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Negative viscosity and eddy flow of the imbalanced electron-hole liquid in graphene
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We present a hydrodynamic theory for electron-hole magnetotransport in graphene incorporating carrier-
population imbalance, energy, and momentum relaxation processes. We focus on the electric response and find
that the carrier and energy imbalance relaxation processes strongly modify the shear viscosity, so that an effective
viscosity can be negative in the vicinity of charge neutrality. We predict an emergent eddy flow pattern of swirling
currents and explore its manifestation in nonlocal resistivity oscillations in a strip of graphene driven by a source
current.
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I. INTRODUCTION

In hydrodynamics an eddy phenomenon is a particular
large-scale turbulentlike motion of the fluid with a distinct
swirling pattern of the flow velocity. It is often discussed
in conjunction with the concept of negative viscosity, syn-
onymously called eddy or turbulent viscosity, that has roots
going back to the early studies of Reynolds [1]. In contrast to
kinematic shear viscosity, which describes the physical prop-
erties of the fluid, the eddy viscosity describes the properties
of the flow itself. For that reason it is sign indefinite and
could be negative, unlike the shear viscosity, which is strictly
positive, as dictated by the second law of thermodynamics
for irreversible processes [2]. The negative viscosity effects
are counterintuitive. The classical text of Starr [3] contains
a number of essays summarizing some empirical facts and
describes the spectacular manifestations of eddies in the geo-
physical context of earth’s atmosphere and oceanic streams,
the sun’s photosphere, and spiraling galaxies. In analytical
models, perhaps the simplest hydrodynamic system exhibit-
ing a negative viscosity effect is the so-called Kolmogorov
flow: the two-dimensional flow of a viscous liquid induced
by a unidirectional external force field periodic in one of
the coordinates [4]. The stability of such flows has been
extensively investigated by taking into account higher-order
gradient and nonlinear terms in Navier-Stokes equations and
by the direct numerical modeling [5]. An emergent regime of
negative viscosity was also found in magnetohydrodynamics
of tokamak plasmas [6], ferrofluids [7], and in the description
of Rossby wave turbulence[8].

Is it possible to have an analog of these effects in strongly
correlated electron systems? The idea that electrons in solids
can flow hydrodynamically was put on firm footing by Gurzhi
[9]. It took, however, several decades for the manifestations
of electronic viscous effects to be observed in macroscopic
transport experiments [10,11]. The reason has to do with the
fact that, typically, low-temperature transport in the usual
materials is dominated by disorder, which is incompatible
with the hydrodynamic picture as electron-impurity scat-
tering quickly relaxes momentum. Raising the temperature
leads to a shorter electron-electron scattering time and thus

sufficiently fast equilibration of the electron liquid; however,
at elevated temperatures electron-phonon scattering begins
to dominate, leading to both momentum and energy relax-
ations. As a consequence, the hydrodynamic regime can be
expected only in an intermediate range of temperatures in
very clean samples where electronic equilibration occurs on
length scales that are short compared to those of momentum
and energy relaxations. This is, in practice, difficult to realize
in most materials. A wealth of transport data extracted from
measurements on two-dimensional electron systems in high-
mobility semiconductor devices with low electron densities
is presented in the review in [12], where arguments were
put forward that multiple observed features can be under-
stood by invoking hydrodynamic effects. Recently, various
signatures of hydrodynamic flow, such as current whirlpools
and anomalous thermal conductivity and thermopower, were
observed and explained in monolayer graphene [13–18] and
palladium cobaltate [19]. Monolayer graphene (MLG) on
hexagonal boron nitride (hBN) represents essentially a unique
system in which, due to its purity, electrons can be brought
into the hydrodynamic regime over a fairly wide range of
temperatures, from 50 K to practically room temperature, and
furthermore, the electron-electron scattering length can be
controlled by tuning the carrier concentration using a gate
electrode. In this work we report on the possibility of an
eddy pattern formation in an imbalanced electron-hole liquid
in graphene and develop a corresponding microscopic theory.
Special attention is paid to determining the region in the
density-temperature-field phase diagram where this effect is
strongest. We discuss experimentally relevant geometry and
give concrete predictions for the manifestations of Dirac fluid
eddies in the nonlocal magnetotransport measurements.

The rest of the paper is organized as follows. In Sec. II we
formulate the generic hydrodynamic transport theory appli-
cable to the electron-hole liquid in MLG subject to external
magnetic field. Additional details for this section are pro-
vided in Appendix A. We analyze linearized hydrodynamic
equations in Sec. III with the microscopic coefficients and
relaxation rates computed from the underlying kinetic theory,
which is sketched in Appendix D. In Sec. III A we derive
the stream function equation for the hydrodynamic flow and
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solve it with a Fourier transform in Sec. III B to reveal the
regime of the eddy flow. In Appendix E we present the same
computation carried out for different boundary conditions. We
summarize our findings in Sec. IV with an angle on recently
published related work and perspectives for future studies.

II. HYDRODYNAMIC EQUATIONS

Assuming fast equilibration of electron-hole plasma due
to strong e-e(h) inelastic Coulomb collisions, we express
the carrier current densities and energy-momentum tensor
in terms of local thermodynamic functions, hydrodynamic
velocity, and dissipative deviations from local equilibrium.
The resulting hydrodynamic equations [20–23]

∂tρ + div J = 0, ∂tn + div P = I, (1a)(
h/v2

F

)
(∂t + u · ∇) u = −∇P + l + f − ∇ · θ̂ , (1b)

T

[
∂t s + div

(
s u − ν

T
p + μ

eT
j
)]

= � − u · f − νI

+ 1

e

[
L + T ∇

(
μ

T

)]
· j − T ∇

(
ν

T

)
· p − θ̂ : ∇u (1c)

include the charge and carrier continuity, Navier-Stokes, and
entropy production equations (throughout the paper we use
units of h̄ = kB = 1). Here vF is the Fermi velocity, e > 0 is
the elementary charge, and ρ, n, h, and s are the proper charge,
carrier number, enthalpy, and entropy density, respectively.
Finally, μ, ν, and T are, respectively, the relative chemical
potential, imbalance chemical potential, and temperature. The
total pressure P satisfies the equation of state P = h/3, which
is a consequence of relativistic scale invariance. In Eq. (1),
the charge current density J and carrier current density P are
parametrized as J = ρu + j, and P = nu + p, where u is the
fluid velocity, j and p are the dissipative fluctuations, and θ̂

describes the dissipative part of the stress tensor manifesting
the viscous effects. We have assumed the limit u2/v2

F � 1
and ensured that the proper densities receive no dissipative
corrections, so that the dissipative fluctuations are orthogonal
to the fluid velocity (see Appendix A for additional details).
As a consequence the Lorentz force density on charge flow,
l ≡ ρE + J × B, decomposes into l = ρL/e + j × B and
L = e(E + u × B), where E is an in-plane electric field and
B = B ẑ is a transverse magnetic field. The carrier imbalance
flux I captures the electron-hole generation/recombination
processes due to higher-order Coulomb collisions [21–24]
and electron-optical phonon scatterings [25]. The dissipation
power density � and friction force density f describe the
energy and momentum relaxations induced by phonon and
impurity scatterings. We assume that phonons serve as an
infinitely large thermal reservoir and define the global equi-
librium while the carrier temperature fluctuations are allowed
due to finite cooling.

III. LINEAR TRANSPORT THEORY

Within the linear response, the entropy production equa-
tion (1c) implies that the thermodynamic forces {L +
T ∇(μ/T ), T ∇(ν/T ), ν, δT , u,∇u} determine the conjugate
dissipative fluxes {j, p, I,�, f , θ̂} via the linear matrix

relations:(
j

ep

)
=

(
σ00 σ01

σ10 σ11

)(
L/e + T ∇(μ/eT )

−T ∇(ν/eT )

)
, (2a)

(
e2I
e2�
T

)
= −

(
λ11 λ12

λ21 λ22

)(
ν

δT

)
, (2b)

f = −hu/
(
v2

F τel
)
, (2c)

θ̂ = −η(∇u + ∇uT ) − I(ζ − η)div u. (2d)

Onsager’s reciprocity enforces the symmetry of the ki-
netic coefficients: σαβ = σβα , α, β ∈ {0, 1}, and λαβ = λβα ,
α, β ∈ {1, 2}. In Eq. (2a) the electric conductivities {σαβ}
arise solely due to Coulomb collisions, which are functions
of the dimensionless variables {μ

T
, ν

T
}. Particle-hole symme-

try requires that the diagonal and off-diagonal elements are
even and odd functions of the relative chemical potentials,
respectively, σαβ (−μ) = (−1)α+βσαβ (μ). This implies that
at local charge neutrality σ01(0) = 0. In Eq. (2b) the pa-
rameters {λαβ} characterize the efficiency of electron-hole
generation/recombination and energy relaxation processes. In
Eq. (2c) the friction force density is determined by the mo-
mentum relaxation time τel caused by impurities and phonons.
In Eq. (2d) η and ζ are, respectively, the shear and bulk
viscosities. These kinetic coefficients can be computed via
microscopic quantum kinetic equations [21–26]. In particular,
we compute matrix λ̂ in Eq. (2b) along with impurity- and
phonon-mediated relaxations in Appendix D. We note that
{I,�, f } are present already at the level of the ideal hydrody-
namics that omits the dissipative fluctuations. In contrast, the
conductivities and viscosities {σαβ, η, ζ } require solving the
kinetic equations in first order in τee,eh. In what follows we
assume that the response coefficients in Eq. (2) are spatially
uniform and magnetic field independent. These simplifica-
tions are justified in the linear response regime and for weak
magnetic field ωBτee,eh � 1, where the cyclotron frequency
of a quasiparticle is ωB = v2

F enB/h.
For discussing the general linear response we define the

heat current density Q ≡ hu − νP + μ

e
J, which substitutes

for the fluid velocity u as an independent flow mode, and the
electrochemical potential fluctuations δV through −∇δV =
E ≡ E + ∇δμ/e, where δμ denotes the local chemical poten-
tial fluctuations. Combining Eqs. (1) and (2), we obtain the
transport equations for steady flows in the form

∇ · �α = −λαβ�β, (3a)

�̂αβ · �β − Hαβ∇2�β = −Zαβ∇�β. (3b)

Here �α (r) ∈ {δV, 1
e
ν, 1

e
δT } are the hydrodynamic po-

tentials, and �α (r) ∈ {J, eP, e
T

Q} are the conjugate cur-
rents, with α ∈ {0, 1, 2} labeling the corresponding charge,
carrier, and thermal modes, respectively. In Eq. (3a) the
coefficients λαβ are the relaxation parameters in Eq. (2b)
complemented by λαβ = 0 for α or β = 0 (charge conserva-
tion). We have neglected the nonlinear Joule and viscosity-
induced heating terms in the thermal continuity equation.
In Eq. (3b), the bulk transport coefficients are given by
�̂αβ = [(h/v2

F τel )χαχβ + �δγ AαδAβγ ]Î + BαβB̂. Here χα ∈
{ μ

eh
, 0, − T

eh
}; �αβ = [σ̂−1]αβ for α, β ∈ {0, 1}, and �αβ = 0
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for α or β = 2, encoding the electric conductivities in
Eq. (2a); and Aαβ = δαβ + χαdβ , with dβ ∈ {ρ, en, 0}. The
magnetic field effects are described by the last term, where
B̂ = Bε̂, with ε̂ being the two-dimensional Levi-Civita sym-
bol and Bαβ = Bβα , with B00 = χ0(2 + χ0ρ), B02 = χ2(1 +
χ0ρ), B22 = (χ2)2ρ, and Bαβ = 0 for α = 1. The shear and
bulk viscous effects are respectively described by Hαβ =
ηχαχβ and Zαβ = δαβ + ζχαχγ λγβ .

A. Stream function of the charge flow

We focus on the electric response of the system. For that
purpose we introduce the stream function for the charge flow
ϕ(r) via (Jx, Jy ) ≡ (∂y,−∂x )ϕ to solve the charge conser-
vation. Eliminating the carrier and thermal modes, we cast
Eq. (3) in the form of Ohm’s law together with the stream
function equation,

E = R̂ · J, R̂ = L̂00 − Ĝ0aK̂abL̂b0, Rxx∇2ϕ = 0, (4)

where the summation of mode indices spans only
{a, b} ∈ {1, 2}; L̂αβ = �̂αβ − Hαβ Î∇2; Ĝαb = L̂αb − ZαbD̂,
where D̂ ≡ ∇∇ is the gradient-gradient tensor and
Zαb = δαc[λ̂−1]cb + ζχαχb; and [K̂−1]ab = Ĝab is an analog
of the propagator in carrier-thermal-mode space. We note
that the second term in the resistivity operator R̂ encodes
the thermoelectric and imbalance-electric effects, through
which the imbalance relaxation and bulk viscous processes
proliferate. In practice one first solves the boundary value
problem for the stream function ϕ(r) to obtain the charge flow
J(r). The relative voltage between two space points r1 and r2

takes the integral form δV (r1) − δV (r2) = ∫
c
dl · R̂ · J,

where c denotes a path from r1 to r2 and dl is an
infinitesimal vector element of the path. It is obvious
that the viscosities and imbalance relaxation processes
contribute to the electrochemical field only if the charge flow
is inhomogeneous.

The charge conservation imposes important constraints on
electric responses. (i) Finite imbalance relaxation and bulk
viscosity encoded in Zαb contribute only to the magnetore-
sponses, unlike the shear viscosity that contributes at B = 0.
(ii) The resistivity operator R̂ is effectively a function of the
Laplacian ∇2 even though D̂ involves more types of derivative
operations. (iii) R̂xx = R̂yy and R̂xy = −R̂yx are even and
odd functions of the magnetic field B, respectively. These
properties can be readily proved by formally expanding R̂ in
a Dyson series of D̂ and applying the constraints D̂ · J = 0
and D̂ε̂ · J = ∇2ε̂ · J (see Appendix B for further details).

We benchmark our theory in two limits. The first is Ohmic
flow. For inviscid and postbalanced fluids, η, ζ, λ̂−1 = 0, the
resistivity operator in Eq. (4) reduces to the bulk resistances,
R̂ → R̂; the stream function satisfies the harmonic equation
∇2ϕ = 0, and no vertex is allowed. The second is the Stokes
flow considered in Refs. [17,18]. At zero field B = 0 and in
the shear-viscosity-dominant regime, the resistivity operator
reduces to Laplacian R̂ ∼ ∇2, and the stream function satis-
fies the biharmonic equations ∇4ϕ = 0.

For weak inhomogeneity we expand the resistivity op-
erator up to first order in ∇2, R̂ � R̂ + δR̂ + O(∇4)
(see Appendix C for the intermediate steps of calcu-
lation), where the imbalance-viscosity corrections read

δR̂ = (Cxx Î + Cxyε̂)∇2. The stream function equation re-
duces to

Rxx∇2ϕ + Cxx∇4ϕ = 0, (5)

where Rxx (B ) = σ−1[1 + c0(B )] and ρ2Cxx (B ) = −c1

(B )η + c2(B )(η + ζ + ς ): σ = σQ + σD is the hydrody-
namic conductivity, with σQ = σ00 and σD = v2

F τelρ
2/h

being the minimal and Drude conductivities, respectively,
and ς = κaκbλ̂

−1
ab , with κa ∈ {en − ρ σ01

σ00
, eh

T
}, representing

the effective viscosity induced by imbalance relaxation
processes. The dimensionless functions c0(B ) = σQ�B/�,
c1(B ) = (RxxσD )2, and c2(B ) = σD�B/�2, where
� = (1 + σD/σQ)2 + σD�B and �B = v2

F τelB
2/h is the

magnetoresistivity at neutrality. At zero field c0(0) = c2(0) =
0 and c1(0) = σD/σ .

Equation (5) is characterized by the effective resistivity-
to-viscosity ratio Q ≡ Rxx/Cxx . We note that the sign of
Q is not fixed by any fundamental reason. In particular,
at neutrality ρ = 0, Cxx = (η + ζ + ς )(v2

F τelB/h)2 > 0. In
contrast, for σD/σQ 	 1, Cxx = −η/ρ2 < 0. Cxx remains
positive at low charge density for a moderate strength of
the momentum relaxation scattering as captured by τel. As
shown in Fig. 1(a), the critical line Cxx = 0 gives the equation
for three effective quantities σ̃D (1 + σ̃D + �̃B )2 = (1 + r )�̃B ,
where σ̃D ≡ σD/σQ, �̃B ≡ σQ�B , and r ≡ (ζ + ς )/η are
the dimensionless Drude resistivity, magnetoresistivity, and
imbalance-viscosity ratio, respectively. The Cxx > 0 regime is
accessible as long as σ̃ ∗∗

D < σ̃D < σ̃ ∗
D , where the upper bound

σ̃ ∗
D = (

√
r + 2 − 1)/2 at �̃∗

B = (
√

r + 2 + 1)/2, determined
by the imbalance-viscosity ratio r , and the lower bound σ̃ ∗∗

D ∼
v2

F ρ2
minτee/h, estimated by the inelastic scattering time τee(eh)

and the residual charge density ρmin.
For high-quality hBN graphene close to neutrality, we

numerically calculate the imbalance relaxation coefficient ς

and the scattering time τel using the kinetic theory in Ap-
pendix D and estimate η ≈ 0.45T 2/v2

F α2 [27–29], τ−1
ee ≈

α2T [20,23], σQ ≈ (0.79 + 9.13α)/α2 [25], and σ01, ζ ≈ 0.
We take the fine-structure constant α = 0.6 and the effective
electron-phonon coupling αph = 2.2 [25]. In Fig. 1 we show
σ̃ ∗

D and σ̃ ∗∗
D as functions of temperature T and residual charge

density ρmin and observe that σ̃ ∗
D ∼ 104σ̃ ∗∗

D for T > Tmin,
where the puddle temperature Tmin ≈ TF (ρmin), with TF (ρ) =
vF

√
π |ρ|/e being the Fermi temperature. We further show

the sign of Cxx in ρ, T , and B space. We take |ρmin| =
5.0 × 109 e/cm2 [13] so that Tmin = 135 K and observe that at
about B ∼ 0.1 T and T > Tmin, we access the Cxx > 0 region
for |ρmin| � |ρ| � 1011 e/cm2.

B. Eddy pattern and nonlocal resistances

We study the nonlocal response in the strip geometry
defined by the area 0 < y < w with transverse charge current
I injected and drained through a pair of contacts at x = 0. We
solve the stream function equation (5) analytically with the
no-slip boundary condition ∂yϕ|y=0,w = 0 and −∂xϕ|y=0,w =
I

γ

π (γ 2+x2 ) , where γ > 0 describes the size of the contacts,

ϕ(x, y) = − I

π

∫ ∞

0
k−1e−γ k sin (kx)g(k, y; Q)dk, (6)
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FIG. 1. Phase diagram of the effective viscosity. (a) The sign of
Cxx as a function of the effective Drude resistivity σ̃D , magnetoresis-
tivity �̃B , and imbalance-viscosity ratio r . The red curve σ̃D (�̃B ; r )
indicates Cxx = 0, with the maximum σ̃ ∗

Q at �̃∗
B . The blue line

indicates the lower bound of the Drude conductivity σ̃ ∗∗
D estimated

by the inelastic scattering time τee and minimum charge density ρmin.
(b)–(d) σ̃ ∗

D and σ̃ ∗∗
D as functions of temperature T and residual charge

density ρmin. For comparison, we took several different values for the
fine-structure constant α and the effective electron-phonon coupling
αph, whose range is shown in the legends of (b) and (c). To obtain
the phase diagram in (d) we used α = 0.6 and αph = 2.2. The black
dashed line indicates the puddle temperature Tmin. (e) and (f) show
the sign of Cxx as a function ρ, T , and B. The curves indicate
Cxx = 0 and the low-density region Cxx > 0. We take the residual
charge density |ρmin| = 5 × 109 e/cm2 (Tmin = 135 K). (e) The sign
of Cxx as a function ρ, T for various B. The red and black dashed
lines indicate the puddle temperature Tmin and the Fermi temperature
TF , respectively. (f) The sign of Cxx as a function ρ, B for various T .

where g(k, y; Q) = [f (q, k, y) − f (k, q, y)]/[f (q, k, 0) −
f (k, q, 0)], with f (k, q, y) = k sinh(kw/2) cosh[q(y −
1/2)] and q =

√
k2 − Q for k2 � Q and q = i

√
Q − k2 for

k2 < Q. We note that the dimensionless parameter Q = Qw2

fully determines the flow, and when Q > Q∗ ≈ 37.01,
g(k,Q) has simple poles, and the integral (6) takes Cauchy
principal values. The nonlocal resistivity is determined by the
voltage across the width of the layer as a function of the x

coordinate, R(x) ≡ [δV (x, 0) − δV (x,w)]/I , and does not
depend on the Hall coefficients Rxy and Cxy . We show the
charge flows for various Q > 0 and lead sizes γ in Fig. 2. For
Q < Q∗, the amplitudes of vortices decay exponentially with
distance to leads, ln |J| ∼ −√

Q∗ − Q|x|, and are reduced for
finite lead widths γ > 0. For Q > Q∗, the vortices form eddy
flows that are stable against finite lead width and possible
different forms of boundary conditions (e.g., the no-stress
boundary layer considered in Appendix E). Moreover, away
from the leads we observe that the number of vortices across
the strip is odd, 2n − 1, where n is the number of poles
of g(k) for k ∈ [0,

√
Q∗]. In Fig. 3 we show the nonlocal

resistivity R(x) corresponding to the current patterns in
Fig. 2. We note two important observations. (i) For Q < Q∗,
R(x) exhibits a couple of sign reversals and decays rapidly as
x increases, while for Q > Q∗, R(x) oscillates about zero as
x increases. This coincides with the eddy picture. (ii) Finite
lead size γ > 0 modifies the local resistivity R(x ∼ 0), and
one has R0(0) > 0, RI (0) < 0, and R(0) < 0.

IV. DISCUSSION AND OUTLOOK

A few comments are in order in relation to the results pre-
sented in this paper and in the context of recent related studies.
The first point concerns terminology. In this work we adopted
the concept of negative viscosity and used it in relation
to the unconventional sign of the resistivity-to-viscosity-ratio
parameter Q = Rxx/Cxx in Eq. (5) that determines the pattern
of the macroscopic flow through the stream function. As is
known from previously studied examples, the approximation
based on the introduction of a single large-scale coordinate
provides a successful description of the formation of regu-
lar eddy systems (see, e.g., Fig. 4 from Ref. [30]). In the
present case of an electron liquid in MLG, the underlying
microscopic mechanism is completely different and comes
from the coupling of charge modes to particle number and
temperature imbalance modes. However, it is, in a sense,
analogous to other historical findings where fluid flows couple
to, e.g., magnetization modes [7] or some other modes in the
system, which gives rise to the formation of stable vorticities
via the effective negative viscosity effect (in particular, see
Ref. [31] for a more detailed review of two-dimensional
magnetohydrodynamic flows with negative viscosity).

It has been shown in a recent work [32] that the interplay
between viscosity and fast recombination in a two-component
conductor (e.g., e-h plasma in MLG) leads to the appearance
of current counterflows. In the geometry of the lateral trans-
port current, the distribution of the edge currents in the trans-
verse direction was found to possess a nontrivial spatial profile
that consist of two stripelike regions: the outer stripe, which
carries most of the current in the direction of the external
electric field, and the inner stripe, with the counterflow. The
functional form of the flow profile is a periodic function whose
oscillatory part and decay part are controlled by the same scale
(overdamped oscillation). We make the same observations
concerning the importance of the interplay of viscous and
relaxation effects but consider a different transport geometry
and find a more pronounced regime of oscillatory vortex
response.
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FIG. 2. Charge current distributions in a strip of monolayer graphene for various resistivity-to-viscosity-imbalance ratios Q and lead sizes
γ . We take the strip width w = 1. (a)–(d) Pointlike leads γ = 0 and (a′)–(d′) finite-size leads γ = 0.1. For Q < Q∗ the amplitudes of vortices
decay rapidly with distance to leads. Moreover, only the first pair of vortices survives for finite lead width. For Q > Q∗ the vortices form eddy
flows that are stable against the finite lead width.

In addition, it was proposed earlier in Ref. [33] that vortici-
ties in the preturbulent regime could be observed in MLG pro-
vided there was a relatively high Reynolds number (∼10). The

Strouhal number that measures the vortex shedding frequency
was also estimated, with reasonable assumptions about the
conditions of possible experiments. However, we discussed

FIG. 3. Effective nonlocal resistivity R(x )/Rxx in a strip of monolayer graphene corresponding to the current patterns in Fig. 2. The blue
and red dashed curves are bulk resistivity R0(x ) and viscosity imbalance RI (x ) contributions, respectively. We note that finite lead size strongly
modifies the local resistivity R(0) and, moreover, R0(0) > 0, RI (0) < 0, and R(0) < 0. (a) and (a′) for Q < Q∗, R(x ) exhibits a couple of
sign reversals and decays rapidly as x increases. (b)–(d) and (b′)–(d′) for Q > Q∗, R(x ) oscillates about zero as x increases.
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FIG. 4. Schematic plots for the analytical properties of the function g(k,Q) in Eq. (E6). We take w = 1 and y = 0.2. (a) The black
curve indicates Q = k2, and the red curves show the singularities of g(k,Q). (b) g(k) for Q = 425 [along the white dashed line in (a)]. The
singularities are simple poles.

here a different kind of vortex response that crucially re-
lies on carrier imbalance and occurs already at the level
of linear hydrodynamics in a low-Reynolds-number regime
(Poiseuille flow). We expect that the observability of eddies
and related resistance oscillations should be accessible with
existing high-quality hBN-MLG devices, but we realize that
this could still be challenging. The reason is that the typical
timescale describing the generation/recombination processes
is much longer than the e-e(h) equilibration time. Indeed, due
to kinematic constraints, imbalance relaxation time requires
multiparticle collisions. Close to neutrality the corresponding
rate could be estimated as τ−1

imb ∼ α4T , up to some logarithmic
factors ln(1/α), which are clearly suppressed compared to the
equilibration rate, τ−1

ee ∼ α2T , for the case of weak interaction
α � 1. However, at moderately strong interactions α ∼ 1 the
imbalance decay rate can be relatively high. In addition, it is
strongly sensitive to electron–optical-phonon scattering (see
Ref. [25] and estimates in Appendix D). One should also keep
in mind that the kinetic coefficient ς , which in a way defines
the imbalance-to-viscosity ratio r , is not solely governed by
imbalance relaxation but is also strongly dependent on energy
relaxation processes via the inverse of λαβ [Eq. (2b)], which
mixes sectors of carrier imbalance and thermal modes and
consequently favors higher values of r .

Regarding the outlook, we wish to mention that the theory
developed in this work may shed some light on the observed
sign change of the Coulomb drag in a nonlocal measurement
setup of graphene double layers [34], and the corresponding
analysis will be presented in a separate work [35].
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APPENDIX A: HYDRODYNAMIC THEORY

We introduce the hydrodynamic equations of motion for
massless Dirac fermions in relativistically covariant notation,

∂aJ
a = 0, ∂aP

a = I, ∂a�
ab = −FabJb/vF + f a,

(A1)

where summation over repeated space-time indices a, b ∈
{0, 1, 2} is assumed, with xa ∈ {vF t, x, y}, ∂a = ∂/∂xa , and
metric gab = diag{+1,−1,−1}. In Eq. (A1), J a and P a

denote the charge and quasiparticle three-current density,
respectively, �ab is the traceless energy-momentum tensor,
and the Faraday tensor

Fab =

⎛
⎜⎝

0 Ex Ey

−Ex 0 vF B

−Ey −vF B 0

⎞
⎟⎠, (A2)

incorporating an in-plane electric field E and a transverse
magnetic field B = B ẑ. The quasiparticle imbalance flux I
describes the e-h generation/recombination processes. The
friction force density f a manifests the energy-momentum re-
laxations. Assuming fast intralayer equilibration of the carri-
ers due to strong inelastic e-e and e-h Coulomb collisions, we
express the current densities and energy-momentum tensor in
terms of local thermodynamic variables; hydrodynamic three-
velocity Ua = ξ (vF , u), with u being the fluid velocity and
ξ = (1 − u2/v2

F )−1/2 being the dilation factor; and dissipative
derivations from local equilibrium:

J a ≡ ρUa + ja, P a ≡ nUa + pa,

�ab = h
(
UaUb/v2

F − gab/3
) + θab, (A3)

where ρ, n, and h are the proper (rest-frame) electric charge,
carrier, and enthalpy density, respectively, and ja , pa , and
θab are the dissipative fluctuations of the charge current den-
sity, number current density, and energy-momentum tensor,
respectively. Ensuring that the proper internal energy and

045434-6



NEGATIVE VISCOSITY AND EDDY FLOW OF THE … PHYSICAL REVIEW B 99, 045434 (2019)

electron and hole densities receive no dissipative corrections,
the dissipative fluctuations are orthogonal to the fluid velocity:
Uaj

a = 0, Uap
a = 0, and Uaθ

ab = 0. Applying the fluid
velocity Ua and the projector Pab ≡ UaUb/v

2
F − gab to the

energy-momentum continuity equation in Eq. (A1), we obtain

the energy evolution equation along Ua and the momentum
evolution equation perpendicular to it. Inserting the decom-
position (A3) and taking the limit u2/v2

F � 1, we obtain the
Navier-Stokes equation (1b) and entropy production equation
(1c).

APPENDIX B: PROPERTIES OF THE RESISTIVITY OPERATOR

In Eq. (4) defining K̂ab = K̂ab(Z = 0) and decomposing L̂αβ = L0,αβ Î + L2,αβ ε̂ and K̂ab = K0,abÎ + K2,abε̂, we expand the
resistivity operator in D̂ and obtain

R̂ · J = L̂00 · J − (L̂0a − Z0aD̂)K̂aa0

(
δa0b +

∞∑
n=1

Za0b1D̂K̂b1a1Za1b2D̂K̂b2a2 · · · Zan−1bn
D̂K̂bnb

)
L̂b0 · J

= (L̂00 − L̂0aK̂abL̂b0) · J + (
Z0a Î − L̂0a1K̂a1a2 Za2a

)∇2[(1 + K̂0Ẑ∇2)−1]aa3

(
K0,a3bL2,b0 + K2,a3bL0,b0

)
ε̂ · J, (B1)

where we have applied the identities due to the charge conservation, D̂ · J = 0 and D̂ε̂ · J = ∇2ε̂ · J. (i) For B = 0, K̂2 =
L̂2 = 0, so that R̂(B = 0) = I(L0,00 − L0,0aK0,abL0,b0). (ii) At neutrality ρ = 0, since Z0a = 0, �0a,xx = �̂a0,xx = 0, �00,xx =
σ−1

00 , and �̂αβ,xy = −B( T
eh

)(δα0δβ2 + δα2δβ0)ε̂, we have R̂ = σ−1
00 Î − B2( T

eh
)
2
ε̂K̂22ε̂ and R̂ · J = RxxJ, where Rxx = σ−1

00 +
B2( T

eh
)
2K̃22, with [ ˆ̃K−1]ab = �ab,xx + (Hab + Zab)(−∇2). (iii) The double-gradient operator can be decomposed as follows

D̂(λ1, λ3) = (∇2/2)σ̂ 0 + λ1∂x∂yσ̂
1 + λ3[(∂2

x − ∂2
y )/2]σ̂ 3, where σ̂ 1,2,3 are the xy-space Pauli matrices, σ̂ 0 = Î, and λ1,3 = 1

are the auxiliary parameters. We write the resistivity operator in the form

R̂(B, λ1, λ3) =
3∑

i=0

R̂i (B, λ1, λ3) ⊗ σ̂ i . (B2)

Since the theory is invariant under the transforms B → −B and x ↔ y or B → −B and y → −y, which are represented by
σ̂ 1R̂(−B, λ1,−λ3)σ̂ 1 = R̂(B, λ1, λ3) or σ̂ 3R̂(−B,−λ1, λ3)σ̂ 3 = R̂(B, λ1, λ3), we readily have the symmetries

R̂0,1(−B, λ1,−λ3) = R̂0,1(B, λ1, λ3), R̂2,3(−B, λ1,−λ3) = −R̂2,3(B, λ1, λ3),

R̂0,3(−B,−λ1, λ3) = R̂0,3(B, λ1, λ3), R̂1,2(−B,−λ1, λ3) = −R̂1,2(B, λ1, λ3). (B3)

Furthermore, for λ1 = 0 and λ3 = 0, we respectively obtain higher symmetries,

R̂0,3(−B, 0, λ3) = R̂0,3(B, 0, λ3), R̂1,2(−B, 0, λ3) = −R̂1,2(B, 0, λ3),

R̂0,1(−B, λ1, 0) = R̂0,1(B, λ1, 0), R̂2,3(−B, λ1, 0) = −R̂2,3(B, λ1, 0). (B4)

The equations in (B4) imply that in the absence of the charge conservation the longitudinal (Hall) components could involve odd
(even) powers of B induced by the imbalance effects (due to the transverse response Dxy = ∂x∂y).

APPENDIX C: DERIVATION OF THE STREAM FUNCTION EQUATION

For weak inhomogeneity we expand the resistivity operator up to the first order in the differential operators {∇2, D̂}, R̂ =
R̂ + δR̂ + O(∇4, D̂2), where R̂ are the resistivity matrices for infinitely large homogeneous systems,

R̂ = �̂00 − �̂0aK̂ab�̂b0 = Rxx Î + Rxyε̂, (C1)

with [K̂−1]ab = �̂ab. The inhomogeneity corrections have two parts, δR̂ = δR̂λ + δR̂η. Defining X̂a0 ≡ K̂ab�̂b0 and its transpose
X̂T

0a = �̂0bK̂ba, we obtain the imbalance and bulk viscosity corrections and shear viscosity corrections,

δR̂η = −(
H00Î − H0aX̂a0 − X̂T

0aHa0 + X̂T
0aHabX̂b0

)∇2

= (C0Î + C2ε̂)∇2, (C2)

δR̂λ = (
Z0bÎ − X̂T

0aZab
)
X2,b0∇2 = (C1Î + C3ε̂)∇2, (C3)

where we have assumed X̂a0 = X0,a0Î + X2,a0ε̂. Here {Rxx, C0, C1} and {Rxy, C2, C3} are even and odd functions of B,
respectively. Finally, we have

Rxx = Ryy = Rxx + Cxx∇2, Rxy = −Ryx = Rxy + Cxy∇2, (C4)

where Cxx = C0 + C1 and Cxy = C2 + C3. The stream function equation then reads as Eq. (5) in the main text.
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APPENDIX D: CARRIER AND ENERGY RELAXATION COEFFICIENTS

We evaluate the relaxation coefficients λ̂ and τel in Eq. (4) using kinetic theory, and the definition of the collision integrals
can be found in Ref. [25]. The carrier-population imbalance relaxations λ11 are caused by both optical phonon scattering and
three-body Coulomb collisions, λ11 = λ

ph
11 + λc

11, and λ12,21,22 are caused by only optical phonons. The optical phonon scattering
leads to the carrier imbalance and energy relaxation coefficients,

λ
ph
11 = 8e2v2

F αph

T
csch

(
ωA′

2T

) ∫
d2pd2q
(2π )4

(
1 − p̂ · q̂

2

)
δ(εp + εq − ωA′ )O+1,−1

p,q , λ12,21 = ωA′

2T
λ

ph
11,

λ22 =
(

ωA′

2T

)2

λ
ph
11 + 2e2ω2

A′v
2
F αph

T 2
csch

(
ωA′

2T

) ∫
d2pd2q
(2π )4

(
1 − p̂ · q̂

2

)
δ(εp − εq − ωA′ )

∑
s

Os,s
p,q . (D1)

Here Os1,s2
p1,p2

= (1/4)sech[β(εp1 − s1μ)/2]sech[β(εp2 − s2μ)/2]. The dimensionless effective electron-phonon scattering

strength is αph = (2π )2β2
A′s0/v

2
F MωA′ , with M = 2.0 × 10−23 g being the carbon atom mass, s0 = 2.62 Å

2
being the area per

carbon atom, ωA′ being the optical phonon frequency, and βA′ being the electron-phonon coupling. We estimate the three-body
collision contribution λc

11 ≈ 4 ln(2)α4e2T 2/πv2
F [23]. The momentum relaxation scattering rate reads τ−1

el = τ−1
imp + τ−1

ph , where
the individual rates due to impurities and optical-phonon scatterings are

τ−1
imp = 2πv2

F

T h

∫
d2pd2q
(2π )4

δ(εp − εq)|p − q|2Vimp(p, q)
∑

s

Os,s
p,p,

τ−1
ph = v4

F αph

T h
csch

(
ωA′

2T

) ∫
d2pd2q
(2π )4

(
1 − p̂ · q̂

2

) ∑
s,s ′

δ(sεp − sωA′ − s ′εq)|sp − s ′q|2Os,s ′
p,q , (D2)

where Vimp(p, q) = |ρmin/e|(1 + p̂ · q̂)|Ueff (0, |p − q|)|2/2 describes the Coulomb impurity scattering strength, with |ρmin/e|
being the charged impurity concentration and Ueff (ω, q ) being the random-phase approximation screened Coulomb potential. In
calculation we take βA′ = 10 eV/Å and ωA′ = 1740 K, so that αph ≈ 2.2, and |ρmin/e| = 5 × 109 cm−2.

APPENDIX E: SOLUTION OF THE STREAM FUNCTION EQUATION IN A STRIP GEOMETRY

1. No-slip boundary condition

After the partial Fourier transform in the x direction ϕ(x, y) = ∫
dk
2π

ϕk (y)eikx , Eq. (5) becomes(
∂2
y − k2

)(
∂2
y − q2

)
ϕk (y) = 0, ϕk|y=0,w = iI (k)/k, ∂yϕk|y=0,w = 0, (E1)

where q =
√

k2 − Q for k2 � Q and q = i
√

Q − k2 for k2 < Q and Ik = e−γ k . The general solution takes the form

ϕk = iI (k)

k

∑
s=±1

(ase
sky + bse

sqy ). (E2)

Matching the boundary conditions, we determine the coefficients by∑
s=±1

(as + bs ) = 1,
∑
s=±1

(ase
skw + bse

sqw ) = 1,
∑
s=±1

(skas + sqbs ) =
∑
s=±1

(skase
skw + sqbse

sqw ) = 0. (E3)

Solving {as, bs}, we obtain

aj,+ = (eqw − 1)q

M (k, q )
, aj,− = ekw(eqw − 1)q

M (k, q )
, bj,+ = (1 − ekw )k

M (k, q )
, bj,− = eqw(1 − ekw )k

M (k, q )
, (E4)

where M (k, q ) = (k − q )[1 − e(k+q )w] + (k + q )(eqw − ekw ). The Fourier transform gives

ϕ(x, y) = −
∫ ∞

−∞

dkI (k)eikx

2πik
g(k,Q) = − 1

π

∫ ∞

0

dkI (k) sin (kx)

k
g(k,Qj ), (E5)

g(k,Q) = q sinh
(

qw

2

)
cosh

[
k
(
y − w

2

)] − k sinh
(

kw
2

)
cosh

[
q
(
y − w

2

)]
q cosh

(
kw
2

)
sinh

(
qw

2

) − k sinh
(

kw
2

)
cosh

(
qw

2

) . (E6)

In Fig. 4 we show the analytic properties of the integrand g(k,Q), where we set w = 1. We find that, when Q > Q∗ ≈ 37.01,
g(k,Q) has simple poles and the integral (E5) takes Cauchy principal values. The voltage drops between (x, 0) and (x,w),
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�Vi (x) ≡ δV (x, 0) − δV (x,w), read

�V (x) =
∫ w

0
dyEy =

∫ w

0
dy(Rxx + Cxx∇2)Jy

= − 2

π

∫ ∞

0
dk(Rxx − Cxxk

2)I (k) cos (kx)
Q sinh

(
kw
2

)
sinh

(
qw

2

)
/(kq )

q cosh
(

kw
2

)
sinh

(
qw

2

) − k sinh
(

kw
2

)
cosh

(
qw

2

) . (E7)

The nonlocal resistance is defined by R(x) = �V (x)/I . For pointlike leads γ = 0, in the Stokes and Ohm limit, we obtain

R(x) =
{

Cxx

w2 f (x/w), f (z) = − 8
π

∫ ∞
0 dk

k cos (kz) sinh2(k/2)
k+sinh k

, Rxx = 0,

2
π
Rxx

∫ ∞
0

dk cos (kx)
k

tanh
(

kw
2

) = Rxx
2
π

ln
∣∣coth

(
πx
2w

)∣∣, Cxx = 0.
(E8)

2. No-stress boundary conditions

For the no-stress boundary conditions ∂2
yϕ|y=0,w = 0 and −∂xϕ|y=0,w = I (x), we obtain∑

s=±1

(as + bs ) = 1,
∑
s=±1

(ase
skw + bse

sqw ) = 1,
∑
s=±1

(ask
2 + bsq

2) =
∑
s=±1

(ask
2eskw + bsq

2esqw ) = 0. (E9)

Solving {as, bs}, we obtain

a+ = −k2 − Q

Q

1

1 + ekw
, a− = −k2 − Q

Q

1

1 + e−kw
, b+ = k2

Q

1

1 + eqw
, b− = k2

Q

1

1 + e−qw
,

ϕ(x, y) = − 1

π

∫ ∞

0

dkI (k) sin (kx)

k
g′(k,Q), g′(k,Q) = 1

Q2

{
k2 cosh[q(y − 1/2)]

cosh(qw/2)
− q2 cosh[k(y − 1/2)]

cosh(kw/2)

}
. (E10)

The analytical properties of g′(k,Q) [Eq. (E10)] are qualitatively identical to those of g(k,Q) [Eq. (E6)]: For Q > π2, g′(k,Q)
has simple poles at k = k∗

n, where k∗
n =

√
Q − [(2n + 1)π ]2 for 0 � n � �(Q/π − 1)/2� (w = 1). Hence, the eddy flow pattern

is presumably robust against boundary conditions.
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