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Bulk and surface spin conductivity in topological insulators with hexagonal warping
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We investigate the spin conductivity of topological insulators taking into account both the surface and
quasi-two-dimensional bulk states. We apply a low-energy expansion of the Hamiltonian up to the third order
in momentum and take into account the vertex corrections arising due to the short-range disorder. Hexagonal
warping gives rise to the additional anisotropic components in the spin conductivity tensor. Typically, the
isotropic part of the spin conductivity is larger than the anisotropic one. The helical regime for the bulk states,
in which the electrons in the Fermi level have the same projection of the spin on the direction of momentum,
have been studied in more detail. In this regime, a substantial increase of the spin conductivity contribution
from the bulk states at the Fermi level is observed. We find that the bulk spin conductivity is insensitive to
disorder if Rashba spin-orbit coupling is larger than disorder strength, otherwise, it is strongly suppressed. The
contribution to the spin conductivity from the surface states is almost independent of the chemical potential,
robust to disorder and its value is comparable to the spin conductivity contribution from the bulk states per layer.
The obtained results are in agreement with experimental data.
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I. INTRODUCTION

Topologically protected surface states form a Dirac cone in
the electronic spectrum of the topological insulators (TIs) [1].
The electron dispersion near Dirac points is linear. However,
a hexagonal warping of the Dirac cone arises when we take
into account the next-order terms in the momentum expansion
of corresponding Hamiltonian of the TIs with the hexagonal
lattices, such as Bi2Te3 [2] and Bi2Se3 [3]. The hexagonal
warping influences not only the surface states but also quasi-
two-dimensional bulk states in these systems. Effects of the
hexagonal warping on the electronic properties of the TI have
been studied extensively [4–7]. In our recent paper [8], we
find that the presence of the hexagonal warping significantly
affects the charge conductivity of the TI. In particular, it gives
rise to the anisotropic anomalous in-plane magnetoresistance.
Hexagonal warping also affects the quantum anomalous Hall
effect and anomalous out-of-plane magnetoresistance.

A remarkable feature of the TIs is the existence of high
spin conductivity in the absence of magnetic field, which is
associated with an intrinsic spin Hall effect [9]. This effect
has been first predicted in Rashba [10] and Dresselhaus [11]
spin-orbit coupled materials. However, the intrinsic spin Hall
effect in such materials is weak due to short-range disorder
(from a theoretical point of view, due to vertex corrections
caused by this disorder) [12,13].

A change of direction of the magnetization in the magnetic
material by a spin current is referred to as spin-transfer torque
(STT) [14]. The STT is closely related to the spin conductivity
[15]. This effect can be used for the design of the fast and
low dissipative magnetic memory [16]. Recent experiments
reveal that STT in the TIs is by orders of magnitude larger

than for any other material, which is a sign of a substantial
spin conductivity in TIs [17–20]. Experimental study of the
STT in the TIs demonstrates some intriguing features. Both
the in-plane and out-of-plane STT exist in the system, and the
value of these effects is of the same order, which is unexpected
from the spin-momentum locking argument [17]. Moreover,
the sign of the spin conductivity may be different in different
samples of the same material [21]. Spin conductivity in the
TI is tuned by chemical potential and obeys a particle-hole
asymmetry [19,22]. Also, spin conductivity is suppressed in
the bulk-insulating regime [22]. It has been speculated that
the large spin currents arise in the TIs due to the existence of
the topologically protected surface states [23–25]. However,
in the other papers it is complained that the spin current in
the TI mainly comes from the bulk states [20,26]. Also, recent
theoretical paper reveals that the contribution of bulk states
should be taken into account to model the experiments on the
spin-orbit torque in the TI [27]. A rather different approach
is to measure bilinear magnetoelectric resistance [28,29] that
is believed to be proportional to the spin current [30]. This
resistance scales linearly with applied electric field and can be
used to determine spin-orbit torques [31].

In general, the spin conductivity includes both contribu-
tions from the states at the Fermi surface and from all filled
states [32,33]. While the contribution to the spin conductivity
from the filled states can be calculated in a clean limit [10,11],
it is vital to treat the disorder correctly to describe the contri-
bution from the states at the Fermi level [12,13].

An unexpectedly small number of theoretical works are
devoted to the spin conductivity in TIs. Recent DFT calcu-
lations of the contribution to the spin conductivity from the
filled states show that quite large spin currents can exist in
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BixSb1−x and the value of the spin conductivity can be tuned
by the chemical potential variation [34]. In Ref. [35], the
spin conductivity of the surface states in a thin film of TI
with a cubic lattice has been studied neglecting the vertex
corrections. The authors concluded that the dependence of
the surface spin conductivity on the disorder and chemical
potential is small. The spin conductivity in another Dirac
material, graphene, attracted much more attention [36–38].
Provided the spin-orbit interaction is induced in graphene,
quite reasonable spin currents can be obtained in it. Recent
calculations also show that large spin currents can be induced
in Weyl semimetal, another Dirac material with large spin-
orbit interaction [39].

We study the spin conductivity of the surface and bulk
states in the TI in a low-energy approximation with taking
into account the hexagonal warping. Both contributions from
the filled states and from the states at the Fermi surface are
considered. We apply the Kubo formalism accounting the
vertex corrections to the velocity operators arising due to
the short-range disorder. We show that the presence of the
hexagonal warping leads to the additional anisotropic terms
in the spin conductivity. We get that the spin conductivity is
robust against disorder. The spin conductivity of the surface
states is comparable with the spin conductivity of the bulk
states per layer. The obtained results are consistent with the
experimental data.

The paper is organized as follows. In Sec. II we analyze
the Hamiltonian describing the surface and bulk states in
the TI. In Sec. III we introduce disorder and in Sec. IV
calculate the vertex corrections to the velocity operator. In
Sec. V we study the contribution to the bulk and surface spin
conductivity from the states at the Fermi level. In Sec. VI
we consider the contribution to the spin conductivity from
the filled states. We estimate the values of the characteristic
for TIs parameters in Sec. VII. In Sec. VIII we discuss the
obtained results and compare them with the experiments and
numerical calculations.

II. MODEL

We consider a two-dimensional time-reversal Hamiltonian
with C3v symmetry. This symmetry consists of a threefold
rotation C3 around z axis and a mirror operation x → −x.
The low-energy Hamiltonian with such symmetries is written
as [2,40] (h̄ = 1)

Ĥ = r
(
k2
x + k2

y

) + μ + αRk (kxσy − kyσx )

+ λkx

(
k2
x − 3k2

y

)
σz,

αRk = αR

[
1 + s

(
k2
x + k2

y

)]
, (1)

where σ = (σx, σy, σz) are the Pauli matrices acting in spin
space, μ is the chemical potential, αR is the value of Rashba
coupling (it is proportional to spin splitting of the bulk states
and equal to the Fermi velocity for the surface states), r =
1/(2m) is the inverse mass term, s characterizes the next-order
correction in momentum to αR , kx = k cos φ, and ky = k sin φ

are the in-plane momentum components, λ is the hexagonal
warping coefficient. The term in the Hamiltonian responsible
for the hexagonal warping can be rewritten as λkx (k2

x −
3k2

y ) = λk3 cos 3φ and the Hamiltonian is invariant under

(a)

(c)

(e)

(b)

(d)

(f)

FIG. 1. Energy spectrum, Eq. (2), and corresponding Fermi sur-
face for different values of parameters. Spin direction of the states
in the Fermi level is shown by arrows. (a)–(d) illustrate the spectrum
and the Fermi surface for the bulk states at s = 0 and λαR/r2 = 0.2;
rμ/α2

R = −2 in (a) and (b), rμ/αR = 0.2 in (c) and (d). Bold lines
in (a) and (c) indicate the helical regime. (e) and (f) illustrate the
spectrum and the Fermi surface for the surface states at sα2

R/r2 =
10, λ/sαR = 0.2, and rμ/αR = 0.2. Orange dashed lines indicate
zero of the chemical potential and green dot-dashed lines show the
chemical potential.

rotation on the angle φ = 2π/3. The form of the Hamiltonian
is fixed by the symmetries. Such Hamiltonian can describe
the surface and quasi-two-dimensional bulk states in the TI,
such as Bi2Se3 and Bi2Te3 [40]. Also, this Hamiltonian can
also describe the quasi-two-dimensional states of BiTeI [41].
This Hamiltonian neglects complex multiorbital structure of
the TI states and should be considered as a minimal model
that preserves given symmetries.

The spectrum of the Hamiltonian (1) is given by

E± = μ + rk2 ±
√

α2
Rkk

2 + λ2k6 cos2 3φ. (2)

If we measure the energy in terms of α2
R/r then the chemical

potential, the next-order correction to the spin-orbit coupling,
and the hexagonal warping are conveniently characterized
by the dimensionless values rμ/α2

R , sα2
R/r2, and λαR/r2,

respectively.
Energy spectrum (2) is shown in Fig. 1 for different set of

parameters characteristic of the bulk, Figs. 1(a) and 1(c), and
surface, Fig. 1(e), states. A key feature of the surface states
in the TI is the existence of a robust Dirac cone, which is the
case if sα2

R/r2 is sufficiently large, Fig. 1(e). The correspond-
ing Fermi surface has a characteristic form of a snowflake,
Fig. 1(f). The bulk states corresponds to smaller values of
sα2

R/r2, Figs. 1(a) and 1(c). In the latter case, the spectrum has
an appearance characteristic of a two-dimensional electron
gas with bands split due to the Rashba spin-orbit interaction.
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Corresponding Fermi surfaces with two pockets are shown
in Figs. 1(b) and 1(d) for different values of the chemical
potential. Note, that this model describes well ARPES data
for the surface and bulk states in the TIs [2,3,40].

We obtain from Eq. (2) that the robust Dirac cone exists
when sα2

R/r2 > 1/3. For αR (sαR + λ)/r2 < 1/4, two spin
split bands emerge in the system as it is expected for the
Rashba electron gas. Therefore, we can formally to write
down that

αR (sαR + λ)/r2 < 1/4, bulk states,

α2
Rs/r2 > 1/3, surface states. (3)

In the case of the bulk states, the function E−(k) decreases at
large k and a proper momentum cutoff kcut must be introduced
to avoid arising fake Fermi surface pockets at large momen-
tum. We define cutoff momentum as kcut = r/(2sαR + 2λ).

We can calculate average spin projection of electrons as
〈Sα〉± = 〈u±|Sα|u±〉, where Sα is the spin operator and u±
are eigenfunctions corresponding to the bands E±. The in-
plane spin polarization component is schematically shown in
Figs. 1(b), 1(d), and 1(f). The calculated spin polarization
lies in the (x, y) plane if we neglect the hexagonal warping.
We see that each band can be characterized by helicity, that
is, the sign of the projection of the spin on the direction
of momentum. The z component of the spin polarization
arises if we take into account that λ �= 0. If μ < 0 the bulk
states have two split Fermi surfaces with different helicity, see
Fig. 1(b). In the case of μ > 0 two Fermi surfaces have the
same helicity, see Fig. 1(d), so, we call this regime for the
bulk states as helical. Surface states are helical in any case,
see Fig. 1(f).

In general, the spin conductivity can be presented as a sum
of three terms [32,33]

σ
γ

αβ = σ
γ I

αβ + σ
γ II

αβ + σ
γ III

αβ , (4)

where the first two items correspond to a contribution from
the states at the Fermi surface and the third one from the filled
states. Here α and β denote the in-plane coordinates x and y,
respectively, and γ denotes the spin projection.

At zero temperature σ
γ I

αβ and σ
γ II

αβ can be written in the
form [12,32]

σ
γ I

αβ = e

4π

∫
d2k

(2π )2
Tr

[
jγ
α G+ Vβ G−]

, (5)

σ
γ II

αβ = − e

8π

∫
d2k

(2π )2
Tr

[
jγ
α G+ Vβ G+ + jγ

α G− Vβ G−]
.

(6)

Here j
γ
α = {σγ , vα}/4, vα = ∂H/∂kα is the is the velocity

operator, Vα is the velocity operator with vertex corrections,
{ , } means the anticommutator, and G± are the retarded and
advanced disorder averaged Green’s functions, which will be
specified in the next section.

The contribution to the spin conductivity from the filled
states is [10,42]

σ
γ III

αβ = e
∑

k,n�=n′
(fnk − fn′k )

× Im
〈
un′k

∣∣jγ
α

∣∣unk
〉〈unk|vβ |un′k〉

�2 + (Enk − En′k )2
. (7)

Here Enk is the energy of an electron in the nth band with the
momentum k, unk is the corresponding Bloch vector, Ĥunk =
Enkunk, fnk is the Fermi distribution function corresponding
to Enk (which is the Heaviside step function in the considered
case of zero temperature), 〈...〉 means impurity averaged, and
� is the disorder parameter or scattering rate. The latter will
be also specified in the next section.

III. DISORDER

We will describe disorder by a potential of randomly
distributed point defects Vimp = u0

∑
i

δ(r − Rj ), where δ(r)

is the Dirac δ function, Rj are positions of the randomly
distributed pointlike impurities with the local potential u0 and
concentration ni . We assume that the disorder is Gaussian, that
is, 〈Vimp〉 = 0 and 〈Vimp(r1)Vimp(r2)〉 = niu

2
0δ(r1 − r2).

In the self-consistent Born approximation (SCBA), the
impurity-averaged Green’s functions can be calculated as

G± = G±
0 + G±

0 �±G±, (8)

where G±
0 are bare Green’s functions of the Hamiltonian (1)

G±
0 = μ + rk2 ± i0 − αRk (kxσy − kyσx ) − λk3 cos 3φ σz

[μ + rk2 ± i0]2 − α2
Rkk

2 − (λk3 cos 3φ)2

(9)

and �± is the self-energy, which is defined as

�± = 〈VimpG
±Vimp〉. (10)

In the case under consideration, we can calculate the self-
energy �± = �′ ∓ i� using an expression similar to that
derived in Ref. [43]

�± = niu
2
0

(2π )2

∫
(μ + rk2 − �±) kdk dφ

(μ + rk2 − �±)2 − α2
Rkk

2 − (λk3 cos 3φ)2
.

(11)

The function under integral in Eq. (11) decays as k3 when
k → ∞. Thus, the value of this integral is determined by zeros
of the denominator.

The value � is usually referred to as a disorder parameter
or scattering rate. It determines the analytical properties of the
Green’s functions G±, while �′ is only a small correction to
the chemical potential since we consider here only the case of
small disorder. Thus, we can neglect the real part of the self-
energy �′ with the exception of some singular point, which
will be specified below. If we put �′ = 0 and have in mind
that � is small in the limit of small disorder, we derive from
Eq. (11) an explicit formula for the scattering rate

�(μ) = niu
2
0

(2π )2

∫
kdk dφ ImG+

0 . (12)

A. Bulk states

First, we consider the bulk states. In the simplest case,
when λ and s tends to zero, we can derive an explicit formula
for the scattering rate in two opposite limits, r�/α2

R 	 1 and
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r�/α2
R 
 1. If the chemical potential μ is negative, we obtain

from Eq. (12) following Ref. [44],

�(μ < 0) = �0 = niu
2
0

4r
. (13)

This value is independent of the chemical potential and the
strength of the spin-orbit interaction. It is convenient to intro-
duce dimensionless disorder parameter γb = niu

2
0/(4α2

R ). In
these notations �0 = α2

Rγb/r .
Effects of the spin-orbit coupling are not smeared by the

disorder if α2
R/r 
 �0 or, equivalently, γb 	 1. We will call

further the spin-orbit coupling strong if condition γb 	 1 is
satisfied. Otherwise, γb 
 1, the spin-orbit coupling is weak.

In the helical regime, μ > 0, the behavior of �(μ) de-
pends on the system parameters. If the spin-orbit coupling is
weak, γb 
 1, we get that �(μ = 0) = �0/2 and �(μ) rapidly
decays to zero with an increase of μ. In the opposite limit
of strong strong spin-orbit coupling, γb 	 1, we found from
Eq. (12) that the scattering rate increases if 0 < μ < α2

R/4r:

�(μ) = �0αR√
α2

R − 4μr

. (14)

When the chemical potential attains the singularity point, μ =
α2

R/4r , the Fermi level crosses the bottom of the energy bands
E± if s and λ → 0 [see Eq. (2)]. If μ > α2

R/4r , the Fermi level
occurs in the energy gap. If we apply self-consistent Eq. (11)
we get that at μ = α2

R/4r the real part of the self-energy
vanishes and

�
(
μ = α2

R/4r
) = �max =

(
α2

R

2r
�2

0

)1/3

. (15)

Thus, in the helical regime the scattering rate increases sig-
nificantly if the spin-orbit coupling is strong, �max/�0 =
(1/2γ )1/3 
 1.

In a more general case, the scattering rate �(μ) for the
bulk states was calculated numerically using Eq. (11). The
results are shown in Fig. 2 for the case of the strong spin-orbit
coupling characteristic of the TIs. As we can see from the
figure, the higher-order corrections to the spin-orbit coupling s

and the hexagonal warping λ has a little impact on the value of
the scattering rate in the case of the bulk states. In particular, a
characteristic peak in �(μ) arises near the point μ = α2

R/4r .

B. Surface states

For the surface states, we neglect a correction to the value
of μ due to the real part of the self-energy in the limit of weak
disorder, similar to the case of the bulk states. Thus, we can
use Eq. (12) to calculate �.

In the simplest case r, λ, s → 0 we obtain a well-known
result [45,46],

�(μ) = γb|μ|. (16)

When the chemical potential crosses the Dirac point, μ = 0,
we apply Eq. (11) and find that the real part of the self-energy
vanishes while the imaginary part is exponentially small [45]
�(μ = 0) = αRmin{kcut,

√
αR/λ,

√
1/s}e−2/(πγb ), where kcut

is the momentum cutoff. That is, the scattering rate at the

FIG. 2. Scattering rate � for the bulk states as a function of the
dimensionless chemical potential μ/�0. Black line corresponds to
the case, when the spin-orbit interaction and the hexagonal warping
are absent, αR, λ → 0. Green line corresponds to r�0/α

2
R = 0.001,

λ = 0, and s = 0; red line to r�0/α
2
R = 0.001, λαR/r2 = 0.1, and

s = 0; blue line to r�0/α
2
R = 0.001, sα2

R/r2 = 0.1, and λ = 0.

Dirac point is exponentially suppressed in the case of the
strong spin-orbit coupling, γb 	 1.

In a more general case, the scattering rate for the surface
states was calculated numerically with the help of Eq. (11).
The dependence of �(μ) is shown in Fig. 3. We see that the
scattering rate �(μ) is almost particle-hole symmetric since
the spectrum of the surface states close to such a symmetry
[see Fig. 1(e)].

FIG. 3. Scattering rate � for the surface states as a function of
the chemical potential μ for γb = 0.001. Black line corresponds to
the case r = s = λ = 0, green line to λε2

0/α
3
R = 0.5, s = r = 0, red

line to sε2
0/α

2
R = 0.1, λ = r = 0, blue line to sε2

0/α
2
R = 0.1, λ = 0.

Normalization parameter is chosen as ε0 = αRkcut/10 where kcut is
the cutoff momentum.

045436-4



BULK AND SURFACE SPIN CONDUCTIVITY IN … PHYSICAL REVIEW B 99, 045436 (2019)

The self-energy is proportional to the identity matrix.
This allows to obtain an explicit expression for the impurity
averaged Green’s function. We can rewrite Eq. (8) as G± =
(1 + �G±

0 )−1G±
0 or

G± = μ + rk2 ± i� − αRk (kxσy − kyσx ) − λk3 cos 3φ σz

(μ + rk2 ± i�)2 − α2
Rkk

2 − λ2k6 cos2 3φ
.

(17)

Therefore, the expression for G± is given by an equation
similar to Eq. (9) for G±

0 , in which ±i0 is replaced by
±i�. We characterize disorder by a single value � neglecting
renormalization of the chemical potential.

IV. VERTEX CORRECTIONS

In the SCBA, following the approach described in
Ref. [43], we can derive an equation for the vertex corrected
velocity operator [46]

Vα (k) = vα (k) + niu
2
0

(2π )2

∫
G+(k)Vα (k)G−(k)d2k. (18)

We present here the derivation of Vx ; results for Vy can be
obtained just by the substitution x(y) → y(x).

It is easy to show that niu
2
0

∫
G+vxG

−d2k/(2π )2 = ζσy

and niu
2
0

∫
G+σyG

−d2k/(2π )2 = κσy , where ζ and κ are
scalars. In these notations we obtain from Eq. (18) that

Vx = vx + (
αV C

R − αR

)
σy, αV C

R = αR + ζ

1 − κ
. (19)

We begin our consideration with the bulk states and derive
some analytical results in the simplest case, when s and λ are
zero. Under such conditions and if μ < 0, the vertex corrected
Rashba coupling is small, αV C

R 	 αR , either at weak, γb 
 1,
or strong, γb 	 1, Rashba coupling in accordance with the
results of previous works (see, e.g., Refs. [12,13]). However,
in the case of strong Rashba coupling, when the chemical
potential is positive and lies in the interval 0 < μ < α2

R/4r ,
the vertex corrected αV C

R is comparable to its bare value αR

αV C
R

αR

=
αR −

√
α2

R − 4rμ

αR +
√

α2
R − 4rμ

. (20)

Numerically calculated dependence of the vertex correc-
tion to the Rashba coupling for the bulk states on the chemical
potential, αV C

R (μ), is shown in Fig. 4 for a more general
situation. As we can see, the higher-order corrections to the
spin-orbit coupling and the hexagonal warping significantly
enhances αV C

R in the region μ < 0. Nevertheless, its value is
still much smaller than the bare value αR . When μ < 0 (in
the helical regime), αV C

R (μ) is of the order of αR and almost
independent of s and λ.

For the surface states, in the case r, s, λ = 0 and γb 	 1,
we get that away from the Dirac point, μ 
 �, the vertex
correction is αV C

R = 2αR , while αV C
R vanishes at μ = 0, as it

have been obtained in Refs. [46,47]. Numerically calculated
dependence of the vertex correction αV C

R on the chemical
potential is shown in Fig. 5 for the parameters characteristic
of the surface states. The presence of the hexagonal warping
slightly increases αV C

R , while the existence of the finite mass

FIG. 4. Dependence of αV C
R for the bulk states on the chemical

potential, γb = 0.001. Black line corresponds to λ = s = 0, red line
to λαR/r2 = 0.1 and s = 0, blue line to sαR/r2 = 0.1 and λ = 0.

term r leads to the particle-hole asymmetry. Taking into
account correction to the spin-orbit coupling s results in a
increase of αV C

R if the chemical potential is away from the
Dirac point.

V. SPIN CONDUCTIVITY FROM THE STATES AT THE
FERMI SURFACE

Now we use the results obtained in the previous sections
and Eqs. (5) and (6) to calculate the contribution to the spin
conductivity due to the states at the Fermi surface. In this way,
we obtained that in the considered approach the term σ

IIγ

αβ

vanishes exactly. Thus, we should to compute only the term
σ

Iγ

αβ .

FIG. 5. Dependence of the vertex correction αV C
R on the chemical

potential for the surface states, γb = 0.001. Black line corresponds
to the case r = λ = s = 0, blue line to sε2

0/α
2
R = 0.1, sα2

R/r2 = 10,
and λ = 0, green line to λε2

0/α
3
R = 0.5 and r = s = 0, red line to

sε2
0/α

2
R = 0.1 and r = λ = 0.
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The isotropic tensor component σ Iz
xy = −σ Iz

yx is the only
term that persists in the system in the case of zero hexagonal
warping. All other components are anisotropic and they are
non-zero only if λ �= 0. The measured value of the spin
conductivity depends on the mutual orientation of the current
and the crystal axes. So, it is convenient to relate the spin
conductivity tensor components in the crystal axes (x, y) with
that related to the current direction, (x̄, ȳ). New coordinates
are obtained by anticlockwise rotation by the angle θ along
the crystal axes. We assume that the current is directed along
x̄-axis. In this coordinates we have

σ Ix̄
x̄x̄ = −σ

Iȳ
ȳȳ = −σ Ix̄

ȳȳ = −σ
Iȳ
ȳx̄ = σ Ix

xx cos 3θ,

σ I x̄
x̄ȳ = σ

Iȳ
x̄x̄ = σ Ix̄

ȳx̄ = −σ
Iȳ
ȳȳ = −σ Ix

xx sin 3θ,

σ Iz
x̄x̄ = σ Iz

ȳȳ = 0. (21)

Therefore, it is sufficient to calculate σ Iz
xy and σ Ix

xx .
We derive from Eq. (5)

σ Iz
xy = σ z

0

∫
k dk dφ

2r�αRkk
2
(
αV C

R + αRsk2
)

π2Eg (k, φ)

σ Ix
xx = σ z

0

∫
k dk dφ

rαR�λk4(3 + 2sk2)

π2Eg (k, φ)

Eg = 4�2(μ + rk2)2 + (�2 − E−E+)2, (22)

where σ z
0 = e/(8π ) is the spin conductivity quanta and E±

is given by Eq. (2). As we can see, the isotropic spin con-
ductivity component σ Iz

xy is proportional to αV C
R if we neglect

the higher-order correction to the spin-orbit coupling. This
value increases significantly in the helical state μ > 0. The
anisotropic component σ Ix

xx is proportional to the hexagonal
warping strength λ, the vertex corrections does not affect it.

First, we calculate the contribution to the spin conductivity
from the bulk states. The results are shown in Fig. 6. As
we can see from the top panel in Fig. 6, the isotropic spin
conductivity component σ Iz

xy is suppressed when the chemical
potential is negative. It occurs since the vertex correction αV C

R

is small in this region of μ. However, when 0 < μ < α2
R/4r ,

the value of αV C
R is comparable to αR and the value of σ Iz

xy

increases significantly. Note that s and λ produces a weak
effect on σ Iz

xy in this range of μ. If μ > α2
R/(4r ), the spin

conductivity vanishes since the density of states on the Fermi
disappears.

The results for the anisotropic component of the spin
conductivity σ Ix

xx are presented in the bottom panel of Fig. 6.
This value decreases almost linearly with an increase of the
chemical potential if μ < 0 and, when μ > 0, it has a small
peak near μ = α2

R/4r . The value σ Ix
xx also demonstrate almost

a linear growth with an increase of the coefficients λ and s.
The dependencies of the isotropic and anisotropic compo-

nents of the spin conductivity on μ for the surface states are
shown in Fig. 7. Both these values have minima at the Dirac
point μ = 0 and particle-hole asymmetry that is smaller for
larger s. Note that σ Ix

xy and σ Ix
xx for the surface states decreases

with an increase of the next-order correction to the spin-orbit
coupling coefficient s.

The effect of disorder on the spin conductivity σ
Iγ

αβ is
illustrated in Fig. 8. Both surface and bulk conductivities are

FIG. 6. Isotropic spin conductivity σ Iz
xy (top) and anisotropic spin

conductivity σ Ix
xx (bottom) for the bulk states as a function of the

chemical potential μ, γb = 0.01. In the top panel black line corre-
sponds to s = λ = 0, red line to λαR/r2 = 0.1 and s = 0, blue line to
sα2

R/r2 = 0.1 and λ = 0, green line to sα2
R/r2 = 0.05 and λ = 0. In

the bottom panel black line corresponds to λαR/r2 = 0.1 and s = 0,
red to λαR/r2 = 0.05 and s = 0, blue line to λαR/r2 = 0.05 and
s = λ/αR .

robust against disorder in the weak scattering limit, γb 	
1. Moreover, the topologically protected surface terms are
robust even in the case of higher disorder, γb ∼ 1, while the
components of the bulk conductivity decrease significantly
in this limit. However, the SCBA is not correct for a strong
disorder γb ∼ 1 and more advanced techniques are required
to study the robustness of the spin conductivity of the surface
states in such regime.

VI. SPIN CONDUCTIVITY FROM THE FILLED STATES

Here we calculate the contribution to the spin conductivity
from the filled states using Eq. (7) and the obtained above
results for the disorder parameter �. Note that the vertex
corrections do not affect this part of the spin conductivity.
Similar to the spin conductivity from the states at the Fermi
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FIG. 7. Isotropic spin conductivity σ Iz
xy (top) and anisotropic spin

conductivity σ Ix
xx (bottom) for the surface states as a function of

the chemical potential, γb = 0.01. In the top panel black line corre-
sponds to sα2

R/r2 = 1 and λ = 0, red line to sα2
R/r2 = 5 and λ = 0,

blue line to sα2
R/r2 = 5 and λ = sαR . In the bottom panel black line

corresponds to sα2
R/r2 = 5 and λ = sαR , red line to sα2

R/r2 = 1 and
λ = 5sαR , blue line to sα2

R/r2 = 5 and λ = sαR/5.

surface, the spin conductivity from the filled states has an
isotropic component σ IIIz

xy and anisotropic one σ IIIx
xx . The

isotropic component, σ IIIz
xy = −σ IIIz

yx , is the only term that
persists in the system in the absence of the hexagonal warping.
The anisotropic components are nonzero only if λ �= 0. In the
rotated coordinates (x̄, ȳ ), the components of tensor σ

IIIγ

αβ

transform similar to σ
Iγ

αβ , see Eq. (21).
We obtain by means of Eq. (7)

σ IIIz
xy = σ z

0

∫
[�(E1) − �(E2)]k dk dφ

2rkα2
Rk

πEs

σ IIIx
xx = σ z

0

∫
[�(E1) − �(E2)]k dk dφ

rk4αRλ(3 + 2k2s)

πEs

Es =
√

α2
Rk + λ2k6 cos2 3φ

[
4α2

Rkk
2 + λ2k6 cos2 3φ + �2

]
,

(23)

FIG. 8. Contribution to the spin conductivity from the states at
the Fermi level, σ

Iγ

αβ , for the bulk and surface states as a function
of disorder strength γb. For all curves μ = −α2

R/r . Black line
corresponds to the contribution from the bulk states in σ Iz

xy for s,
and λ = 0, red line to the contribution from the bulk states in σ Ix

xx

for λαR/r2 = 0.1 and s = 0, blue line is the contribution from the
surface states in σ Iz

xy for sα2
R/r2 = 5 and λ = 0, green line is the

contribution from the surface states in σ Ix
xx for sα2

R/r2 = 5 and λ =
sαR .

where �(x) is the Heaviside step function.
We start with the bulk spin conductivity. In the clean limit,

� = 0, and zero third-order corrections, λ = 0 and s = 0, we

get that σ IIIz
xy = σ z

0

√
1 − 4μr/α2

R if μ > 0 and σ IIIz
xy = σ z

0 if
μ < 0. The latter relation is a well-known result for a spin
Hall conductivity [10,42]. In a more general case, the results
were obtained numerically and presented in Fig. 9. As we can
see from top panel of this figure, the hexagonal warping has
a little effect on the value of the isotropic spin conductivity,
while the correction to the spin-orbit coupling s enhances it.
According to bottom panel of Fig. 9, the anisotropic part of
the spin conductivity, σ IIIx

xx , decays monotonically with the
increase of the chemical potential. It increases almost linearly
with the increase of the hexagonal warping strength λ. The
bulk spin conductivity becomes zero when the chemical po-
tential crosses the bottom of the conduction band and occurs
in the energy gap.

The results for the contribution to the spin conductivity
from the surface states are shown in Fig. 10. We see that
both σ IIIz

xy (μ) and σ IIIz
xx (μ) have maxima at the Dirac point

μ = 0 and decreases with the increase of |μ| (in contrast to
the contribution from the states at the Fermi level, Fig. 7).
These functions are more or less particle-hole symmetric.
From Fig. 10, we see that the value of isotropic spin con-
ductivity σ IIIz

xy decreases with the increase of the higher-order
momentum corrections λ and s. The value of anisotropic spin
conductivity σ IIIx

xx increases with the increase of hexagonal
warping strength λ and decreases with the increase of s.

The dependence of σ
IIIγ

αβ on the disorder parameter �

is shown in Fig. 11. We obtain that the spin conductivity
from the filled states is robust against disorder if γb 	 1. If
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FIG. 9. Isotropic spin conductivity σ IIIz
xy (top) and anisotropic

spin conductivity σ IIIx
xx (bottom) for the bulk states as a function of

the chemical potential in the clean limit, � = 0. In the top panel black
line corresponds to λ and s = 0, red line to λαR/r2 = 0.1 and s = 0,
blue line to sα2

R/r2 = 0.1 and λ = 0. In the bottom panel black line
corresponds to λαR/r2 = 0.05 and s = 0, red line to λαR/r2 = 0.1
and s = 0, blue line to λαR/r2 = 0.1, sαR = 2λ.

the disorder is stronger, γb ∼ 1, both the bulk and surface
conductivities are suppressed.

VII. EVALUATION OF CHARACTERISTIC PARAMETERS

In this section, we demonstrate that the values of the pa-
rameters used above for the calculation of the spin conductiv-
ity are reasonable. We can extract information on the disorder
strength from Ref. [48]. The imaginary part of the self-energy
for the surface states in Bi2Te3 can be estimated from the
ARPES data presented in Ref. [48] as a half-width of the
quasiparticle peak: � ≈ 1 meV and peak position corresponds
to μ ≈ 100 meV. Thus, we get γb ≈ 10−2. This is an upper
limit for the disorder strength, since, for example, electron-
phonon and electron-electron interactions also contribute to
the blurring of the quasiparticle peak. The alternative indirect
estimate we obtain as follows. The STM data from Ref. [49]

FIG. 10. Isotropic spin conductivity σ IIIz
xy (top) and anisotropic

spin conductivity σ IIIx
xx (bottom) for the surface states as a function

of the chemical potential for � = 0. Black line corresponds to
sα2

R/r2 = 5 and λ = 0, red line to sα2
R/r2 = 1 and λ = 0, green line

to sα2
R/r2 = 1 and 2λ = sαR .

shows that for a clean surface of Bi2Te3 there exists one defect
approximately per Å2. We suppose that a typical impurity
potential is of the order of the chemical potential μ (which was
about 200 meV). This assumption is true, e.g., for vacations.
The Fermi velocity for the surface states was evaluated in

Ref. [50] as αR ≈ 3 eV Å
−1

. Then, we get γb ≈ 10−3–10−2.
However, the value of the Fermi velocity for the surface states
differs from sample to sample: lower Fermi velocities down

to αR ≈ 0.03 eV Å
−1

have been reported [51]. The value of
the Rashba coupling for the bulk states is proportional to the
spin splitting of the bands. This value can be tuned by doping

from 0 up to αR ≈ 1.3 eV Å
−1

for Bi2Se3, for BiTeI this value

is even larger αR ≈ 3.1 eV Å
−1

[52]. Thus, the value of αR

for the bulk states with large spin splitting can have the same
order as for the surface states. Also, the electron mass for the
bulk states [53] is close to that for the surface states [54]. Thus
it is reasonable to expect that γb for the bulk states with large
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FIG. 11. Bulk and surface contributions to the spin conductivity
from the filled states, σ

IIIγ

αβ , as a function of disorder parameter �

at μ = −α2
R/r . Black line corresponds to the isotropic component

due the bulk states, σ IIIz
xy , for s and λ = 0, red line presents the

anisotropic component due to the bulk states, σ IIIx
xx , for λαR/r2 =

0.1 and s = 0, blue line is the isotropic component due to the surface
states, σ IIIz

xy , for sα2
R/r2 = 5 and λ = 0, green line is the anisotropic

component due to the surface states, σ IIIx
xx , for sα2

R/r2 = 5 and
λ = sαR .

Rashba splitting would of the same order as for the surface
states.

In Table I we put estimated values of the dimensionless pa-
rameters for Bi2Se3. These values were obtained by fitting the
ARPES data presented in Refs. [54] and [55]. Here subscripts
b and s stand for the bulk and surface states, respectively. In
general, the positions of the Dirac cone for the surface states
is different from the position of zero μ for the bulk states (as
it was defined in Fig. 1). Thus, μs �= μb. Naturally, we can
extract reliable values of parameters αR , r , λ, and s only for
the surface states. We assume that the characteristics αR , r ,
and λ are the same for the surface states and bulk states, while
sb = 0.1ss . We believe that such a choice does not affect the
results within an order of magnitude.

We calculate the components of the spin conductivity for
the set of parameters from Table I and for the dimensionless
disorder strength γb = 10−3 estimated above. The results are
presented in Table II. We see that typically the isotropic, σ z

xy ,
and anisotropic, σx

xx , components of the spin conductivity has
the same order of magnitude. The contribution from the states
at the Fermi level is comparable to the contribution from the
filled states. The spin conductivity of the surface states is of
the same order as the conductivity from the bulk states per
layer for large values of the spin splitting. However, if Rashba
spin splitting of the bulk states is small γb ∼ 1 then spin

TABLE I. Dimensionless parameters extracted from the experi-
mental data of Refs. [54] and [55].

λαR/r2 rμb/α
2
R rμs/α

2
R sbα

2
R/r2 ssα

2
R/r2

Bi2Se3 0.1 0.1 −0.5 0.07 0.7

TABLE II. Components of the spin conductivity calculated using
the parameters from Table I and γb = 10−3.

σ Iz
xy /σ z

0 σ Ix
xx /σ z

0 σ IIIz
xy /σ z

0 σ IIIx
xx /σ z

0

Bulk states per layer 1.67 1.47 0.5 0.22
Surface states 0.57 0.07 0.8 1.02

conductivity for the bulk states is suppressed in comparison
with spin conductivity of the surface states.

Using the estimated above values of parameters, we cal-
culate the dependence of the total spin conductivity, σ

γ

αβ =
σ

Iγ

αβ + σ
IIIγ

αβ , on the chemical potential. The results for the
bulk and surface states are shown in Fig. 12. As we can see
from the top panel in Fig. 12, the isotropic bulk spin conduc-
tivity slowly decreases from the plateau with an increase of
μ, then, has a peak, and finally drops to zero. It is rather high
in the helical state. As for the anisotropic component, σx

xx , its
value is considerably smaller than σ z

xy . It monotonously de-
creases to zero with the growth of the chemical potential. The

FIG. 12. Total bulk spin conductivity per layer (top) and total
surface spin conductivity (bottom) calculated for parameters from
Table I and γb = 10−3. Black line shows isotropic spin conductivity
σ z

xy and red line shows anisotropic component σx
xx .
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spin conductivity due to the surface states does not depend
crucially on the chemical potential, Fig. 12. The anisotropic
component of the surface spin conductivity is much smaller
than the isotropic one.

VIII. DISCUSSION

The spin conductivity quanta can be expressed in the di-
mensional units as σ z

0 ≈ (h̄/2e) 2 · 10−5 �−1. In the previous
section we estimate that the spin conductivity per conducting
layer (either bulk or surface) is of the order of σ z

0 . The distance
between the layers in the TIs l is of the order of 1 nm.
Then, the specific (volume) spin conductivity can be estimated
as σ z

xy/ l ∼ σx
xx/ l ∼ (h̄/2e) 2 · 104 �−1m−1. These values are

close to that directly measured in Bi2Se3 [20].
It has been speculated that the surface states can generate

large spin currents observed in the experiment [23–25]. Ac-
cording to our study, the surface states cannot produce very
large spin current and the spin conductivity of the surface
states typically has the same value as the spin conductivity
of the bulk states per layer if spin splitting of the bulk bands
is large. So, our work confirms the experiments that show
that spin conductivity mainly arises from the bulk states for
a multilayer TI [20,26]. In this case increasing the number
of layers has no effect on the value of spin conductivity, as
it has been observed recently [56]. Also, it can explain the
experiment, where the spin conductivity is small when the
bulk of the TI sample is insulating, and the spin conductivity
increases, when the bulk is conducting [22]. If spin splitting of
the bulk bands is small γb 	 1 then bulk spin conductivity is
suppressed in comparison with the surface spin conductivity.
In this case spin conductivity is mainly carried by the surface
states σ z

xy/L ∼ 2σ z
xy (surf)/L, where L is the film thickness,

and decreases with increase of thickness of film as it was
observed in some experiments [17].

In the present study we can not explain a colossal spin
conductivity in BiSb [56] and (Bi0.5Sb0.5)2Te3 [18], which
is about two orders of magnitude higher than our estimation.
This discrepancy may occur for the following reasons. Our
model consists only of two bands and cannot capture complex
multiband effects. For BiSb it is shown that the gap between
conduction and valence band is small or absent [34]. This
means that many bands contribute to the spin conductivity
and there might be some interaction between those bands that
our model cannot capture. Yet large spin splitting of the bulk
bands [57] can serve as a confirmation of our prediction that
large Rashba coupling leads to the high spin conductivity.
Also, in our consideration we do not take into account the
effects of a magnetic field. The external magnetization (which
is typically presented in the experiments [18]) could enhance
or reduce the spin conductivity. However, we believe that it
is not the key factor if the magnetic field is not too large.
It have been argued in Ref. [20] that different values of the
spin conductivity can be a result of different fitting procedures
of the experimental data. In Ref. [18] spin conductivity is
measured indirectly.

We want to emphasize that the parameter αR is the Rashba
coupling for the bulk states. Under certain conditions this
Rashba coupling can be quite large [58]. Experimentally,

Rashba coupling αR for the bulk states can be tuned by the
doping [59] or strain [60].

In Refs. [12,13] it has been shown that the vertex cor-
rections lead to suppression of the Rashba coupling and,
consequently, the (bulk in the TIs) spin conductivity from the
states at the Fermi level is damped. However, in these papers
the helical state, 0 < μ < α2

R/4r , has not been considered.
According to our analysis, in such phase, the vertex-corrected
Rashba spin-orbit coupling is comparable to its bare value αR .
So, a quite significant contribution to the spin current can be
observed even from the bulk states. The vertex corrections
also increases the contribution from the surface states to the
spin conductivity.

The bulk spin conductivity is robust against disorder if the
spin splitting is large in comparison with a disorder, γb 	 1.
Otherwise, these contributions to the spin conductivity are
suppressed, see Figs. 8 and 11. The surface spin conductivity
is robust against disorder even if a disorder is not weak, γb ∼
1. The nature of robustness of the surface spin conductivity
is similar to the robustness of the surface charge conductivity
against disorder and arises due to suppression of the back-
scattering. However, the study of the spin conductivity of
the surface states in case of strong disorder deserves future
studies.

We neglect the effect of the finite hybridization between the
different sides of the thin film. In principle, this hybridization
can open a gap in the spectrum of the surface states. However,
if there is at least six layers then the gap due to hybridization
of the different sides vanishes [61] and we can consider each
side of the film independently. Effects of the finite thickness
on the spin conductivity are studied in the paper that we are
preparing for publication [62].

The surface spin conductivity in a thin layer of TI with a
cubic lattice have been studied in Ref. [35] without taking into
account the vertex corrections. The authors of the latter paper
argue that the dependence of the surface spin conductivity
on the disorder and chemical potential is weak. Our analysis
confirms these results qualitatively, see Figs. 8, 11, and 12.
However, vertex corrections increase spin conductivity of the
states at the Fermi energy approximately by factor of 2, so this
agreement between results is qualitative not quantitative.

The bulk spin conductivity can be tuned by a changing the
chemical potential. Adjusting the chemical potential to the
vicinity of the bottom of electron band, μ = α2

R/4r , we can
attain the largest spin currents, see Fig. 12. The tuning of the
spin conductivity contribution from the filled states by chang-
ing the chemical potential has been demonstrated numerically
in Ref. [34]. The dependence of the spin Hall angle on the
chemical potential has been measured in the experiments [19].
However, the observed result can be explained not only by the
present analysis but also by the particle-hole asymmetry of the
charge current.

In the experiment, the components of the spin conductivity
tensor are measure in the coordinate axes x̄, ȳ related to the
current. In Ref. [21] the spin conductivity component σ

y
x̄x̄ was

measured in BiSbTeSe2. The authors observed different sign
of this value in different samples. According to the conduc-
tivity tensor transformation presented in Sec. V, Eq. (21), the
measured conductivity should be anisotropic and depends on
the angle θ between the current and crystallographic x axis
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as σ
y
x̄x̄ = −σx

xx sin 3θ . Thus, different sign of the measured
spin conductivity may be due to the different orientation of
the current leads with respect to the crystallographic axes in
different samples.

We used Kubo formalism to study spin conductivity to in-
corporate vertex corrections and contributions from the filled
states and from the states at the Fermy energy. Also, similar
calculations can be done using kinetic approach that may be
computationally beneficial for a complex systems [63]. This
approach can be used to study spin-orbit torques in different
systems as well [64].

In conclusion, we found that hexagonal warping gives rise
to the additional anisotropic components in the spin conduc-
tivity. For the bulk states spin conductivity is enhanced at the
helical regime where only one spin-split band occurs at the
Fermi energy due to large vertex corrected spin orbit coupling.

Spin conductivity of the bulk states in robust against disorder
if spin splitting of the bands larger than disorder broadening;
otherwise, spin conductivity is suppressed. Spin conductivity
of the surface states is robust against disorder and have the
similar value to the conductivity of the bulk states with large
Rashba coupling per layer.
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