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We study the optical response of nanoribbons made from the α − T3 lattice under a weak magnetic field in
the terahertz to far-infrared regime. It is found that the magnetic field can open a gap in the band structure
and induce a new absorption peak with much reduced frequency in metallic armchair ribbons and a class of
zigzag ribbons with particular boundaries. This tunable magneto-optical modulation effect is attributed to the
interband transitions between the flat band and the propagating bands. By contrast, this magnetic modulation of
gap opening and optical conductance is much weaker in metallic armchair graphene ribbons (the case of α = 0)
in which the flat band is absent. The enhancement in the α − T3 model is analytically investigated and explained
within the perturbation theory for metallic armchair ribbons. The magnetic field induced valley degeneracy lifting
and valley splitting of the absorption peak are also discussed in the case of zigzag ribbons. These findings pave
the way for magneto-optics devices based on the α − T3 model materials.
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I. INTRODUCTION

Graphene, as a two-dimensional sheet of carbon atoms
arranged on a honeycomb lattice, has achieved great success
in both fundamental physics and applications due to its exotic
electronic properties [1–3]. Recently, a modified lattice, the
α − T3 lattice, has been attracting more and more attention as
an interpolation between the honeycomb lattice of graphene
and the dice lattice. As shown in Fig. 1(a), the dice or T3

lattice is obtained by coupling one of the two inequivalent
sites of the honeycomb lattice to an additional atom located
at the center of each hexagon [4–6]. The dice lattice could
be experimentally realized by growing a trilayer structure
of cubic lattices such as SrTiO3/SrIrO3/SrTiO3 in the (111)
direction [7] or by confining cold atoms to an optical lat-
tice [8]. The low-energy quasiparticle in the dice lattice is
described by the pseudospin-1 Dirac-Weyl equation [6,8].
The spectrum contains a pair of linear Dirac cones and an
additional dispersionless flat band that cuts through the Dirac
points [see Fig. 1(b)]. The α − T3 lattice interpolates between
graphene (α = 0) and the dice lattice (α = 1) via a parameter
α that describes the strength of the coupling between the
honeycomb lattice and the central hub site. Recently, a 2D
model for Hg1−xCdxTe at critical doping has been shown to
map onto the α − T3 model with an intermediate parameter
α = 1/

√
3 [9]. The α − T3 model has also been generalized

to include additional terms and variations in its Hamiltonian
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[10]. And the properties of general pseudospin S lattices have
also been extensively studied [6,11,12].

The α-dependent Berry phase [13–15] in the α − T3 model
results in unusual electronic properties such as the uncon-
ventional quantum Hall effect [16,17], super-Klein tunneling
[18–21], minimal conductivity [14], orbital magnetic response
[13], and Weiss oscillations [22]. Additionally, the flat band
also plays an important role in the transport. Although the flat
band itself has zero conductivity due to the zero group veloc-
ity, the interplay between the flat band and the propagating
bands is predicted to induce a diverging dc conductivity in the
presence of disorders [23], or enhance the resulting current
in a nonequilibrium situation [24]. Additionally, the flat band
has also attracted much attention for its nontrivial topology
[25–31] and interaction effect [28–32]. It is noticeable that
the first-principles calculations implied that the flat band can
exist in a realistic material [25–27].

The optical and magneto-optical spectroscopy can be
used to probe the underlying electronic structure as well as
to design optoelectronic devices. For graphene, the optical
and magneto-optical conductivities have been extensively
studied for both infinite-sheet [33] and nanoribbon geom-
etry [34–40]. The optical response at selective frequencies
can be enhanced with the use of nanoribbons in graphene.
For the α − T3 lattice, the optical [41] and magneto-optical
conductivities [11,42,43] have been studied for the infinite
sheet. But the optical conductance of nanoribbons from
the α − T3 lattice [see Figs. 1(c) and 1(d)] has not been
investigated. The effect of a perpendicular magnetic field
on the electronic structure and optical conductance of α −
T3 nanoribbons is also untouched. It has been shown that
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FIG. 1. (a) The lattice of the α − T3 model. (b) The low-energy
dispersion at a single K point. (c) An armchair ribbon from the α −
T3 lattice with the width N . (d) A B-B-edged zigzag ribbon from the
α − T3 lattice with the width N where B atoms terminate at both the
left and right edges.

the magnetic filed can open a gap and induce an absorp-
tion peak in metallic armchair graphene nanoribbons [36].
It is natural to raise the question of how this magnetic
modulation effect on electronic and optical properties of
nanoribbons evolves with varying parameter α in the α − T3

lattice.
In this work, we investigate systematically the magnetic

modulation effect on electronic and optical properties of
nanoribbons made from the α − T3 lattice. We show that the
magnetic field can open a gap and induce an absorption peak
in both the metallic armchair ribbons and a special type of
zigzag ribbon. This magnetic modulation effect is remarkably
enhanced in contrast to that in graphene due to the interband
transitions between the flat band and the propagating bands,
which makes the optical response much more sensitive to the
applied magnetic field. We also present analytical discussions
to explain this enhanced magnetic modulation effect in the
α − T3 lattice. Without the magnetic field, the low-frequency
conductivity is usually zero and the first response peak ap-
pears at a frequency corresponding to the allowed transition
with the lowest-energy gap. We show that the large threshold
frequency that prevented the terahertz and far-infrared (FIR)
response in ribbons can be reduced to a much lower value by
a magnetic field, making these ribbons active in the terahertz
and FIR regime. The applied magnetic field is much weaker
than that needed in graphene. Therefore controlled terahertz
radiation can be achieved much more easily in nanoribbons
made from the α − T3 lattice through the applied magnetic
field.

The rest of the paper is organized as follows. In Sec. II, we
present the model and the Kubo formula for the calculation of
the optical conductivity. The numerical results and discussion
on electronic structure and optical conductivity will be pre-
sented for armchair ribbons in Sec. III, and for zigzag ribbons
in Sec. IV. Finally, concluding remarks are given in Sec. V.

II. MODEL AND KUBO FORMULA

In the α − T3 lattice shown in Fig. 1(a), sites A and B form a
honeycomb lattice, and site C is at the center of the hexagons.
The hopping energy between sites A and B is t1 = t cos ϕ,
and the hopping between sites B and C is t2 = t sin ϕ. The
parameter α is defined as α = t2/t1 = tan ϕ, and the hopping
between sites A and C is not permitted. This α − T3 model
interpolates between the honeycomb lattice of graphene and
the dice lattice via the parameter α. Under a perpendicular
magnetic field, the tight-binding Hamiltonian on the basis
(ψA,ψB,ψC )T is given by

H =
∑

〈i,j〉,〈j,k〉
(t cos ϕeiγij a

†
i bj + t sin ϕeiγjk b

†
j ck + H.c.),

(1)
where ϕ = arctan α, a†, b†, and c† (a, b, c) are creation (anni-
hilation) operators at sites A, B, C, respectively. Here γij (jk) =
(2π/φ0)

∫ j (k)
i(j ) A · dl is the magnetic Peierls phase, with φ0 =

hc/e being the magnetic flux quantum. The magnetic field in
the z direction is described by the vector potential A =Bxŷ

in the Landau gauge. In the nanoribbon geometry shown in
Figs. 1(c) and 1(d), the Hamiltonian can be constructed on the
basis of the supercell from the Harper equation.

Without the magnetic field, the continuum Hamiltonian of
the α − T3 model can be written as

H0 =
⎛
⎝ 0 cos ϕf (k) 0

cos ϕf ∗(k) 0 sin ϕf (k)
0 sin ϕf ∗(k) 0

⎞
⎠, (2)

where f (k) = t (1 + e−ik·a1 + e−ik·a2 ) = |f (k)|eiθk with k
the momentum and θk being the complex angle of f (k), a1 =
(−

√
3

2 , 3
2 )a, a2 = (

√
3

2 , 3
2 )a. The eigenvalues can be obtained

as E0 = 0 and E± = ±|f (k)|. The corresponding eigenfunc-
tions are

ξ0 =
⎛
⎝ sin ϕeiθk

0
− cos ϕe−iθk

⎞
⎠, ξ± = 1√

2

⎛
⎝ cos ϕeiθk

±1
sin ϕe−iθk

⎞
⎠ (3)

with the ξ0 denoting the flat band, and ξ± denoting the
conduction (+) and valence (−) bands. The full wave function
reads ψ = ξei(kxx+kyy).

To consider nanoribbons, we construct the Harper equation
from the lattice Hamiltonian. For armchair ribbons, the Harper
equation reads

Eψm = Bm−1ψm−1 + Dmψm + Bmψm+1, (4)

where m is the cell index in a supercell as shown in
Fig. 1(c), ψm = (ψAm ψBm ψCm)T . On the basis ψ =
(ψ1 ψ2 ψ3 · · · ψN )T , we can construct the Hamiltonian
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of an armchair nanoribbon with width N as follows:

Harm =

⎛
⎜⎜⎜⎝

D1 B1 0 · · · 0
B1 D2 B2 · · · 0
0 B2 D3 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · DN

⎞
⎟⎟⎟⎠, (5)

where

Bm =
⎛
⎝ 0 cos ϕg1m 0

cos ϕg∗
1m 0 sin ϕg1m

0 sin ϕg∗
1m 0

⎞
⎠, (6)

Dm =
⎛
⎝ 0 cos ϕg2m 0

cos ϕg∗
2m 0 sin ϕg2m

0 sin ϕg∗
2m 0

⎞
⎠. (7)

Here g1m = t exp [i π
3 f (m′ + 1

2 ) + a
2 ky] and g2m =

t exp [−i( 2
3πf m′ + kya)], with m′ = m − (N + 1)/2 and

f = 3
√

3Ba2/2φ0 being the magnetic flux through the
hexagon in units of φ0. a is the bond length and ky is the
wave vector along the y direction due to the preserved
translational symmetry. Note that we use the replacement
m′ = m − (N + 1)/2 to display the reflection symmetry of
the system. And the physical width of an armchair ribbon
with width notation N is W = √

3a(N − 1)/2.
For zigzag ribbons as shown in Fig. 1(d), the Harper

equation reads

Eψm = A
†
m−1ψm−1 + Cmψm + Amψm+1. (8)

The Hamiltonian of a zigzag ribbon with width N is given by

Hzz =

⎛
⎜⎜⎜⎜⎝

C1 A1 0 · · · 0
A

†
1 C2 A2 · · · 0

0 A
†
2 C3 · · · 0

· · · · · · · · · · · · · · ·
0 0 0 · · · CN

⎞
⎟⎟⎟⎟⎠, (9)

where

Am =
⎛
⎝0 t cos ϕ 0

0 0 t sin ϕ

0 0 0

⎞
⎠, (10)

Cm =
⎛
⎝ 0 cos ϕg3m+ 0

cos ϕg∗
3m+ 0 sin ϕg3m−

0 sin ϕg∗
3m− 0

⎞
⎠, (11)

with g3m± = 2t cos[πf (m′ ± 1
6 ) +

√
3a
2 ky], and the physical

width of a zigzag ribbon with width N is W = 3aN/2 − a/2.
For zigzag ribbons, there are three types of situations for both
the left and right boundary according to the termination atom:
A-edged, B-edged, and C-edged boundaries, respectively. The
submatrices C1, A1, CN , and AN−1 should be modified to
fit two particular boundaries of the ribbon. The method is
straightforward and the details are not shown here for space
limitation.

By diagonalizing the Hamiltonian, we can obtain all
the eigenvalues εkj and corresponding eigenfunctions ψkj =
φje

iky , where φj denotes the j th eigenvector of the Hamilto-
nian matrix for a fixed ky = k, with j = 1, 2, 3, . . . , 3N . In
order to calculate the optical conductivity of ribbons using the
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FIG. 2. Band structures of metallic armchair ribbons with vari-
ous α = 0, 0.5, 1 and magnetic flux f = 0, 0.002, 0.005. The width
of the ribbon is fixed to N = 20.

Kubo formula, we first write the form of the current operator
along the longitudinal direction Jy = e ∂H

h̄∂ky
. By introducing

the field operator ψ̂ (x, y) = ∑
kj φj e

ikyckj with ckj being
the annihilation operator in state ψkj , the current operator
can be expressed in the second quantization notation, Ĵy =∑

kjj ′ J
y

jj ′c
†
kj ckj ′ , with J

y

jj ′ = φ
†
j Jyφj ′ . According to the Kubo

formula, the optical conductivity is found as

σyy (ω) = − 1

iωW

∑
kjj ′

J
y

jj ′ (k)J y

j ′j (k)(fkj − fkj ′ )

h̄ω + εkj − εkj ′ + iδ
, (12)

where fkj is the Fermi distribution function, δ is a positive
infinitesimal, and W is the physical width of the ribbon.

III. ARMCHAIR RIBBONS

A. Numerical results

Figure 2 shows the evolution of the band structure of a
metallic armchair ribbon with various parameters α under
various magnetic fields. The width of the ribbon is N =
20, which satisfies the condition N = 3n − 1 of the metallic
armchair ribbons. When the magnetic field is absent, the band
structure is gapless for arbitrary α. Under a magnetic field,
the band structure opens a gap, but the flat band remains
untouched. For α = 0 (graphene), the gap is very tiny. With
increasing α, the gap is increasing and remarkably enhanced
for even modest α.

Figure 3 plots the optical conductivity of a metallic arm-
chair ribbon under various magnetic fields. The ribbon is made
from the dice lattice (α = 1) and the width is N = 20. Without
the magnetic field, the flat band and two linear subbands cross
at zero energy, and the spectrum is almost the same as in
graphene. The first absorption peak appears at a frequency
0.25t/h̄ which corresponds to the transition between the flat
band and the first parabolic subband. When the magnetic
field is present, there opens a gap in the band structure. The
numerical results show that the first response peak in the op-
tical conductivity has a frequency which corresponds exactly
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FIG. 3. Optical conductivity of a metallic armchair ribbon under
various magnetic fields. The parameters are N = 20, α = 1, the
chemical potential μ = 0, the temperature T = 300 K, and δ =
10−4t .

to the opened gap. This absorption peak is attributed to the
transitions between the flat band and two gapped subbands.
The gap opening remarkably reduces the threshold frequency.
For f = 0.001, the threshold frequency is reduced to 0.02t/h̄.
It is noted that the gap and the threshold frequency can be
continuously tuned by the magnetic field. By comparison with
the earlier results for graphene without the flat band [36,44],
it is clearly shown that the magnetic modulation effect on the
optical response is significantly enhanced.

For armchair ribbons with width N �= 3n − 1, there is
a gap in the band structure due to the discreteness of kx .
Applying a weak magnetic field only modifies slightly the gap
and shifts the first absorption peak weakly. For comparison
with graphene, t = 3 eV and a = 1.42 Å are used in all the
calculations. The corresponding magnetic field is nearly 78
T for the magnetic flux f = 0.001. For a realistic α − T3

material with much larger lattice constant, this corresponding
magnetic filed can be much reduced. Moreover, it is noticeable
that even a very weak magnetic field can open a gap and
induce an absorption peak, but with a very low frequency. The
room temperature T = 300 K is used in all the calculations of
optical conductivities. Figure 3 shows that the new absorption
peak for f = 0.001 is still sharp even at room temperature.
For smaller magnetic field, the new absorption peak with
lower frequency may be broadened at high temperature. But
we argue that the temperature only affects the width of ab-
sorption peaks, not the position of them.

B. Analytic discussion

To better understand the magnetic modulation effect on the
optical response in armchair ribbons made from the α − T3

lattice, we analytically investigate the gap opening mechanism
in the presence of a weak magnetic field.

The spectrum of armchair ribbons can be obtained by
imposing proper boundary conditions to the wave functions
solved from the continuum Hamiltonian [Eq. (2)]. For an

armchair ribbon with width N , the boundary conditions
become ψ (x = 0) = ψ[x =

√
3a
2 (N + 1)] = 0. Therefore the

transverse momentum kx has to take discrete values as

kx = jπ
√

3a
2 (N + 1)

= 2π√
3a

l

N + 1
, (13)

where l = 1, 2, 3, . . . , N is the subband index. For the lth
subband, the wave function is

ψj =
√

2

N + 1
ξ sin

lmπ

N + 1
eikyy (14)

with m = 1, 2, 3, . . . , N being the site position along the x

direction. When N = 3n − 1, the 2nth subband with kx =
4π

3
√

3a
sweeps through the Dirac point ( 4π

3
√

3a
, 0), which makes

the ribbon metallic. We focus on only the flat band |l0〉
(containing N subbands, l = 1, 2, 3, . . . , N), the 2nth con-
duction band |2n+〉, and the 2nth valence band |2n−〉. These
subbands cross at zero energy at ky = 0 for metallic armchair
ribbons, and are crucial to the gap opening under a magnetic
field.

We consider a weak magnetic field as a perturbation. To
obtain the perturbation Hamiltonian, we first linearize f (k)
around the Dirac point K = ( 4π

3
√

3a
, 0) as f (k) → h̄vF (−kx +

iky ), where vF = 3at
2h̄

is the Fermi velocity and kx and ky

are measured from the K point from now on. And now θk =
arctan(ky/kx ) becomes the momentum direction angle. Under
a magnetic field, ky should be replaced by ky + eAy/h̄c with
Ay = Bx. Then the perturbation Hamiltonian of the magnetic
field reads

H1 = πtf m′

⎛
⎝ 0 i cos ϕ 0

−i cos ϕ 0 i sin ϕ

0 −i sin ϕ 0

⎞
⎠, (15)

where m′ = m − N+1
2 . Here we reset the midpoint of the

ribbon as the zero point in the x axis. Now we calculate
the magnetic filed induced couplings among |j0〉, |2n+〉, and
|2n−〉 as follows:

〈2n±|H1|2n±〉 = ±πtf sin θk

∑
m

m′ sin2

(
2π

3
m

)
≈ 0,

〈2n∓|H1|2n±〉 = ±iπtf cos θk cos 2ϕ
∑
m

m′ sin2

(
2π

3
m

)

= 0,

〈l0|H1|2n±〉 = ± i√
2
πtf cos θkl sin 2ϕ

×
∑
m

m′ sin

(
lπ

N + 1
m

)
sin

(
2π

3
m

)

≈
{∓iπtf cos θkl sin 2ϕ 8nl(N+1)2

π2(l2−4n2 )2 , l is odd,

0, l is even,

〈l0|H1|l′0〉 = 0, (16)

where θk (θkl) is the momentum direction angle of the state
|2n±〉 (|l0〉). From the above matrix elements, we can see
that the gap opening is attributed to the coupling between
the flat band |l0〉 and two linear subbands |2n±〉. And the
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FIG. 4. Band structures of B-B-edged zigzag ribbons with vari-
ous α = 0, 0.5, 1 and magnetic flux f = 0, 0.002, 0.005. The width
of the ribbon is fixed to N = 20.

factor sin 2ϕ shows that this coupling vanishes for graphene
(α = 0). The gap opening in graphene is attributed to the
coupling between two linear subbands and other parabolic
subbands with higher energies. The energy difference between
them makes the perturbation correction in energy very tiny.
The opened gap leads to the first response peak which is fully
tunable by the magnetic field.

IV. ZIGZAG RIBBONS

A. B-B-edged zigzag ribbons

For zigzag ribbons, there are three types of boundaries for
both edges, namely, A-edged, B-edged, and C-edged bound-
aries. We find that only in B-B-edged zigzag ribbons can the
magnetic field open a gap and give rise to a new absorption
peak. Figure 4 shows the band structure of the B-B-edged
zigzag ribbon with various α values and magnetic fields.
When α = 0 and f = 0, the spectrum is gapped due to the
quantum confinement effect. The flat band and the zigzag
edge state subbands are degenerate at zero energy and go
through the whole Brillouin zone. With nonzero α, two zigzag
edge state subbands become linearly dispersive subbands and
cross each other at two Dirac points. When the magnetic
field is applied, the coupling between the flat band and two
linear subbands opens a gap, which is similar to the situation
in metallic armchair ribbons. It is also worth noting that
the valley degeneracy of the band structure is lifted by the
magnetic field in the case of α < 1, which will lead to the
splitting of response peaks.

The corresponding optical conductivities are plotted in
Fig. 5. When α = 0 and f = 0, the spectrum is gapped and
the first absorption peak is due to the transition between zero-
energy edge states and the first parabolic subband. When the
magnetic field is tuned on, the peak is split. With increasing
magnetic field, the splitting is larger. However, the situation
is quite different in the case of α > 0. In these cases, the
zero-energy edge states evolve into two linearly dispersive
subbands around the Dirac points. But the first absorption
peak changes little because it still corresponds to the transition
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FIG. 5. Optical conductivity of a B-B-edged zigzag ribbon under
various magnetic fields for different parameters α: (a) α = 0, (b) α =
0.5, (c) α = 1. The other parameters are N = 20, μ = 0, T = 300 K,
and δ = 10−4t .

between the flat band to the first parabolic subband. When
the magnetic field is applied, two linear subbands open a
gap. The transitions between the flat band and two gapped
subbands give rise to a new absorption peak with much
reduced frequency, as shown in Figs. 5(b) and 5(c).

B. C-A-edged zigzag ribbons

For zigzag ribbons with other boundaries, the applied
magnetic field cannot give rise to a new absorption peak.
Because the situation is similar for all these zigzag ribbons,
we take the C-A-edged zigzag ribbon as an example to present
the results.

Figure 6 shows the band structure of the C-A-edged zigzag
ribbon with various α values and magnetic fields. When α = 0
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/2 3 /2/2 3 /2
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FIG. 6. Band structures of C-A-edged zigzag ribbons with vari-
ous α = 0, 0.5, 1 and magnetic flux f = 0, 0.002, 0.005. The width
of the ribbon is fixed to N = 20.
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FIG. 7. Optical conductivity of a C-A-edged zigzag ribbon under
various magnetic fields for different parameters α: (a) α = 0, (b) α =
0.5, (c) α = 1. The other parameters are N = 20, μ = 0, T = 300 K,
and δ = 10−4t .

and f = 0, the spectrum is gapless because the edge states
continuously connect to the bulk states. With nonzero α, the
edge states are gapped. An applied weak magnetic field only
slightly modifies the gap, and the modification is different for
two valleys when 0 < α < 1, which leads to the lifting of
valley degeneracy. In the case of α = 0, the applied magnetic
field only slightly modifies the bulk subbands and the edge
states remain gapless.

The corresponding optical conductivities are plotted in
Fig. 7. For α = 0, the first absorption peak is due to the tran-
sition between zero-energy edge states and the first parabolic
subband. The applied weak magnetic field only slightly shifts
the first peak. With increasing magnetic field, the shifting is
larger. For nonzero α, the edge states are gapped and the
first absorption peak emerges due to the transition between

the flat band and the newly gapped edge states. When α = 1,
the valley degeneracy is preserved and the magnetic field
only shifts the first peak. But when 0 < α < 1, the valley
degeneracy is lifted and then the magnetic field splits the first
absorption peak. Overall, the magnetic field cannot give rise
to a new absorption peak in zigzag ribbons where the two
boundaries are not B-B-edged.

V. CONCLUSION

In conclusion, we investigated the influence of a weak
magnetic field on the band structure and magneto-optical
properties of nanoribbons made from the α − T3 lattice. It is
found that the magnetic field can open a gap in the band struc-
ture and induces a new absorption peak with much reduced
frequency in metallic armchair ribbons and B-B-edged zigzag
ribbons. The flat band plays a key role in the gap opening
and the emergence of a new absorption peak in the optical
conductivity. And this magneto-optical modulation effect is
much stronger than that in metallic armchair graphene ribbons
due to the presence of the flat band. We explained the enhance-
ment of the optical response under a magnetic field within
the perturbation theory for metallic armchair ribbons. And
the situation is similar in B-B-edged zigzag ribbons. For the
applications in magneto-optics devices, the applied magnetic
field is much weaker than that needed in graphene. Therefore
controlled terahertz radiation can be achieved much more eas-
ily in nanoribbons made from the α − T3 lattice. Besides, we
also find the magnetic field will lift the valley degeneracy and
split the absorption peaks in zigzag ribbons. We propose that
this enhanced magneto-optical response may be observable
in the quantum wire of critically doped Hg1−x CdxTe. These
findings pave the way for magneto-optics devices based on the
α − T3 model materials.
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