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Engineering statistical transmutation of identical quantum particles
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A fundamental pillar of quantum mechanics concerns indistinguishable quantum particles. In three dimensions
they may be classified into fermions or bosons, having, respectively, antisymmetric or symmetric wave functions
under particle exchange. One of the numerous manifestations of this quantum statistics is the tendency of
fermions (bosons) to antibunch (bunch). In a two-particle scattering experiment with two possible outgoing
channels [C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987)], the probability of the two
particles to arrive each at a different terminal is enhanced (with respect to classical particles) for fermions,
and reduced for bosons. Here we show that by entangling the particles with an external degree of freedom,
we can engineer quantum statistical transmutation, which may cause fermions to bunch. Our analysis may
have consequences on the observed fractional statistics of anyons, including non-Abelian statistics, with serious
implications for quantum computing operations in the presence of external degrees of freedom.
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I. INTRODUCTION

The wave function of two or more indistinguishable par-
ticles must be invariant, up to a phase, if two of them are
exchanged [1,2]. This requirement, together with the spin-
statistics theorem, leads in three dimensions to the identi-
fication of fermions and bosons, having antisymmetric or
symmetric wave functions under particle exchange. Indistin-
guishability is a central pillar of quantum mechanics under-
lying most facets of many-particle physics. An elegant way
to bring to light the correlations hidden in the symmetry
of the wave function is through interferometry [3,4]. In a
two-particle interferometry bosons bunch together, i.e., the
probability of detecting two incoming particles in the same
outgoing terminal is higher than its benchmark value for
classical particles; by contrast, fermions tend to antibunch
due to the Pauli principle: it is impossible to have coincident
detections of two fermions with identical quantum numbers
at the same terminal. The effect of quantum statistics in
Hanbury Brown–Twiss interferometric setups [5–7] has been
highlighted in several fermionic-optics experiments [8–13].
We also note that (anti)bunching can be modified by assigning
an internal degree of freedom (e.g., spin) to the scattering
particles [14,15].

Is it possible to control and modify on-demand the quan-
tum statistics of identical particles? Examples of emergent
particles, whose quantum statistics differs from that of their
constituents, range from Cooper pairs [16–18] to fractional
statistics anyons. The latter could be viewed as fermions with
attached flux lines, in the fractional quantum Hall regime
[19,20]. In this work we show that it is possible to induce

statistical transmutation in a controlled way, without resorting
to a direct particle-particle interaction. Our analysis shows
that it is possible to engineer statistical transmutation of
two identical quantum particles by entangling them with an
external quantum degree of freedom. We study a simple setup
where quantum statistics plays a fundamental role: a two-
particle scattering experiment in the presence of an external
degree of freedom, e.g., a qubit, to which the scatterer is
coupled. The build up of entanglement in the course of the
scattering process is the underlying mechanism, allowing one
to engineer statistical transmutation.

In order to analyze these effects we resort to the simple
arrangement depicted in Fig. 1(a), commonly known as a
Hong-Ou-Mandel interferometer [21,22], which consists of
two sources at west (W) and south (S) that emit each a single
particle. Following the scattering event these two particles
may arrive in correspondence of the detectors at north (N)
and/or east (E). The probability P (0)(2, 0) [P (0)(0, 2)] would
be the probability of the two scattering particles arriving both
at N (E). The probability P (0)(1, 1), in contrast, would be
the probability of the two scattering particles arriving each at
different detectors. The single-particle scattering amplitudes
denote the probabilities that a single particle emitted from
terminal i (i = W, S) arrives in terminal j (j = N, E). For
classical noninteracting particles, the two-particle probabili-
ties [e.g., P (0,cl)(2, 0)] are calculated assuming two indepen-
dent scattering processes. These classical probabilities are to
be used as “benchmarks” for comparison with two-particle
processes, where quantum statistics does play a role. For
example, one finds that for fermions P (0,cl)(1, 1) < P (0)(1, 1)
while for bosons P (0,cl)(1, 1) > P (0)(1, 1). Hereafter, such
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FIG. 1. (a) The standard Hong-Ou-Mandel interferometer: two
particles emitted by the sources W and S go through the scattering
region modeled by a beam-splitter, and they are collected by the two
detectors N and W. (b) The generalized Hong-Ou-Mandel interfer-
ometer: the beam splitter is coupled to an external qubit.

inequalities will be used to determine “femionic-like” or
“bosonic-like” behavior. Statistical transmutation would mean
that one type of behavior is transmuted to the other, i.e.,
anti-bunching is transmuted into bunching and vice versa.

Specifically, we consider a generalized Hong-Ou-Mandel
interferometer [cf. Fig. 1(b)]. Here, the scatterer is coupled
to a qubit. Consequently, additional quantum correlations
between the incident particles and the qubit appear. Such
correlations can lead to nonvanishing entanglement between
the scattering particles and the qubit. One can then project the
quantum state of the qubit onto a desired direction by perform-
ing a measurement of the qubit. This, in turn will generate
correlations between the scattered particles, that may result in
nontrivial effects such as statistical transmutation. This means
that, following such a protocol, the probability of finding
two fermions (bosons) in two different outgoing terminals,
i.e., antibunching (bunching), may be suppressed (enhanced)
in comparison with the classical benchmark, giving rise to
statistical transmutation. Here, for the sake of clarity, we will
mainly refer to fermionic particles.

Beyond our engineered statistical transmutation, we note
here another intriguing effect: quantum correlations induced
through the scatterer-qubit coupling may break the symmetry
between the probability of collecting two particles in the
N detector and collecting two particles in the E detector,
P (2, 0) �= P (0, 2); cf. Fig. 1(b). This symmetry breaking is
a manifestation of the entanglement between the scattered
particles and the qubit.

II. MODEL

We consider a generalized Hong-Ou-Mandel interferome-
ter; see Fig. 1(b). Particles are emitted from two sources, W
(west) and S (south), and are measured, after passing through
a scattering region, by two detectors placed at N (north) and
E (east). Crucial for the present discussion are the properties
of the scattering region. Differently from the standard setup of
Fig. 1(a), the scattering of the incoming particles comprises a
two-level system coupled to a beam splitter. The fermionic
incoming particles are described by annihilation (creation)
operators aE (a†

E) and aS (a†
S). The outgoing states are, in turn,

described by annihilation (creation) operators aN (a†
N) and aW

(a†
W) and they satisfy the usual canonical anticommutation

relations. The operators of the input states and output states
are not independent but are related by a unitary transformation
sm which is just the scattering matrix [23](

aE

aN

)
=

(
rm t ′m
tm r ′

m

)(
aS

aW

)
, (1)

with rm = √
Rmeiθm , t ′m = √

Tmeiηm , tm = √
Tmeiηm , and r ′

m =
−√

Rmei(2ηm−θm ); ηm, θm ∈ [0, 2π ). The scattering matrix car-
ries an index m associated with the presence of the two-level
system. When the coupling between the qubit and the beam
splitter is nonvanishing the scattering matrix will depend on
the state of the qubit. Given a basis |ψm〉, with m = A,B, for
the state of the qubit, we have sA �= sB . All these parameters
do depend on the state of the qubit.

Initially the particles and the qubit are in a factorized state

|�i〉 = |ψ0〉|i〉, (2a)

where

|ψ0〉 = γA|ψA〉 + γB |ψB〉 (2b)

is the qubit quantum state (|γA|2 + |γB |2 = 1) and |i〉 is the
particle state defined as

|i〉 = a
†
W(xW)a†

S(xS)|0〉; (2c)

here the operator

a
†
� (x�) =

∫ ∞

0
dk� ε�(k�)e−ik�x�a

†
� (k�), (3)

with � = W, S, creates a fermionic particle in the source �

localized at x�, which is the coordinate along the arm �, and
it increases as we move along the arm toward the source. The
operators a�(x�) allow us to consider particles that arrive at the
scatterer with a time delay which can be quantified in terms of
the overlap integral

|J |2 =
∣∣∣∣
∫

dk εW(k)ε∗
S(k)eik(xW−xS )

∣∣∣∣
2

; (4)

if εW and εS are two Gaussian wave packets of spatial width
δ and central velocity v such that x� = vτ� (� = W, S), the
overlap integral is [3]

|J |2 = exp

[
−v2(τW − τS)2

2δ2

]
. (5)

For |J |2 = 1 particles are indistinguishable, while for |J |2 =
0 particles are classical. Following the scattering process, the
final state of the system becomes

|�f 〉 =
B∑

m=A

γmSm|i〉|ψm〉, (6)

where Sm = s (W)
m ⊗ s (S)

m is the two-particle scattering matrix.
We stress here that the final state |�f 〉 is generically entan-
gled. As we will see, this property is at the core of statisti-
cal transmutation. Assuming ideal detectors, we evaluate the
probability that n fermionic particles are revealed by the de-
tector at N while 2 − n particles are collected by the detector
at W. Since the final state will be generically entangled, these
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probability will depend on the dynamics and measurements on
the qubit. To this end, we will consider two different protocols
for the dynamics of the qubit.

A. Protocol 1

Here, we evaluate the probability of particles to arrive at
the detectors, independently of the state of the qubit. This can
be done by tracing out the qubit degrees of freedom from
the density matrix of the final state, ρf = |�f 〉〈�f |. This
probability,

P (n, 2 − n) =
B∑

m=A

|γm|2Pm(n, 2 − n), (7)

can be expressed by the weighted average of the probabilities,

Pm(n, 2 − n) =
∫

dk dk′|〈n, 2 − n; k, k′|Sm|i〉|2, (8)

where

|2, 0; k, k′〉 = 1/
√

2 a
†
N(k)a†

N(k′)|0〉, (9a)

|0, 2; k, k′〉 = 1/
√

2 a
†
E(k)a†

E(k′)|0〉, (9b)

|1, 1; k, k′〉 = a
†
N(k)a†

E(k′)|0〉. (9c)

A straightforward calculation yields

Pm(1, 1) = R2
m + T 2

m + 2RmTm|J |2, (10a)

Pm(2, 0) = Pm(0, 2) = RmTm(1 − |J |2). (10b)

Equation (7) is readily understood. The trace over the qubit
degrees of freedom suppresses all possible quantum correla-
tions between the particles, and the final result is a weighted
sum over the probabilities Pm(n, 2 − n) defined for a fixed
qubit state. The limiting case of classical particles P (cl)(1, 1)
can be obtained, as expected, from Pm(1, 1) by setting |J |2 =
0, i.e., P (cl)

m (1, 1) ≡ Pm(1, 1)||J |2=0, and employing Eq. (7). It
is evident that protocol 1 cannot lead to any statistical trans-
mutation. For fermionic particles we still have antibunching,
i.e., the probability of collecting the two scattered particles
into two different detectors is greater for fermions than for
classical particles, P (1, 1) > P (cl)(1, 1).

B. Protocol 2

To demonstrate how quantum correlations between the
qubit and the particles may induce bunching (even for
fermions), we now resort to projecting the qubit onto a given
state, |ψ〉, following the scattering process. We then evaluate
the probability that n particles are absorbed by the first detec-
tor while 2 − n particles are collected by the other detector,
obtaining

P (n, 2 − n; |ψ〉) =
∫

dk dk′∣∣ ∑
m γmα(n)

m 〈ψ |ψm〉∣∣2

∑2
λ=0

∫
dk dk′∣∣∑

m γmα
(λ)
m 〈ψ |ψm〉∣∣2 ,

(11)

with α(n)
m = 〈n, 2 − n; k, k′|Sm|i〉. The denominator of

Eq. (11) is a normalization factor which guarantees that∑
n P (n, 2 − n; |ψ〉) = 1; it is indeed equivalent to a

post-selection procedure onto the final qubit state (cf.
Appendix B). Protocol 2 does not have a classical counterpart.

Before proceeding, we observe that when the beam-splitter
is not coupled to the qubit, i.e., sA = sB ≡ s0, the final state
|�f 〉 is separable and there are no quantum correlations
between particles and the qubit. In this case the two proto-
cols are equivalent, i.e., P (n, 2 − n; |ψ〉) = P (n, 2 − n). For
this reason, in the following, we assume that the beam splitter
is nontrivially coupled to the qubit, i.e. sA �= sB . As a concrete
example, we consider here the special case where RA =
RB = R and TA = TB = T . Under these assumptions, accord-
ing to protocol-1 we have PA(n, 2 − n) = PB (n, 2 − n) =
P (n, 2 − n) and, for classical particles, we have P (cl)(n, 2 −
n) = P (n, 2 − n)||J |2=0. Furthermore the probabilities given
in Eq. (11) can be cast in the form

P (n, 2 − n; |ψ〉) = S (n, |ψ〉)P (n, 2 − n) (12)

with

S (n, |ψ〉) = |γ̃A|2 + |γ̃B |2 + 2|γ̃A||γ̃B | cos ϕn,2−n

|γ̃A|2 + |γ̃B |2 + 2λ|γ̃A||γ̃B | cos ϕ1,1
; (13)

λ ≡ P (1, 1) + 2P (2, 0) cos(ηB − ηA + θA − θB ) (14)

with

ϕ1,1 = ϕ0 + 2(ηA − ηB ), (15a)

ϕ2,0 = ϕ0 + ηA + θA − (ηB + θB ), (15b)

ϕ0,2 = ϕ0 + 3ηA − θA − (3ηB − θB ); (15c)

and γ̃m = γm〈ψ |ψm〉 ≡ |γ̃m|eiarg(γ̃m ), ϕ0 =arg(γ̃A) − arg(γ̃B ).
The coefficient S (n, |ψ〉), which depends on the number of
particles detected, on the final state of the qubit, as well as
on the phases of the scattering matrices and on the overlap
integral between the incident particles, contains all the rele-
vant information related to the modifications of the probability
distribution generated by our protocol 2. It is straightforward
to observe that protocol 2 can generate nontrivial effects when
S (n, |ψ〉) �= 1. We note that S (n, |ψ〉) �= 1 as long as the final
state of the system |�f 〉 is entangled and the qubit state onto
which we project is in a nontrivial superposition of the states
|ψA〉 and |ψB〉. In order to quantify whether the final state
|�f 〉 is entangled or not, we construct the density matrix

ρf = |�f 〉〈�f | =
∑
m,m′

γmγ ∗
m′Sm|i〉〈i|S†

m′ |ψm〉〈ψm′ |. (16)

The reduced density matrix of the qubit is then obtained by
tracing out the particles from the whole density matrix ρf :

ρred
f =

( |γA|2 γAγ ∗
Bε∗

γ ∗
AγBε |γB |2

)
; (17)

here 〈i|S†
ASB |i〉 ≡ ε. A straightforward calculation shows that

the final state |�f 〉 is entangled if and only if |J |2 < 1 and
ηB − ηA + θA − θB �= 0, provided that γA, γB �= 0.

III. RESULTS

A. Statistical transmutation

We stress here again that statistical transmutation happens
when the probability of finding two outgoing fermions in two
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different terminals exhibits bunching rather than the usual
antibunching, i.e., P (1, 1; |ψ〉) is smaller than P (cl)(1, 1).
Indeed, protocol 2 allows one to transmute the statistics of the
incoming particles in a controlled way by properly selecting
the final state |ψ〉 onto which the qubit is projected. Impor-
tantly we observe that a necessary but insufficient requirement
to obtain statistical transmutation is the presence of qubit-
particles entanglement in the final state, i.e., S (n, |ψ〉) �= 1
(following the scattering).

This reinforces the intuition that, in order to have trans-
muted statistics, one should consider composite particles
(formed by the fermions and the qubit). Note, however,
that statistical transmutation becomes possible only when
S (1, |ψ〉) < P (cl)(1, 1)/P (1, 1). This last inequality leads to

|J |2
2P (cl)(1, 1)(1 − |J |2)

< η, (18)

where

η = |γ̃A||γ̃B |[cos(ηB − ηA + θA − θB ) − 1] cos ϕ1,1

|γ̃A|2 + |γ̃B |2 + 2|γ̃A||γ̃B | cos ϕ1,1
. (19)

In order to better understand the idea of statistical trans-
mutation, we consider some examples. In the following, we
choose as initial state of the qubit |ψ0〉 = 1/

√
2(|ψA〉 + |ψB〉)

and we set the scattering matrix amplitudes Rm = Tm = 0.5
with m = A,B [this choice guarantees that statistical ef-
fects are maximized, i.e. Pm(1, 1) − P (cl)

m (1, 1) = 2RmTm|J |2
is maximum]; furthermore, without loss of generality, we
set ηA = θA = 0. In Fig. 2(a) we consider the probability
P (1, 1; |ψ〉) as a function of the phases ηB and θB for a
fixed final qubit state |ψ〉 = |ψ0〉. We observe the existence
of a nonvanishing region in the parameter space (ηB, θB ),
where P (1, 1; |ψ〉) is smaller then P (cl)(1, 1), and a region
where statistical transmutation does not happen. Moreover,
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FIG. 2. Statistical transmutation, i.e., P (1, 1; |ψ〉) < P (cl)(1, 1)
can be induced by selecting the final state |ψ〉 onto which the qubit is
projected. (a) Statistical transmutation as a function of the scattering
phases ηB and θB with |ψf 〉 = |ψ0〉. (b) Statistical transmutation as a
function of the final state |ψ〉 = m|ψA〉 + eiϕ

√
1 − m2|ψB〉 for fixed

values of the scattering phases.
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FIG. 3. The probabilities P (2, 0; |ψ〉) and P (0, 2; |ψ〉) of find-
ing two outgoing fermions in the same terminal can be different. This
effect can be quantified by δP (|ψ〉) = P (2, 0; |ψ〉) − P (0, 2; |ψ〉).
(a) δP (|ψ〉) as a function of the scattering phases ηB and θB with
|ψf 〉 = |ψ0〉. (b) δP (|ψ〉) as a function of the final state |ψ〉 =
m|ψA〉 + eiϕ

√
1 − m2|ψB〉 for fixed values of the scattering phases.

from Fig. 2(a) the peculiar quantum nature of protocol 2
comes out. The probability P (1, 1; |ψ〉) with |J |2 = 0, i.e.,
particles for which the Pauli principle does not apply, still ex-
hibits enhancement or suppression with respect to P (cl)(1, 1),
signaling that the qubit gives rise to additional quantum
correlations beyond the Pauli principle. Finally, in Fig. 2(b),
we fix the scattering phases (ηB, θB ), and we calculate the
probability P (1, 1; |ψ〉) as a function of the final state |ψ〉 =
m|ψA〉 + eiϕ

√
1 − m2|ψB〉 onto which the qubit is projected.

We then observe the existence of a nontrivial manifold of final
states |ψ〉, which underlines the parameter space for statistical
transmutation.

B. Unitarity breaking

Besides facilitating statistical transmutation, protocol 2 al-
lows one to generate an asymmetry between the probabilities
of collecting two particles in the E and in the N detector.
Such an asymmetry is strictly forbidden for quantum parti-
cles, owing to the unitarity of the scattering matrix implying
P (2, 0) = P (0, 2). Below we discuss under which conditions
P (2, 0; |ψ〉) and P (0, 2; |ψ〉) can be different. We argue that
this effect corresponds to an effective breaking of the unitarity
of the scattering matrix.

In order to study this effect quantitatively, we define the
quantity δP (|ψ〉) = P (2, 0; |ψ〉) − P (0, 2; |ψ〉), which can
be expressed as

δP (|ψ〉) = [S (2, |ψ〉) − S (0, |ψ〉)]P (2, 0), (20)

and is nonvanishing when S (2, |ψ〉) �= S (0, |ψ〉). In view of
Eq. (13), it is straightforward to see that δP (|ψ〉) is nonvan-
ishing as long as the final state |�f 〉 is entangled.

In Fig. 3(a) we consider the asymmetry δP (|ψ〉) as a
function of the phases ηB and θB for a fixed final qubit state
|ψ〉 = |ψ0〉, and we observe the existence of a nonvanishing
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region in parameter space where δP (|ψ〉) is positive, i.e.,
P (2, 0; |ψ〉) > P (0, 2; |ψ〉), or negative, i.e., P (2, 0; |ψ〉) <

P (0, 2; |ψ〉). Finally, in Fig. 3(b) we fix the scattering phases
(ηB, θB ) and we calculate the asymmetry δP (|ψ〉) as a func-
tion of the final state |ψ〉 = m|ψA〉 + eiϕ

√
1 − m2|ψB〉 onto

which the qubit is projected. We thus obtain a nontrivial
manifold of final states |ψ〉 where δP (|ψ〉) is nonvanishing.

The possibility that δP (|ψ〉) �= 0 is a consequence of
the additional particles-qubit correlations generated by the
projection of the final state |�f 〉 onto the state |ψ〉. Finally,
we notice that for classical particles [as distinct from quan-
tum particles for which P (2, 0) = P (0, 2)], the probabilities
P (cl)(2, 0) and P (cl)(0, 2) associated with a beam splitter
(even in the absence of a qubit) can be different. In this
spirit, the effective breaking of the unitarity of the scattering
matrix associated with our protocol 2 simulates the physics of
classical particles in a scattering region.

IV. CONCLUSIONS

Interaction-induced modification of quantum statistics is
certainly not a new theme. Effective attractive interactions
may give rise to Cooper pairs, with the corresponding scatter-
ing (depending on details of the setup) manifested by bunch-
ing [16–18]. Anyonic quasiparticles have different statistics
than either fermions or bosons [19,20,24]. In the present work
we have shown that statistical transmutation can be engi-
neered quantum mechanically without resorting to a direct
particle-particle interaction. Specifically we have considered
a generalized Hong-Ou-Mandel interferometer which allows
on to transmute the statistics of the scattered particles by
entangling them with an external quantum degree of freedom.
Our on-demand statistics transmutation is obtained through
selecting the direction in Hilbert space, onto which the qubit
is a posteriori projected. The entanglement between the scat-
tered particles and the qubit may lead to the breaking of
unitarity (still conserving probability). This can be manifest
through a variety of interference setups. A possible exper-
imental realization of the Hong-Ou-Mandel interferometer
may involve a quantum Hall-based setup. We tune the current
in any of the interferometers to be dilute; two chiral edge
modes support two beams. The scattering region is realized
through a quantum point contact between the two edge states.
The scatterer is then coupled electrostatically to a double
quantum dot (hosting an electron) representing the qubit.
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APPENDIX A: PROTOCOL 1: EVALUATION
OF THE PROBABILITY P (n, 2 − n)

The probabilities P (n, 2 − n) defined according to our
protocol 1 are just the weighted average of the probabilities
Pm(n, 2 − n). For this reason, in the following, we show how

to calculate the probabilities

Pm(n, 2 − n) =
∫

dkdk′|〈n, 2 − n; k, k′|Sm|i〉|2, (A1)

where the particle initial state is |i〉 = a
†
W(xW)a†

S(xS)|0〉 with
a
†
� (x�) = ∫ ∞

0 dk�ε�(k�)e−ik�x�a
†
� (k�) and the two-particle scat-

tering Sm = s (W)
m ⊗ s (S)

m is built from the single particle scat-
tering matrix

sm =
(

rm t ′m
tm r ′

m

)
=

(√
Rmeiθm

√
Tmeiηm

√
Tmeiηm −√

Rmei(2ηm−θm )

)
; (A2)

we recall here that we are using the basis {a†
S|0〉, a†

W|0〉}
({a†

E|0〉, a†
N|0〉}) for the emitted (detected) particles. Further-

more the unitarity of sm implies |rm|2 + |tm|2 = 1, |t ′m|2 +
|r ′

m|2 = 1 and rmt∗m + t ′mr ′∗
m = 0, and we conveniently define

Rm = |rm|2 = |r ′
m|2, Tm = |tm|2 = |t ′m|2; ηm, θm ∈ [0, 2π ).

First we evaluate the action of the two particle scattering
matrix Sm onto the particle initial state,

Sm|i〉=
∫

dkWdkSεW(kW)εS(kS)e−i(kWxW+kSxS )

× [t ′ma
†
E(kW) + r ′

ma
†
N(kW)][rma

†
E(kS) + tma

†
N(kS)]|0〉,

(A3)

then we project onto the final state |1, 1; k, k′〉 =
a
†
N (k)a†

E (k′)|0〉 and we integrate over all possible k values,
obtaining

Pm(1, 1) =
∫

dk dk′|〈1, 1; k, k′|Sm|i〉|2

=
∫

dk dk′|rmr ′
mεW(k)εS(k′)e−ikxWe−ik′xS

− tmt ′mεW(k′)εS(k)e−ik′xWe−ikxS |2

= R2
m + T 2

m + 2RmTm|J |2, (A4)

where

|J |2 =
∣∣∣∣
∫

dk εW(k)ε∗
S(k)eik(xW−xS )

∣∣∣∣
2

(A5)

is the overlap integral.
The calculation of Pm(2, 0) and Pm(0, 2) can be carried out

in a similar way. In this case, starting again from Eq. (A3), we
can project onto |2, 0; k, k′〉 = 1/

√
2a

†
N (k)a†

N (k′)|0〉, obtain-
ing

Pm(2, 0) =
∫

dk dk′|〈2, 0; k, k′|Sm|i〉|2

=RmTm

∫
dk dk′|εW(k)εS(k′)e−ikxWe−ik′xS

− εW(k′)εS(k)e−ik′xWe−ikxS |2

=RmTm(1 − |J |2). (A6)

Similarly Pm(0, 2) can be obtained by projecting onto
|0, 2; k, k′〉 = 1/

√
2a

†
E(k)a†

E(k′)|0〉; the unitarity of the scat-
tering matrix sm implies Pm(0, 2) = Pm(2, 0).
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APPENDIX B: PROTOCOL 2: EVALUATION
OF THE PROBABILITY P (n, 2 − n; |ψ〉)

We evaluate the probabilities

P (n, 2 − n; |ψ〉) = P (n, 2 − n; |ψ〉)∑2
n=0 P (n, 2 − n; |ψ〉)

, (B1)

P (n, 2 − n; |ψ〉) =
∫

dkdk′
∣∣∣∣∣

B∑
m=A

γma(n)
m 〈ψ |ψm〉

∣∣∣∣∣
2

(B2)

defined according to our protocol 2. First, we evaluate the
numerator of Eq. (B1) for n = 0, 1, 2; explicitly we obtain

P (1, 1; |ψ〉) = |γ̃A|2PA(1, 1) + |γ̃B |2PB (1, 1)

+ 2|γ̃A||γ̃B |[RARB + TATB

+ (RATB + RBTA)|J |2] cos ϕ1,1, (B3a)

P (2, 0; |ψ〉) = |γ̃A|2PA(2, 0) + |γ̃B |2PB (2, 0)

+ 2|γ̃A||γ̃B |
√

PA(2, 0)PB (2, 0) cos ϕ2,0,

(B3b)

P (0, 2; |ψ〉) = |γ̃A|2PA(0, 2) + |γ̃B |2PB (0, 2)

+ 2|γ̃A||γ̃B |
√

PA(0, 2)PB (0, 2) cos ϕ0,2,

(B3c)

where we have introduced γ̃m = γm〈ψ |ψm〉 ≡ |γ̃m|eiarg(γ̃m ),
m = A,B; ϕ0 = arg(γ̃A) − arg(γ̃B ) and

ϕ1,1 = ϕ0 + 2(ηA − ηB ), (B4a)

ϕ2,0 = ϕ0 + ηA + θA − (ηB + θB ), (B4b)

ϕ0,2 = ϕ0 + 3ηA − θA − (3ηB − θB ); (B4c)

the probabilities Pm(n, 2 − n) with m = A,B and n = 0, 1, 2
are defined in Eqs. (A4) and (A6).

The denominator of Eq. (B1) turns out to be equal to

2∑
n=0

P (n, 2 − n; |ψ〉)

= |γ̃A|2 + |γ̃B |2 + 2|γ̃A||γ̃B |
× [[RARB + TATB + (RATB + RBTA)|J |2] cos ϕ1,1

+
√

PA(2, 0)PB (2, 0)(cos ϕ2,0 + cos ϕ0,2)]. (B5)

In the special case where sA and sB have the same amplitudes,
PA(n, 2 − n) = PB (n, 2 − n) ≡ P (n, 2 − n) for n = 0, 1, 2.
From Eq. (B5) we obtain

2∑
n=0

P (n, 2 − n; |ψ〉)

= |γ̃A|2 + |γ̃B |2 + 2|γ̃A||γ̃B | + 2λ|γ̃A||γ̃B | cos ϕ1,1, (B6)

where λ ≡ P (1, 1) + 2P (2, 0) cos(ηB − ηA + θA − θB ); and
finally, recalling Eqs. (B3a)–(B3c), we obtain P (n, 2 −
n; |ψ〉) = S (n, |ψ〉)P (n, 2 − n) with

S (n, |ψ〉) = |γ̃A|2 + |γ̃B |2 + 2|γ̃A||γ̃B | cos ϕn,2−n

|γ̃A|2 + |γ̃B |2 + 2λ|γ̃A||γ̃B | cos ϕ1,1
, (B7)

which is the expression presented in the main text.
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