. While
Floquet first-order topological phases have been extensively
studied [33–59], their extension to higher-order topological
phases has never been explored so far to our knowledge.

Through a relatively simple proposal for constructing Flo-
quet SOTI, this paper thus hopes to motivate future studies
to explore some unique opportunities offered by Floquet
higher-order topological phases. To that end, we show in this
paper how such a Floquet SOTI can accommodate arbitrarily
many topological corner modes at both quasienergies zero
and π

T , a feature which cannot be found in any static SOTI.
In particular, the coexistence of topological corner modes at
quasienergy zero and π

T by itself already represents an unfore-
seen scenario which can be utilized for topological quantum
computation [60]. The existence of many topological corner
modes is also expected to be useful for quantum memory
applications at the very least.

This paper is organized as follows. We introduce our
proposal in Sec. II by starting with an explicit model describ-
ing an array of SSH model coupled together with another
SSH-like coupling in the y-direction and present the analyt-
ical expression of the corner modes. In Sec. II A, we show
that the full Hamiltonian of the system can be written as a

Kronecker sum of two 1D SSH Hamiltonian. As a result, the
later symmetry and topological properties can be obtained
from those of its 1D Hamiltonian constituents separately. In
Sec. II B, we discuss the difference between our proposal and
that of Ref. [27], and the robustness of our proposal in the
presence of small perturbations which destroy the Kronecker
sum structure of the full Hamiltonian. In Sec. III A, we extend
our proposal to construct Floquet SOTI which may host
topological corner modes at quasienergy zero and π

T (Floquet
zero and π corner modes). We present an explicit model of
such Floquet SOTI in Sec. III B and show how arbitrarily
many zero and π Floquet corner modes can be systematically
obtained by tuning some system parameters. In Sec. IV, we
propose to detect the bulk topological invariants of static and
Floquet SOTIs by measuring the mean chiral displacement of
a wavepacket. We summarize our results and discuss some
future directions in Sec. V.

II. COUPLED-WIRE CONSTRUCTION OF STATIC SOTI

In this section, we introduce our scheme of construct-
ing static SOTIs via coupling topological insulator wires,
and present explicit model calculations to demonstrate our
findings.

We start by considering a prototypical tight-binding Hamil-
tonian H, which describes particles hopping on a two-
dimensional (2D) lattice:

H =
Nx∑

i=1

Ny∑
j=1

{[Jy + (−1) jδJy]|i, j + 1〉〈i, j|

+ [Jx + (−1)iδJx]|i + 1, j〉〈i, j| + H.c.}. (1)

Here Jx(y) ± δJx(y) denote dimerized hopping amplitudes in
the x-(y-)direction, |i, j〉 denotes the basis state at lattice site
(x, y) = (i, j), Nx and Ny are the number of lattice sites in
x- and y-directions, respectively. Without loss of generality,
we will take Jx and Jy to be nonnegative throughout this
paper. Equation (1) can thus be understood as an array of
SSH chains along the x-direction, coupled with each other by
another SSH-type dimerized hopping along the y-direction.
Such a model Hamiltonian may be realized experimentally
in silicon photonic setups [61]. Early on, a model similar to
that presented above has also been studied in Refs. [7,8], and
was shown to exhibit corner modes but has a vanishing bulk
quadrupole invariant. In the following, we argue that such
a model actually qualifies as another type of SOTI, charac-
terized by the robustness of its corner modes, the existence
of edge and bulk band gaps, and a different type of bulk
topological invariant.

To understand how the above model may host corner
modes, we may start by noticing that if the hopping am-
plitude and dimerization parameter along y-direction satisfy
Jy = δJy = 0, the system described by Hamiltonian H reduces
to Ny identical copies of 1D SSH chain. Each of them can
be in either a topologically trivial (δJx < 0) or a nontrivial
(δJx > 0) phase. In the topologically nontrivial regime, a pair
of degenerate zero-energy edge states (also called zero modes)
appears at the two ends of each chain, resulting in totally
2Ny such degenerate edge states in the whole system. When
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Jy, δJy �= 0, all these zero modes will in general be coupled
together, lifting their degeneracy. However, if Jy = δJy, the
two pairs of zero modes appearing at the ends of the first ( j =
1) and last ( j = Ny) arrays will be decoupled, and therefore
remaining degenerate. In this case, four zero modes emerge
as corner states in the whole system.

Away from the fully dimerized limit Jy = δJy along y-
direction, it can be analytically shown (as detailed in Ap-
pendix A) that there are four corner modes in the system if
δJy > 0 (in addition to δJx > 0 as required for each SSH chain
to host zero edge modes), which are given by

|0(X,Y )〉 =
Nx/2∑
i=1

Ny/2∑
j=1

(−1)i+ j

(J ′
y

Jy

) j−1(J ′
x

Jx

)i−1

|Xi,Yj〉, (2)

where J ′
x(y) = Jx(y) − δJx(y), Jx(y) = Jx(y) + δJx(y), X =

1, Nx + 2, Y = 1, Ny + 2, Xi = |X − 2i|, and Yj = |Y − 2 j|.
For a finite lattice, applying H to |0(X,Y )〉 directly results in
terms proportional to (J ′

x/Jx )Nx/2+1 and/or (J ′
y/Jy)Ny/2+1,

which become smaller as Nx and Ny are increased, so that
|0(X,Y )〉 can be regarded as approximate zero energy solutions
to H. In the following subsection, we discuss the symmetry
protecting these corner modes and introduce a topological
invariant to characterize them.

A. Symmetry analysis and topological invariant

Under periodic boundary conditions (PBC), the Hamilto-
nian H in Eq. (1) can be rewritten in momentum space as

H =
∑
kx,ky

|kx, ky〉h(kx, ky)〈kx, ky|

=
∑
kx,ky

|kx, ky〉hx,k ⊕ hy,k〈kx, ky|,

hS,k = ha,Sσ
(S)
x + hb,Sσ

(S)
y , (3)

where S = x, y, ha,S = [JS − δJS + (JS + δJS ) cos kS], hb,S =
(JS + δJS ) sin kS , kS and σ (S)’s are, respectively, quasimo-
menta and Pauli matrices acting in the sublattice/pseudospin
subspace in the S-direction. It is noted that each hS,k is simply
the momentum space Hamiltonian describing an SSH model,
which possesses inversion, time-reversal, particle-hole, and
chiral symmetries, respectively, dictated by the operators IS =
σ (S)

x , TS = K, PS = σ (S)
z K, and �S = σ (S)

z , where K is the
complex conjugation operator. It thus belongs to class BDI
in the AZ classification scheme [31], and is characterized by
a winding number topological invariant.

Due to the Kronecker sum structure of Eq. (3), the full
Hamiltonian H also possesses inversion, time-reversal,
particle-hole, and chiral symmetries described by the
operators I = σ (x)

x σ
(y)
x , T = K, P = σ (x)

z σ
(y)
z K, and

� = σ (x)
z σ

(y)
z , which satisfy Ih(kx, ky)I−1 = h(−kx,−ky),

T h(kx, ky)T −1 = h(−kx,−ky), Ph(kx, ky)P−1 = −h(−kx,

−ky), and �h(kx, ky)� = −h(kx, ky ). In addition, the separate
inversion symmetries of hx,k and hy,k can also be regarded as
two commuting reflection symmetries of the full Hamiltonian
H, i.e., Mx = Ix and My = Iy, such that Mxh(kx, ky)M−1

x =
h(−kx, ky) and Mxh(kx, ky)M−1

x = h(kx,−ky ). However, as

will be elucidated later on, only the chiral symmetry plays a
role in protecting the topological corner modes in our system.

As another consequence of the Kronecker sum structure of
H, the winding number of hx,k (hy,k) still dictates the existence
of edge states of H under open boundary conditions (OBC)
at the edges of the lattice in the x(y)-direction, but they are
no longer pinned at zero energy since such edge states can
be expressed as the tensor product between the edge states of
hx,k (hy,k) and the bulk states of hy,k (hx,k), which therefore
have nonzero energies. However, if the winding number of
hx,k and hy,k are both nonzero, zero energy eigenstates of H
under OBC can be constructed as a tensor product between
the edge states of hx,k and hy,k , both having zero energies.
By construction, such states are localized at both edges of the
lattice and are thus corner modes. Therefore, the existence of
corner modes of H or any Hamiltonian with similar Kronecker
sum structures is determined by the product of the topologi-
cal invariant (e.g., winding number) of each Kronecker sum
component.

The winding number associated with the Hamiltonian in
the form of Eq. (3) is defined as

νS = 1

2π i

∫
dkxH−1

S,k

d

dkx
HS,k, (4)

where HS,k ≡ ha,S + ihb,S . It is well known that in SSH model,
the winding number νS = 1 (νS = 0) when the dimerization
parameter δJS > 0 (δJS < 0). This again implies that cor-
ner states of H exist only if both dimerization parameters
δJy, δJx > 0. To check the generality of the above argument,
we will now introduce a perturbation which amounts to mod-
ifying hb,S → h′

b,S = hb,S + δS cos kSσ
(S)
y . These extra terms

break all but the chiral symmetry of the system. Consequently,
Eq. (4) is still well defined, which is plotted as a function
of the perturbation strength δS in Fig. 2(a). In particular,
we find that even for moderate perturbation strength, hS,k

could still preserve its winding number. Consequently, by
choosing different parameter values for hx,k and hy,k , as-
suming both the presence of the perturbations δx and δy,
we find that H host topological corner modes only if hx,k

and hy,k are both topologically nontrivial, i.e., νx = νy = 1,
as shown in Figs. 2(d) and 2(e). In general, δS can only
induce topological transition if it is strong enough such that
it closes the gap of hS,k . This happens once δS reaches (JS +
δJS )

√
(JS + δJS )2/(JS − δJS )2 − 1, as can be verified from

Fig. 2(a).
From the above discussion, the number of topological

corner modes at zero energy is then given by n0 = 4ν, where
ν = νx · νy is a bulk invariant which accounts the bulk-corner
correspondence of our system. If either or both hx,k and
hy,k are topologically trivial, there is no such corner modes
[see Fig. 2(c)]. Finally, in Fig. 3 we also plotted the energy
band structure of H under mixed boundary conditions, i.e.,
PBC along one direction and OBC along the other. Three
representative cases have been considered in Fig. 3: (i) both
directions are topologically trivial [Figs. 3(a) and 3(d)], (ii)
only the x-direction is topologically nontrivial [Figs. 3(b)
and 3(e)], and (iii) both directions are topologically trivial
[Figs. 3(c) and 3(f)]. As expected, both edge and bulk bands

045441-3



BOMANTARA, ZHOU, PAN, AND GONG PHYSICAL REVIEW B 99, 045441 (2019)

FIG. 2. (a) Topological invariant of hS,k as a function of δS (symmetry breaking perturbation strength) under two different set of parameter
values, where red crosses (blue dots) correspond to JS = 0.75 (JS = 1.475) and δJS = 0.25 (δJS = 1.375). (b) Probability distribution of each
corner mode (marked with different colors) of H obtained in panel (d). For clarity, only |ψc(i, j)|2 > 0.005 are shown. (c) Energy level
distribution of H when hx,k is topologically trivial, i.e., Jx = 0.75, Jy = 1.475, δJx = −0.25, δJy = 1.375, δx = 0.2, and δy = 0.15. (d) Same
as panel (c) but with δJx = 0.25, so that both hx,k and hy,k are topologically nontrivial. Panel (e) highlights the region near E = 0 in panel (d),
with corner modes highlighted in green.

are gapped, and bulk or edge bands at zero energy are absent
in all cases.

B. Discussion

In contrast to many existing proposals on SOTIs so far, our
construction above introduces an SOTI model that is protected
solely by the chiral symmetry and does not rely on any spatial
symmetries. Therefore, our proposed model is fundamentally
different from other SOTI models, such as those studied in
Refs. [7–26,28], which belong to a family of second order

FIG. 3. (a)–(c) Energy band structure of Eq. (1) under OBC in
the y-direction and PBC in the x-direction with (a) δJx = 0.25 and
δJy = 1.375, (b) δJx = −0.25 and δJy = 1.375, (c) δJx = −0.25 and
δJy = −1.375. (d)–(f) Same as panels (a)–(c) but with OBC in the
x-direction and PBC in the y-direction. Other parameters are the
same in all panels with Jx = 0.75, Jy = 1.475, symmetry breaking
perturbation strengths δx = δy = 0.1, and Kronecker sum breaking
perturbation strengths δxy,1 = δxy,2 = 0.1.

topological crystalline insulators. In fact, our model closely
resembles that of Ref. [27], which also relies on the existence
of chiral symmetry alone.

While the model proposed in Ref. [27] also describes
a stack of 1D SSH models, it cannot be expressed as a
Kronecker sum in the spirit of Eq. (3). However, since it can be
broken down into four distinct 1D SSH models, the existence
of corner modes is dictated by the four winding numbers of
these SSH models. By contrast, the Kronecker sum structure
of our model implies that only two winding numbers are
needed to predict the existence of corner modes. Moreover,
our model can be generalized beyond the Kronecker sum of
two SSH models as described in Eq. (3). For example, as we
will elucidate further in the next section, we may take hx,k

to be a 1D Floquet topological insulator, which enables the
construction of Floquet SOTIs.

On the other hand, the nature of our construction as a
stack of 1D topological phase to create a higher-dimensional
topological phase may, at first, seem reminiscent of weak
topological insulators [62]. This, in turn, raises an important
question as to whether our construction merely represents a
weak higher-order topological insulator. To answer this ques-
tion, we first point out that edge states in typical weak topolog-
ical insulators originate from a lower-dimensional topological
invariant, and as such are less robust against perturbations
coupling a pair of their lower-dimensional constituents. By
contrast, the corner states in our model incorporate the in-
terplay of two orthogonal couplings between a pair of 1D
topological phases in the x- and y-directions, which leads
to a bulk invariant defined in Sec. II A that depends on the
topology in both directions. In particular, due to the topolog-
ical protection in both the x- and y-directions, such corner
modes are robust against general perturbations. This is to
be compared to the edge states appearing in our system, as
illustrated in Fig. 3. There, the presence of edge states in
the x-(y-)direction depends only on the winding number
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in the x-(y-)direction, and is thus sensitive to the direction in
which the boundary is opened [see, e.g., Figs. 3(b) and 3(e)].
Therefore, while our construction indeed utilizes first-order
weak topological insulators as its building block, the resulting
second-order topological insulator does not inherit their weak
topological effect.

Finally, we also note that our proposed bulk invariant
is different from the bulk quadrupole invariant introduced
in Refs. [7,8] since the last is always zero in our model.
Similar to the connection between the polarization (thence
winding number) and the quantization of charge pumping
[63], we argue that our bulk invariant is related to the 2D
charge pumping usually proposed to probe the second Chern
number in the context of four-dimensional (4D) quantum Hall
effect [64,65]. To this end, we may start by constructing a
Hamiltonian

H = (c1 + cos kx + cos φ1)σ (x)
x + sin kxσ

(x)
y + sin φ1σ

(x)
z

+ (c2 + cos ky + cos φ2)σ (y)
x + sin kyσ

(y)
y + sin φ2σ

(y)
z ,

(5)

where φ1 and φ2 are tunable parameters, c1 and c2 are
constants. Note that when φ1 = 0, π and φ2 = 0, π , Eq. (5)
reduces to the Hamiltonian Eq. (3) in its topologically trivial
or nontrivial region depending on the values of c1 and c2. The
second Chern number of Eq. (5) is simply the product of the
first Chern numbers of the first and second lines, which under
appropriate gauge choices are related to the their respective
polarization according to [63]

C2 = 4[Px(π ) − Px(0)] × [Py(π ) − Py(0)], (6)

where PS (φ) = ∫
dk
2π i 〈kS, φ|∂kS |kS, φ〉, S = x, y, and

|kx, ky, φ1, φ2〉 = |kx, φ1〉 ⊗ |ky, φ2〉 (7)

is the eigenstate of H associated with the band in which C2 is
evaluated. As detailed in Appendix B, the polarization PS (φ)
at the chiral symmetric points, i.e., φ = 0, π , is related to the
winding number νS (φ) = 2PS (φ). Equation (6) can then be
written as

C2 = ν(π, π ) − ν(0, π ) − ν(π, 0) + ν(0, 0), (8)

where ν(φ1, φ2) = νx(φ1)νy(φ2).
Since Eq. (5) represents a Kronecker sum of two Chern

insulating model, its second Chern number is readily obtained
as [63]

C2 =
⎧⎨
⎩

1 2 > c1, c2 > 0 or 0 > c1, c2 > −2,

0 |c1| > 2 or |c2| > 2,

−1 2 > c1,−c2 > 0 or 0 > −c1, c2 > −2.

(9)

It can also be verified that when |c1| > 2 (|c2| > 2), both
νx(0) and νx(π ) [νy(0) and νy(π )] are zero, so that ν(π, π ) =
ν(0, 0) = ν(0, π ) = ν(π, 0) = 0. If both |c1| < 2 and |c2| <

2, one of ν(π, π ), ν(0, 0), ν(0, π ), or ν(π, 0) is nonzero,
while the other three are zero, so that C2 is proportional to
the nonvanishing bulk invariant ν.

Suppose now we modulate φ2 → φ2 + Bx, where B is a
constant, which simulates the presence of a magnetic field
perpendicular to the x and φ2 directions. By uniformly filling
the lowest band of H , adiabatically tuning φ1 from 0 to 2π , the

displacement of the particles in the y-direction, averaged over
φ2 in [0, 2π ], is proportional to C2 [64], and consequently also
ν from the above argument. Our proposed bulk invariant thus
provides a natural connection between the physics of higher-
order topological phases and that of higher-dimensional topo-
logical phases. It will be interesting to explore the extension
of this connection to more general systems that do not enjoy
Kronecker sum structure, which will be left for future work.

We end this section by discussing the fate of our proposal
in the presence of perturbations breaking the Kronecker sum
structure of Eq. (3). To this end, we further add a perturba-
tion of the form hxy,k = −δxy,1σ

(x)
x σ

(y)
z − δxy,2(cos(kx )σ (x)

x +
sin(kx )σ (x)

y )σ (y)
z to H, which preserves its chiral symmetry, but

breaking the Kronecker sum structure of Eq. (3). In fact, we
also implemented such perturbations with δxy,1 = δxy,2 = 0.1
in our results earlier presented in Figs. 2(b) to 2(e) and Fig. 3.
In general, we observe that the presence of small perturbations
does not affect the existence of the topological corner modes
in the system. At moderate perturbation strengths, however, it
is possible for the bulk or edge band gaps to close, resulting
in the change of the number of topological corner modes in
the system, which can no longer be captured by the individual
topological invariants of hx and hy. Nevertheless, our results
demonstrate that if a general 2D Hamiltonian can be adiabati-
cally deformed into a Hamiltonian that admits Kronecker sum
structure without closing the bulk or edge band gaps in the
process, its higher-order topology can still be studied from the
bulk perspective by calculating the topological invariants of
two 1D Hamiltonians.

III. COUPLED-WIRE CONSTRUCTION
OF FLOQUET SOTI

A. General formulation

The idea we developed in Sec. II can also be applied to
construct Floquet SOTIs. To this end, we may start with an
array of chains of any 1D Floquet topological insulator in
x-direction. Each of them is then coupled to adjacent chains
by static dimerized couplings in y-direction (see Fig. 1 for an
illustration). The full Hamiltonian of such a Floquet SOTI can
then be written as

H(t ) = −
Ny∑
j=1

{
Nx∑

i=1

[Jy + (−1) jδJy]|i, j + 1〉〈i, j| + 1

2
H1D(t )

⊗ | j〉〈 j| + H.c.

}
, (10)

where Jy ± δJy again denote the dimerized hopping ampli-
tudes in the y-direction, and H1D(t ) is a time-periodic Hamil-
tonian describing a 1D Floquet topological insulator. H(t )
in Eq. (10) is thus time-periodic, and Floquet theory can be
applied [66,67]. To this end, we define a Floquet operator as
the one-period propagator

UH ≡ U (t + T, t ) = T exp

(
−i

∫ t+T

t
H/h̄dt

)
, (11)

where T is the period of the system in time, and T is the
time-ordering operator. The topology of the system is then
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encoded in the quasienergy eigenstates |ε〉 of UH, which satis-
fies UH|ε〉 = e−iεT/h̄|ε〉, where ε is the associated quasienergy.

Since the first and second terms of Eq. (10) commute, we
may write the Floquet operator as

UH = UH1D ⊗ UHy , (12)

where UH1D and UHy are 1D Floquet operators associated with

H1D and Hy = ∑Ny

j=1 {[Jy + (−1) jδJy]| j + 1〉〈 j| + H.c.}, re-
spectively. The tensor product structure of Eq. (12) enables us
to systematically study the emergence of Floquet SOTIs from
the properties of the underlying 1D Floquet system described
by H1D. Indeed, let |01(Nx )〉 and |π1(Nx )〉 be the quasienergy zero
and π

T eigenstates of UH1D localized near the left (right) end of
the 1D lattice along the x-direction. Topological corner modes
of Eq. (12) at quasienergies zero and π

T can then be obtained
as (see also Appendix A)

|0(X,Y )〉 =
Ny/2∑
j=1

(−1) j−1

(
Jy − δJy

Jy + δJy

) j−1

|0X 〉 ⊗ |Yj〉,

|π(X,Y )〉 =
Ny/2∑
j=1

(−1) j−1

(
Jy − δJy

Jy + δJy

) j−1

|πX 〉 ⊗ |Yj〉, (13)

where X = 1, Nx, Y = 1, Ny + 2, and Yj = |Y − 2 j|. Equa-
tion (13) thus shows that topological corner modes exist
provided |0X 〉 and/or |πX 〉 exist and δJy > 0, i.e., both UH1D

and UHy are topologically nontrivial.

B. Floquet SOTI with arbitrarily many
topological corner modes

To elucidate the application of our construction outlined in
Sec. III A, we consider a specific H1D(t ) hereinafter as given
by

H1D(t ) =
{

h1 for (m − 1)T < t � (m − 1/2)T,

h2 for (m − 1/2)T < t � mT,

h1 = J1/2
∑
i,σ

(|i, σ 〉〈i + 1, σ̄ | + H.c.), (14)

h2 = J2/(2i)
∑
i,σ

(|i, σ 〉〈i + 1, σ̄ | − H.c.),

where J1 and J2 are hopping amplitudes, σ = A, B is a sub-
lattice or pseudospin index, σ̄ is its complement, and T is the
period of the system, which will be taken as T = 2 unless
otherwise specified. The model in Eq. (14) was first proposed
in Ref. [38] as a quantum-walk realization of spin-1/2 double
kicked rotor, and later also extended to non-Hermitian [68]
and 2D [69] systems. It is capable of hosting a controllable
number of edge states. This can be shown by first writing
down h1 and h2 in Eq. (14) in momentum space as

h1,k = J1 cos(kx )σ (x)
x ,

h2,k = J2 sin(kx )σ (x)
y . (15)

The momentum space Floquet operator of Hamiltonian
Eq. (14) can then be found as [38] (we take h̄ = 1 from here
onwards)

UH1D,k = exp(−ih2,k ) exp(−ih1,k ) = exp(−iheff,k ), (16)

FIG. 4. Panel (a) [panel (b)] shows the probability distribution of
four (20) corner modes at quasienergy zero of UH shown in panel
(d) [panel (e)]. Panel (f) shows the probability distribution of 16
corner modes at quasienergy π

T of UH shown in panel (f). (g) Full
quasienergy level distribution of UH with J2 = 1 and δJy = 0.6875,
with corner modes highlighted in panel (d). (h) Full quasienergy level
distribution of UH with J2 = 14.8 and δJy = 0.6875, with corner
modes highlighted in panels (e) and (f). (i) Same as (h) but with δJy =
−0.6875, so that no corner modes is present. Other parameters are
the same in all panels with J1 = 1, Jy = 0.7375, symmetry breaking
perturbation strengths δx = δy = 0.1, and Kronecker sum breaking
perturbation strengths δxy,1 = δxy,2 = 0.1.

where

heff,k ∝ ε = arccos {cos [J1 cos(kx )] cos [J2 sin(kx )]} . (17)

It follows that the quasienergy gap closes at ε =
0( π

T ) when cos [J1 cos(kx )] cos [J2 sin(kx )] = +1(−1). Conse-
quently, as one fixes J1 (J2), the two quasienergy gaps of UH1D,k

close and reopen alternately at ε = 0 and ε = π
T when J2 (J1)

increases by π . Every time the gap closes and reopens, a topo-
logical phase transition happens and new pairs of degenerate
edge states at quasienergy zero or π

T (i.e., Floquet zero or
π edge modes) emerge at both ends of the lattice [38]. In
particular, we find that each topological phase transition gives
rise to two new pairs of either Floquet zero or π modes. This
can be understood from the fact that the eigenstates associated
with each quasienergy band of UH1D,k always have a constant
winding of ±1 despite the closing and reopening of the gap.
By the bulk-edge correspondence, this eigenstate winding is
associated with the difference between the number of Floquet
edge modes at the two gaps in the quasienergy Brillouin
zone. The emergence of two pairs of new edge modes at each
topological phase transition is therefore necessary to preserve
this eigenstate winding.

By implementing H1D(t ) defined above to Eq. (10), the
discussion of Sec. III A implies the generation of Floquet SO-
TIs with arbitrarily many zero and π corner modes satisfying
Eq. (13), whose number is also controllable via tuning the
system parameters δJy and J1 or J2. This is also evidenced
by our numerics as shown in Fig. 4, in which the existence
of zero and π edge modes of UH1D discussed earlier directly
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FIG. 5. The Floquet spectrum ε of UH versus the hopping am-
plitude J1. The size of the 2D lattice is Nx = Ny = 50. Other system
parameters are chosen as Jy = δJy = π/40 and J2 = π/2. Dashed
lines represent boundaries separating different Floquet SOTI phases
in the parameter space. n0 (nπ ) denotes the number of Floquet
topological corner states at quasienergy zero ( π

T ).

translates into a pair of the same number of Floquet zero and
π corner modes of UH in Figs. 4(d) to 4(h), provided δJy > 0
[Figs. 4(h) vs. 4(i)].

To further demonstrate the flexibility of generating many
Floquet zero and π corner modes following our construc-
tion, we show in Fig. 5 the quasienergy spectrum of UH
vs. J1, with the number of corner modes n0 and nπ denoted
explicitly in the figure. Other system parameters are chosen
as Jy = δJy = π/40 and J2 = π/2. We find that with the
increase of J1, the number of Floquet corner modes n0 (nπ )
at quasienergy zero ( π

T ) increases by 8 every time when J1

passes through an even (odd) multiple of π . The same pattern
is also observed in the Floquet spectrum of UH vs. J2. This
agrees with our discussion earlier that four new zero or π

edge modes emerge every time the quasienergy gap of UH1D,k

closes and reopens, which translates into eight zero or π

corner modes when UHy is topologically nontrivial. From the
above discussion, we note that any number n0 = 4 + 8N of
zero modes and nπ = 8N of π modes can therefore be gen-
erated by simply setting either (N + 1)π < J1 < (N + 2)π or
(N + 1)π < J2 < (N + 2)π .

Note, in passing, that edge states are also found at
quasienergies ±2(Jy + δJy) and ±[π − 2(Jy + δJy)] in Fig. 5,
which are visible whenever OBC is applied in the x-direction.
These edge states are remnants of the Floquet zero and π edge
states of UH1D , which are shifted from quasienergy zero or
π
T by the coupling in the y-direction. As a result, they lose
their topological protection and are distinguished from the
Floquet zero and π corner modes which remain pinned at
quasienergy zero and π . The behavior of these edge states
under a more general choice of parameters can be inferred
from the quasienergy spectrum under mixed boundary con-
ditions, i.e., PBC in one direction and OBC in the other,
shown in Fig. 6. In particular, it can be observed that with

FIG. 6. (a)–(c) Quasienergy band structure of Eq. (10) under
OBC in the y-direction and PBC in the x-direction with (a) J1 = 1,
J2 = 1, and δJy = 0.6875 (b) J1 = 1, J2 = 14.8 and δJy = 0.6875,
(c) J1 = 1, J2 = 14.8 and δJy = −0.6875. (d)–(f) Same as panels
(a)–(c) but with OBC in the x-direction and PBC in the y-direction.
Other parameters are the same in all panels with Jy = 0.7375, sym-
metry breaking perturbation strengths δx = δy = 0.1, and Kronecker
sum breaking perturbation strengths δxy,1 = δxy,2 = 0.1.

Jy �= δJy, the quasienergy gaps when OBC is applied along the
x direction become smaller with the increase in the number
of zero and π corner modes. This can be understood from
the fact that the many Floquet zero and π edge states of UH1D

are shifted differently from their respective quasienergy zero
or π

T . This results in many edge states filling in the finite
size of the quasienergy Brillouin zone, which consequently
leads to smaller quasienergy gaps, as seen from Figs. 6(e) and
6(f) (the gaps are still clearly visible, with �ε0,π/T ≈ 0.15).
This justifies the term Floquet SOTI for our model since its
topologically protected states are localized at the boundary of
a boundary (the corner) and are separated from the edge and
bulk bands by finite gaps.

C. Symmetry analysis and topological invariant

In this subsection, we introduce the topological invariants
characterizing the Floquet SOTIs, and discuss their relations
to the number of Floquet corner states. By transforming
Eq. (16) to symmetric time frames [33],

Ũ (1)
H1D,k = F̂kĜk, Ũ (2)

H1D,k = ĜkF̂k,

F̂k = exp(−ih2,k/2) × exp(−ih1,k/2), (18)

Ĝk = exp(−ih1,k/2) × exp(−ih2,k/2).

The full 2D momentum space Floquet operator can be
written as

Ũ (1,2)
H,k = Ũ (1,2)

H1D,k ⊗ exp(−2ihy,k ), (19)

where hy,k is defined in Eq. (3). In particular, it is easy
to verify that both Ũ (1)

H1D,k and Ũ (2)
H1D,k possess inversion,
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FIG. 7. Winding numbers ν0 (red solid lines) and νπ (green
dashed lines) as a function of (a) J1, (b) J2, (c) δx .

time-reversal, particle-hole, and chiral symmetries,
respectively, given by the same operators defined in
Sec. II A, which satisfy Ixh̃1D(kx, t )I−1

x = h̃1D(−kx, t ),
Txh̃1D(kx, t )T −1

x = h̃1D(−kx, 2 − t ), PxŨH1D,kP−1
x = ŨH1D,−k ,

and �xF̂k�x = Ĝk [33,34,37,38,70], where h̃1D(kx, t ) is
the momentum space time-dependent Hamiltonian in the
symmetric time frame associated with Eq. (14). This implies
that Ũ (1,2)

H1D,k also belong to class BDI in the AZ classification
scheme, which is now characterized by two winding numbers
ν0 and νπ associated with the number of Floquet zero and π

edge modes, respectively [70]. By writing Ũ (1)
H1D,k explicitly as

a matrix in the σ (x)
z basis

Ũ (1)
H1D,k =̂

(
a(kx ) b(kx )

c(kx ) d (kx )

)
, (20)

the winding numbers ν0 and νπ can be obtained as [33,71]

ν0 = 1

2π i

∫
dkxb−1 d

dkx
b,

νπ = 1

2π i

∫
dkxd−1 d

dkx
d. (21)

We plot ν0 and νπ of Ũ (1)
H1D,k as a function of J1 (J2) in

Fig. 7(a) [Fig. 7(b)], where J2 = 1 (J1 = 1) is fixed. Consis-
tent with the argument presented in Sec. III B, either ν0 or νπ

increases as J1 or J2 increases by an integer multiple of π .
In the presence of perturbation h2,k → h2,k − δx cos(kx )σ (x)

y ,
which breaks all but chiral symmetry of the system, the wind-
ing numbers ν0 and νπ remain well defined, as depicted in
Fig. 7(c) at J1 = 5 and J2 = 1. A large number of zero and π

edge modes can therefore be generated in a controlled manner
by simply setting J1 or J2 to be large [38]. From Eq. (13),
this implies the generation of arbitrarily many Floquet zero
and π corner modes, tunable via the parameters δJy, J1,
and/or J2. Recalling that νy is the winding number of hy,k ,
bulk topological invariants of UH can then be constructed as
ν0,y = ν0 · νy and νπ,y = νπ · νy, which determine the number
of Floquet zero and π corner modes as n0 = 4|ν0,y| and nπ =
4|νπ,y|, respectively, thereby establishing the “bulk-corner
correspondence” of our system.

In Figs. 4(c) to 4(g), we also included the presence of small
perturbations of the form h1,k → h1,k − δxy,1 cos(kx )σ (x)

x σ
(y)
z ,

h2,k→h2,k−δxy,2 sin(kx )σ (x)
y σ

(y)
z −δx cos(kx )σ (x)

y , and hy,k →
hy,k − δy cos(ky)σ (y)

y , where δx and δy terms break all but the
chiral symmetry of the system, while δxy,1 and δxy,2 terms
break the tensor product structure of Eq. (12). As expected,
such perturbations do not qualitatively affect the existence of
zero and π corner modes in the system, provided the former
do not induce edge or bulk gap closing of the quasienergy
bands. This shows that our Floquet SOTI proposal does not
rely on any spatial symmetry protection and its topological
characterization presented above also provides insights into
more general Floquet SOTI models, whose Floquet operator
can be adiabatically deformed to the form of Eq. (12).

IV. DETECTION OF BULK INVARIANTS

As discussed in Sec. II B, our proposed bulk invariant ν

in the static system manifests itself as the amount of charge
displaced when the system is subject to adiabatic variations
of two parameters over a cycle. Such a 2D charge pump
has already been realized in photonic [65] and cold-atom
[64] setups for the study of the 4D quantum Hall effect. An
appropriate modification to these experiments is thus expected
to be feasible for detecting ν.

Another promising means to detect the bulk topological
invariants of Floquet SOTIs introduced in Sec. III C is to mea-
sure the mean chiral displacement (MCD) of a wavepacket,
which will be detailed in the following.

A. Mean chiral displacement

The MCD was proposed in Ref. [59] and applied in
Refs. [38,58,72] as a dynamical probe of winding numbers
for 1D topological insulators. The tensor product structure of
Floquet operator UH, together with its chiral symmetry allow
us to extend the definition of MCD straightforwardly to the
two-dimensional dynamics of our model.

We first introduce the chiral displacement operator Ĉα ,
which in Heisenberg representation is given by

Ĉα (t ) = [
U (α)
H

]−t
(x̂ ⊗ �x ) ⊗ (ŷ ⊗ �y)

[
U (α)
H

]t
. (22)

Here U (α)
H is the full Floquet operator given by Eq. (12) in

the symmetric time frame α, t denotes the number of driving
periods, x̂ and ŷ are quantized unit-cell position operators. For
the model we investigated in Sec. III, the chiral symmetry
operators �x and �y are explicitly given by �x = σ (x)

z and
�y = σ

(y)
z . For a wavepacket |ψ0〉 prepared at time t = 0, the

expectation value 〈ψ0|Ĉα (t )|ψ0〉 thus describes the chirality-
resolved shift of |ψ0〉 over ts driving periods.

We now choose the initial state |ψ0〉 to be a fully polarized
state located at the center (x = 0, y = 0) of the lattice [73].
Explicitly it has the form

|ψ0〉 = |0x〉 ⊗ |±x〉 ⊗ |0y〉 ⊗ |±y〉, (23)

where |0x〉 (|0y〉) is the eigenstate of x̂ (ŷ) with eigenvalue 0,
and |±x〉 (|±y〉) is the eigenstate of �x (�y) with eigenvalue
+1 or −1. The MCD of such a wavepacket over ts driving
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periods is then given by

Cα (t ) = 〈0x| ⊗ 〈±x| ⊗ 〈0y| ⊗ 〈±y|
× [

U (α)
H

]−t
(x̂ ⊗ �x ) ⊗ (ŷ ⊗ �y)

[
U (α)
H

]t

× |0x〉 ⊗ |±x〉 ⊗ |0y〉 ⊗ |±y〉. (24)

To proceed, we express U (α)
H as

U (α)
H = U (α)

x ⊗ U (α)
y , (25)

where U (α)
x and U (α)

y are 1D Floquet operators associated with
Hamiltonians H1D and Hy in Eq. (12), respectively. Note that
for the time-independent Hamiltonian Hy, we have U (1)

y =
U (2)

y . With the help of Eq. (25), we can rewrite Cα (t ) as a
product of two MCDs along two orthogonal dimensions, i.e.,

Cα (t ) = Cαx(t ) · Cαy(t ), (26)

where

Cαx(t ) = 〈0x| ⊗ 〈±x|
[
U (α)

x

]−t
(x̂ ⊗ �x )

[
U (α)

x

]t |0x〉 ⊗ |±x〉,
(27)

Cαy(t ) = 〈0y| ⊗ 〈±y|
[
U (α)

y

]−t
(ŷ ⊗ �y)

[
U (α)

y

]t |0y〉 ⊗ |±y〉.
(28)

Now performing a Fourier transform from position to momen-
tum representations, we find

Cαx(t ) =
∫ π

−π

dkx

2π
〈±x|

[
U (α)

kx

]−t
�xi∂kx

[
U (α)

kx

]t |±x〉, (29)

Cαy(t ) =
∫ π

−π

dky

2π
〈±y|

[
U (α)

ky

]−t
�yi∂ky

[
U (α)

ky

]t |±y〉, (30)

where U (α)
kx

and U (α)
ky

are 2 × 2 matrices satisfying U (α)
x =∑

kx
U (α)

kx
|kx〉〈kx| and U (α)

y = ∑
ky

U (α)
ky

|ky〉〈ky| in momentum
representations. Then following the derivations detailed in
Ref. [38], we obtain

Cαx(t ) = vα

2
−

∫ π

−π

dkx

2π

cos(2εt )

2

(
nα

x ∂kx n
α
y − nα

y ∂kx n
α
x

)
, (31)

Cαy(t ) = wα

2
−

∫ π

−π

dky

2π

cos(2Et )

2

(
dα

x ∂ky d
α
y − dα

y ∂ky d
α
x

)
.

(32)

Here, for the Floquet model we studied in the last section, vα

is the winding number of the 1D Floquet operator Ũ (α)
H1D,k

in
symmetric time frame α, wα = νy is the winding number of
SSH model associated with the propagator e−i2hy,k , ε is the
eigenphase of Ũ (α)

H1D,k
as defined in Eq. (17), and E = ±4Jy

is the eigenphase of e−i2hy,k . The components of unit vectors
(dα

x , dα
y ) and (nα

x , nα
y ) are given by

dα
x = cos ky, dα

y = sin ky, (33)

and

n1
x = sin(J1)

sin(ε)
, n1

y = sin(J2) cos(J1)

sin(ε)
,

(34)

n2
x = sin(J1) cos(J2)

sin(ε)
, n2

y = sin(J2)

sin(ε)
,

where J1 = J1 cos kx and J2 = J2 sin kx. It is clear that both
Cαx(t ) and Cαy(t ) are composed of a time-independent topo-
logical part and a time-dependent oscillating term. For general
dispersion relations, the oscillating terms tend to decay at
large t under the integral over corresponding quasimomentum.

To relate Cα (t ) to the topological invariants of Floquet
SOTIs, we consider its average over ts driving periods,
given by

Cα (t ) = 1

t

t∑
t ′=1

Cα (t ′). (35)

With the help of Eqs. (26), (31), and (32), we see that the
oscillating parts of Cα (t ) decay in time at least of order 1

t .
Therefore, in the long time limit (t → ∞), we obtain

Cα ≡ lim
t→∞Cα (t ) = vαwα

4
. (36)

For the model we considered in the last section, the wind-
ing number wα = w = 1. Furthermore, the winding numbers
v1 and v2 are related to ν0 and νπ [33] through

ν0 = v2 + v1

2
, νπ = v2 − v1

2
. (37)

Combining Eqs. (36) and (37) then yields the relations be-
tween time-averaged MCDs and topological winding numbers
ν0,π , i.e.,

ν0 = 2(C2 + C1),

νπ = 2(C2 − C1). (38)

Therefore, by measuring the long-time averaged MCDs
in two complementary symmetric time frames, we would be
able to obtain the topological invariants characterizing the
Floquet SOTIs introduced in Sec. III C [59]. The number of
Floquet corner states can also be indirectly deduced from bulk
dynamics through the relations

n0 = 8|C1 + C2|, (39)

nπ = 8|C1 − C2|. (40)

It is also not hard to extend these results to other Floquet
SOTIs protected by chiral symmetry, for which evolutions in
four symmetric time frames may need to be executed. The
formalism presented here could also be applied to static SOTIs
protected by chiral symmetry, where the number of driving
periods t should be interpreted as the duration of evolution
time, and the sum over t replaced by an integral over the
continuous time duration t .

In Fig. 8, we present the Cα (t ) and the winding numbers
ν0, νπ vs. J1. Up to t = 20, we already find good convergence
of 2C2(t ) + 2C1(t ) and 2C2(t ) − 2C1(t ) to their correspond-
ing winding numbers ν0 and νπ , respectively. When J1 is
close to an integer multiple of π , the MCD combinations

045441-9



BOMANTARA, ZHOU, PAN, AND GONG PHYSICAL REVIEW B 99, 045441 (2019)

0.5 1 2 3
-4

-2

-0.5

0.5

1.5

2.5

3.5

FIG. 8. MCDs and winding numbers versus the hopping ampli-
tude J1. Numerical results of 2C1(t ) and 2C2(t ), both averaged over
t = 20 driving periods, are shown by the blue stars and black circles.
Theoretical values of winding numbers ν0 and νπ are denoted by the
red solid and green dashed lines, respectively. Other system parame-
ters are chosen as Jy = δJy = π/40 and J2 = π/2. Topological phase
transitions happen at J1 = π, 2π, 3π , away from which the relations
in Eq. (38) are verified.

2C2(t ) + 2C1(t ) and 2C2(t ) − 2C1(t ) deviate from quantiza-
tion due to the topological phase transitions happening there.

Other small deviations from quantization are finite time
effects, which originate from the oscillating terms in Eqs. (31)
and (32). With the increase of t , the parameter win-
dows around J1/π = 1, 2, 3 in which 2C1,2(t ) get quantized
changes will shrink, and their oscillations around these transi-
tion points will also become smaller.

The topological winding numbers of static SOTIs, as in-
troduced in Sec. II, could also be extracted from MCDs in
a similar manner. A demonstration of this is given in Fig. 9,
which corresponds to the SOTI model defined in Eq. (3). It
is clear that the MCDs averaged over a long time duration
τ = 400 (triangles in Fig. 9) are consistent with the theoretical
values of νxνy/4 (solid lines), as predicted by the general
relation Eq. (36).

In previous studies, the MCD has been measured in 1D
photonic [59] and cold atom [72] systems. An experimental
proposal for detecting the MCDs of U (α)

x by implement-
ing quantum walks in BECs has also been discussed [38].

-1 -0.5 0 0.5 1
0

1/4

0 0.5 1
0

1/4

FIG. 9. MCDs of the static SOTI model [defined in Eq. (3)]
averaged over a long time duration τ = 400 (triangles). Solid lines
are theoretical values of νxνy/4, with the two winding numbers
νx, νy defined in Eq. (4). Other system parameters are chosen as
Jx + δJx = 1/2, Jy − δJy = 0, Jy + δJy = 1/2 in panel (a), and Jx −
δJx = 1/2, Jy − δJy = 0, Jy + δJy = 1/2 in panel (b).

According to the tensor product structure of U (α)
H , one may

implement the dynamics governed by U (α)
x and U (α)

y in two
decoupled 1D systems separately following the proposal of
Ref. [38], thereby detecting the topological invariants ν0,y and
νπ,y of Floquet SOTIs introduced in Sec. III C.

V. CONCLUDING REMARKS

In this paper, we report a theoretical proposal for con-
structing static and Floquet SOTI by stacking 1D topological
phases and coupling them with dimerized hopping amplitude.
The total Hamiltonian can then be written as a Kronecker
sum of two 1D Hamiltonians describing a static 1D SSH
model in the y-direction and another 1D static or Floquet
topological insulating model in the x-direction, allowing one
to characterize the existence of the topological corner modes
of the whole system by separately analyzing the topology of
the 1D model in the x- and y-directions.

Although the explicit models presented in this paper pos-
sess all inversion, time-reversal, particle-hole, and chiral sym-
metries, their topological corner modes are protected solely by
the chiral symmetry alone, as demonstrated by our numerical
results in the presence of perturbations breaking all but the
chiral symmetry. The SOTI proposed in this paper is thus fun-
damentally different from most other existing SOTI proposals,
which rely on the presence of spatial symmetries. It is also
expected that our proposal can be generalized to a class of
2D systems whose Hamiltonian can be broken down into a
Kronecker sum of two 1D Hamiltonian describing any static
and/or Floquet topological phases. Moreover, we have also
numerically verified that the presence of small perturbations
breaking the Kronecker sum structure of the Hamiltonian does
not qualitatively affect the existence of the corner modes,
provided such perturbations do not close the bulk or edge gap
of the system.

It is expected that our proposal above can be extended
to higher-dimensional systems for constructing static and
Floquet higher-order topological phases, which is left for
future studies. To this end, one may start with a Kronecker
sum of several 1D and/or 2D static or time-periodic Hamil-
tonian, then tune each of these Hamiltonian in its topologi-
cally nontrivial regime. By a similar mechanism elucidated in
Sec. III A, the resulting system is expected to host topological
corner and/or hinge states at its boundaries.

Finally, we demonstrated the capability of Floquet SOTI to
host arbitrarily many topological corner modes at quasienergy
zero and π

T , which may find its potential applications in
quantum information processing (see, e.g., Refs. [71,74]). It
is expected that there are other interesting and unique features
of Floquet SOTI with no static analog that have not been
explored in this paper. Further exploration on the physics
of Floquet SOTI and higher-order topological phases is thus
imagined to be an interesting aspect to pursue in the future.

Note added. Recently we become aware of two recent
preprints [75,76] which also discuss a proposal for construct-
ing Floquet SOTI. These papers, however, used a similar
model as that introduced in Refs. [7,8], which does not admit
a Kronecker sum structure. As a result, while Floquet zero
and π corner modes can also coexist in such a model, it is not
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straightforward to find a parameter regime in which a desired
number of Floquet zero and π corner modes emerge.
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APPENDIX A: ANALYTICAL DERIVATION
OF TOPOLOGICAL CORNER MODES

In the following, we present a detailed derivation of the
analytical expressions for the topological corner modes pre-
sented in the main text, i.e., Eqs. (2) and (13) for the static and
Floquet cases, respectively.

In the static case, due to Kronecker sum structure of the
Hamiltonian, we may write its eigenstates in the form of
|0(X,Y )〉 = |0X 〉 ⊗ |0Y 〉, where |0X 〉 and |0Y 〉 are, respectively,
zero energy solutions to Hx and Hy which satisfy H = Hx ⊕
Hy. In particular, for the explicit model presented in the main
text, i.e., Eq. (1), we have

Hx =
Nx∑

i=1

{[Jx + (−1)iδJx]|i + 1〉〈i| + H.c.},

Hy =
Ny∑
j=1

{[Jy + (−1)iδJy]| j + 1〉〈 j| + H.c.}. (A1)

Both |0X 〉 and |0Y 〉 can then be constructed perturbatively
and iteratively as follows. We may start by guessing that
|0X=1〉 = |1〉 + |0(1)

X=1〉, which gives

Hx|0X 〉 = (Jx − δJx )|2〉 + Hx

∣∣0(1)
X=1

〉
. (A2)

We continue by choosing |0(1)
X=1〉 = − Jx−δJx

Jx+δJx
|3〉 + |0(2)

X=1〉,
so that Hx|0(1)

X=1〉 cancels the first term of Eq. (A2) and replaces
it with a term ∝ Jx−δJx

Jx+δJx
, i.e.,

Hx|0X=1〉 = − (Jx − δJx )2

(Jx + δJx )
|4〉 + Hx|0(2)

X=1

〉
. (A3)

Following the above step, we further choose |0(2)
X=1〉 =

( Jx−δJx
Jx+δJx

)
2|5〉 + |0(3)

X=1〉, which replaces the first term of Eq. (A3)

with a term ∝ ( Jx−δJx
Jx+δJx

)
2
. This procedure can be repeated

indefinitely to obtain

|0X=1〉 =
N∑

i=1

(
−J ′

x

Jx

)i−1

|2i − 1〉 + O
([J ′

x

Jx

]N+1
)

, (A4)

where J ′
x = Jx − δJx and Jx = Jx + δJx. In the topologically

nontrivial regime, i.e., J ′
x < Jx, with a sufficiently long lat-

tice, the correction term to Eq. (A4) becomes very small and
|0X=1〉 provides a very good analytical approximation to the
zero energy solution to Hx. It is also evident from Eq. (A4) that
it is localized near one end of the lattice, whose localization

length depends on the ratio J ′
x

Jx
. The same procedures can be

applied to find |0X=Nx+2〉, |0Y =1〉, and |0Y =Ny+2〉, so that by
recalling that |0(X,Y )〉 = |0X 〉 ⊗ |0Y 〉, we readily obtain Eq. (2)
in the main text.

In the Floquet case, the tensor product structure of the
Floquet operator, i.e., Eq. (12), also allows the decomposition
of Floquet zero and π corner modes into |0(X,Y )〉 = |0X 〉 ⊗
|0Y 〉 and |π(X,Y )〉 = |πX 〉 ⊗ |0Y 〉, where |0X 〉 and |πX 〉 are
quasienergy 0 and π

T solutions to UH1D , whereas |0Y 〉 is a
quasienergy 0 solution to UHy . In particular, for the explicit
model studied in the main text, i.e., Eq. (10), Hy is the same
static Hamiltonian considered before in Eq. (A1). As such, the
same |0Y 〉 found above applies, and Eq. (13) in the main text
immediately follows.

APPENDIX B: RELATION BETWEEN THE
POLARIZATION AND CHIRAL WINDING NUMBER

Consider a chiral symmetric 1D Hamiltonian given by
H (k) = h1(k)σx + h2(k)σy. Its energy eigenvalues and eigen-

states can be easily found as E± = ±
√

h2
1 + h2

2 and

|±〉 = 1√
2

(
1

±eiξ

)
, (B1)

where tan ξ = h2
h1

. The polarization P± is defined as

P± =
∮

dk

2π i
〈±|∂k|±〉

=
∮

dk

4π

dξ

dk
. (B2)

On the other hand, following Eq. (4) in the main text, we can
define the winding number for such a Hamiltonian as

ν± = 1

2π i

∮
h−1∂kh

=
∮

dk

2π

dξ

dk
, (B3)

where h = h1 + ih2 = |h|eiξ . By inspecting Eqs. (B2) and
(B3), ν± = 2P± easily follows.
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