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Charge transport in graphene-based mesoscopic realizations of Sachdev-Ye-Kitaev models
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We consider a recent proposal for a physical realization of the Sachdev-Ye-Kitaev (SYK) model in the zeroth-
Landau-level sector of an irregularly shaped graphene flake. We study in detail charge transport signatures of
the unique non-Fermi-liquid state of such a quantum dot coupled to noninteracting leads. The properties of
this setup depend essentially on the ratio p between the number of transverse modes in the lead M and the
number of the fermion degrees of freedom N on the SYK dot. This ratio can be tuned via the magnetic field
applied to the dot. Our proposed setup gives access to the nontrivial conformal-invariant regime associated with
the SYK model as well as a more conventional Fermi-liquid regime via tuning the field. The dimensionless
linear-response conductance acquires distinct

√
p and 1/

√
p dependencies for the two phases, respectively, in

the low-temperature limit, with a universal jump at the transition. We find that corrections scale linearly and
quadratically in either temperature or frequency on the two sides of the transition. In the weak-tunneling regime,
we find differential conductance proportional to the inverse square root of the applied voltage bias U . This
dependence is replaced by a conventional Ohmic behavior with constant conductance proportional to 1/

√
T

for bias energy eU smaller than temperature scale kBT . We also describe the out-of-equilibrium current-bias
characteristics and discuss various crossovers between the limiting behaviors mentioned above.
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I. INTRODUCTION

Sachdev-Ye-Kitaev (SYK) is an exactly solvable quantum
mechanical model describing N fermions with random all-
to-all interactions [1,2]. The model is connected to black
hole physics in AdS2 space-time gravity theories through
holographic principle [3,4]. It exhibits a host of remarkable
properties such as nonvanishing residual entropy [5] and satu-
rating the universal chaos bound [6] which are also properties
of quantum black holes. SYK and its variants [7–19] are
important examples of holographic quantum matter where
non-Fermi-liquid (NFL) behavior is observed in the presence
of strong correlations and strong disorder. In a non-Fermi
liquid, elementary excitations of the system can not be as-
sociated with noninteracting electronic excitations through
adiabatic continuity arguments. This means that the familiar
quasiparticle description fails, making theoretical considera-
tions difficult. Nevertheless, the SYK model is special: despite
the strong correlations, it can be solved in the large-N limit
and many observable quantities can be analytically obtained.

The distinct non-Fermi-liquid behavior of the SYK model
remains to be experimentally observed. Recently, various
realizations of the model have been proposed (see Ref. [20]
for a recent review) involving ultracold atoms [21], Majorana
modes on the surface of a topological insulator [22], semi-
conductor quantum wires attached to a quantum dot [23], and
finally a graphene flake in external magnetic field [24] which
will be the focus in this paper. Remarkably, this relatively
simple setup contains all of the essential ingredients of the
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SYK model. More specifically, the low-energy sector of this
system involves electrons in the zeroth Landau level with
virtually no kinetic energy. For the chemical potential μ in
the zeroth Landau level, the irregular boundary of the flake
ensures that the electronic wave functions acquire a random
spatial structure. A quasidegeneracy is maintained via the
preserved chiral symmetry. Correspondingly, the Coulomb
interactions projected onto the lowest Landau level reflect the
disorder and are likewise random and all-to-all, as required by
the SYK model.

In this paper, we study the tunneling conductance and
current-voltage characteristics of a disordered graphene-flake
realization [24] of the complex-fermion version of the SYK
model [3] in a setup shown in Fig. 1. The transport properties
are obtained via analytical and numerical solutions in the
limit of large degeneracy of ballistic channels in the leads
and of the zeroth Landau level on the graphene-flake quantum
dot. Our aim is to provide clear signatures of the nontrivial,
conformal-invariant regime of the SYK model which can be
readily observed in a charge transport experiment.

Our setup Fig. 1 is reminiscent of well-known quantum-
impurity systems, such as the multichannel Kondo model
[25]. Although the analogy is not exact, it is natural to
expect that the low-temperature properties of the junction are
essentially controlled by the ratio of the number of channels
in the leads to the effective degeneracy on the dot p = M/N .
While M is typically fixed by the lead geometry, N can be
tuned in our setup via the applied magnetic field on the dot.
Therefore, our proposed setup naturally allows for quantum
phase transitions as a function of the magnetic field on the
graphene flake. Our results, presented below, are in agreement
with these expectations.
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FIG. 1. Sketch of the proposed experimental setup for measure-
ments of tunneling conductance of a graphene-based SYK4 model. A
graphene dot with an irregular boundary is placed under a perpendic-
ular magnetic field B. The Coulomb interactions projected onto the
zeroth Landau level of degeneracy N provide an effective realization
of an SYK4 model [24]. The dot is coupled to identical, quasi-
one-dimensional, ballistic leads each with M transverse modes. We
consider general models which also allow for the effects of disorder
on leads in the vicinity of the junction (t ). In addition to the random,
all-to-all interactions on the dot, which are specific to SYK4 models,
we also include disordered, all-to-all scattering between dot and lead
end points V . The applied bias is labeled by U .

Our model for the junction is very similar to the model
introduced by Banerjee and Altman (BA) in Ref. [11]. The BA
model consists of N fermions described by the SYK4 Hamil-
tonian [Eq. (3) below] coupled to M “peripheral” fermions
described by an SYK2 model. Here, SYKq refers to an SYK
model with q-fermion interactions. Because for large enough
M the coupling to peripheral noninteracting fermions is a
relevant perturbation the BA model exhibits a second-order
quantum phase transition at p = 1 from an SYK-like NFL
phase at small p to a Fermi liquid at large p. In our setup,
peripheral fermions describe electrons in the leads. In analogy
to the BA results, coupling to the leads can destabilize the
SYK state on the dot which makes the transport properties of
the junction highly nontrivial.

Our results are summarized in Fig. 2. For subcritical fields
(p < pc = 1

2 ), a phase with emergent conformal invariance
is realized on the dot well below a crossover scale [11]
h̄ω∗(p) ∝ kBT ∗. This regime is characterized by a leading
spectral density for the dot electrons which exhibits nontrivial
ω−1/2 and T −1/2 scaling, as predicted for SYK4 model in
the absence of the leads [3]. Following BA [11], we refer
to this as the non-Fermi-liquid phase. Upon approaching the
transition, we expect the crossover scale T ∗ to vanish [11]
as

√
pc − p. For fields above the critical value (p > pc),

the effects of the random interactions on the graphene flake
become subleading at low temperatures. At frequencies and
temperatures below T ∗(p), the spectral density of the dot
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FIG. 2. Sketch of the expected T -p phase diagram of the
graphene dot in contact with leads corresponding to the setup in
Fig. 1. p = M/N is the ratio between the number of transverse chan-
nels in each lead M and the degeneracy of the zeroth Landau level
on the dot N , as defined in Eqs. (9)–(11). For fixed M , N and p can
be tuned via the applied magnetic field B. At T = 0, a second-order
quantum phase transition separates an emergent, conformal-invariant
NFL regime from a more conventional FL phase, as originally
discussed in Ref. [11]. We expect that both regimes survive for finite
temperatures below the crossover scales labeled by T ∗. The two
phases are separated via a quantum-critical (QC) regime, which is
not discussed in this work.

develops a resonance peak with corrections which scale as
ω2 and T 2, as in conventional Fermi-liquid (FL) regimes. The
crossover scale T ∗ is expected to decay to zero as (p − pc ) as
we approach the transition from this side [11].

In the particle-hole symmetric case at T = 0, we find that
the linear-response dimensionless dc tunneling conductance
[Eq. (13) below] has a distinct dependence on parameter p:

g0 =
{
π

√
p, p < pc

2/
√

p, p > pc.
(1)

At the transition, g0 undergoes a universal jump from π/
√

2
to 2

√
2. At nonzero temperatures, the sharp transition with

increasing p is broadened into a smooth crossover. We find
corrections to the dimensionless conductance which scale
linearly and quadratically with either temperature or fre-
quency on the NFL and FL sides, respectively. Crossovers to
quantum-critical and high-temperature regimes are observed
with increasing temperature.

In the weak-tunneling regime on the NFL side (i.e., when
the dot-lead coupling is the smallest energy scale) we predict

045419-2



CHARGE TRANSPORT IN GRAPHENE-BASED MESOSCOPIC … PHYSICAL REVIEW B 99, 045419 (2019)

the tunneling differential conductance of the form

g(U ) ∝
{

1/
√

U, eU � kBT ,

1/
√

T , eU � kBT .
(2)

At low temperature T compared to the applied bias eU the
behavior is highly non-Ohmic reflecting the divergent spectral
density of the SYK dot at low energy. At higher temperature,
the divergence is cut off and a more conventional Ohmic
dependence prevails albeit with a highly unusual temperature
dependence.

Aside from the linear-response and weak-tunneling
regimes, we consider also fully nonequilibrium situations with
no natural small parameter in which one can perturb. In this
case, we employ the Keldysh formulation of the transport
theory. We match these results to the simple limiting cases
mentioned above and obtain interesting crossover behaviors as
a function of temperature, voltage bias, and lead-dot coupling.
Throughout, we focus on the tunneling conductance deep
within each of the two stable phases and do not address the
behavior in the quantum-critical regime in great detail.

We note that Ref. [26] discussed charge transport in a
similar setup involving an irregular graphene flake in the
presence of an applied field. The authors consider the limit
of few tunneling channels corresponding to M → 0 in our
terminology. In the conformal regime for the dot, they find
a “duality” in the zero-temperature differential conductance
which scales as the square root and inverse of the square root
of the bias in the limit of small and large biases, respectively.
These results are in effect complementary to those found for
our setup, which are valid in the limit of large degeneracy of
both leads and dot.

In Section II we describe our model. Section III presents
our main results for the frequency- and temperature-
dependent conductance obtained in the linear-response regime
and the I -V characteristics for arbitrary static biases. Our
conclusions are presented in Sec. IV. Detailed discussions of
the theory and calculations are available in the Appendices.

II. MODEL

We now describe the setup shown in Fig. 1 in greater
detail. As previously mentioned, it consists of an irregularly
shaped graphene flake, under a perpendicular magnetic field,
in proximity to the end points of two leads each with M

quasi-one-dimensional, ballistic modes. We consider leads
which are sufficiently long such that effects due to coupling
to large reservoirs can be ignored. The low-energy sector of
the graphene flake is described by the effectively random
interactions within the zeroth-Landau-level manifold of de-
generacy N . For a detailed discussion on the realization of the
SYK model in the zeroth-LL sector of the irregularly shaped
graphene flake, we refer the reader to Ref. [24].

Due to the disorder inherent to the irregularly shaped
graphene flake, we expect that the matrix elements for tun-
neling to and from the end points of the leads are essentially
random. We expect that our predictions are valid for systems
where both the number of transverse modes M and the de-
generacy of the zeroth Landau level N are large, which in
practice means at least of O(10). We also assume that the

filling of the system can be tuned via applied gate voltages. In
this work, we only consider statistically identical left and right
leads, with equivalent random hoppings to the dot. In addition,
the leads remain in thermal equilibrium with large reservoirs.
In the following, we shall refer to the graphene flake and the
random disordered end points of the left and right leads as
the dot and the leads for simplicity. Note that we ignore the
electron spins as the external magnetic field on the dot results
in large spin splitting, allowing us to consider only one spin
sector [24].

We first consider a setup where the lead end points in the
vicinity of the junction are modeled by an effective local SYK2

model, implying that the low-energy dynamics of the lead end
point is dominated by disorder scattering. This amounts to ig-
noring the effects of coupling to the bulk of the noninteracting
leads to leading order. Equivalently, the neglected couplings
are assumed to be marginal or irrelevant in the renormalization
group (RG) sense. We stress that this approximation is not an
essential part of our model and we show that the two phases
and the respective conductances are essentially unchanged
when the local disorder on the leads is neglected altogether
in favor of a coupling to noninteracting extended leads more
typical of quantum-impurity models [27].

The situation described above is modeled by the BA-type
Hamiltonian [11] with two flavors of peripheral fermions
corresponding to the two leads:

HI = HD + HL + HR + HLD + HRD. (3)

The dot is described by the SYK4 Hamiltonian

HD = 1

(2N )3/2

∑
ijkl

Jij ;klc
†
i c

†
j ckcl − μ

∑
i

c
†
i ci , (4)

where i ∈ {1, . . . , N} labels the degenerate, randomized
zeroth-Landau-level states. In the absence of any symmetry,
we use the indices i, j, k, l to label four distinct fermions
in the zeroth Landau level (LL). As discussed in Ref. [24],
the effective vertices Jij ;kl are computed by projecting the
Coulomb interaction onto the zeroth-LL sector. They result
from the spatial average of the spatially random zeroth-LL
wave functions of the four electrons. Consequently, they are
also randomized in the second-quantized form used here.
The antisymmetrized vertex Jij ;kl = −Jji;kl = −Jij ;lk obeys a
Gaussian distribution with zero mean and |Jij ;kl|2 = J 2 vari-
ance. Based on the previous proposal [24] for a realization of
the SYK4 model, it is estimated that J ≈ 25 meV in this setup.
We refer the reader to Ref. [24] for an in-depth discussion
of the emergence of the SYK model shown in Eq. (4) in the
zeroth-LL sector of an irregularly shaped graphene flake under
an applied magnetic field.

The end points of the two leads are modeled by a pair of
SYK2 Hamiltonians

Ha =
∑
αβ

ta,αβ

M1/2
ψ†

aαψaβ + H.c. − μ
∑

α

ψ†
aαψaα, (5)

with a = L,R labeling the left and the right lead, respectively.
The index α ∈ {1, . . . ,M} corresponds to transverse channels
in the bulk of the lead. We assume that the local couplings are
drawn from a Gaussian random distribution with zero mean
and variance |tαβ |2 = t2. The 1/(2N )3/2 and 1/

√
M factors
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are chosen so that the Hamiltonians exhibit sensible scaling in
the thermodynamic limit. Coupling between the dot and the
leads is effected by

HaD =
∑
iα

Vaiα

(NM )1/4
c
†
i ψaα + H.c., (6)

where the tunneling matrix elements Vaαi are chosen as ran-
dom Gaussian with |Vaαi |2 = V 2 variance.

Except for two flavors of peripheral fermions ψaβ corre-
sponding to two leads HI is essentially the BA Hamiltonian
of Ref. [11] and we may thus adopt results of that work with
only minimal modifications. Specifically, we will make an
extensive use of the expressions derived by BA for the fermion
propagators in the FL and NFL phases. These will be reviewed
below as needed. Here, we record for future use the expression
for the crossover temperature indicated in Fig. 2,

T ∗(p) 

{

(V 4/t2J )
√

pc − p/p, p < pc

(V 2/t )
√

p(p − pc ), p > pc

(7)

derived in Ref. [11] for p close to pc.
In a realistic experimental setup, the leads will be spatially

extended which we model by connecting the lead end points
to semi-infinite ballistic chains for each transverse channel α.
This is represented by an “extended lead” Hamiltonian H ext =
HI + HE with

HE =
∑

|ĩ|>1,α

[tEψ
†
ĩα

ψĩ+1,α + H.c.] − μ
∑

|ĩ|>1,α

ψ
†
ĩα

ψĩα

+
∑

α

[t−1,αψ
†
−1αψLα + t1,αψ

†
1αψRα + H.c.]. (8)

Electrons in the bulk of the leads are annihilated by ψĩα, |ĩ| �
1 and are not subject to either disorder or interactions. t1/−1,α

are the couplings between the bulk and end-point states. To
conserve the large-M degeneracy, we approximate these to
be independent of the index α and ignore any randomness.
Likewise, we assume that the M transverse channels in the
bulk are quasidegenerate on a scale set by the variance of the
interactions on the dot J . Throughout, we ignore any source
of asymmetry between left and right leads. In our calculations,
we set t1/−1 > t = V = J/2 > 0 unless otherwise stated.

In considering an effective local model for the junction, we
ignore the coupling to the bulk of the leads which are given by
HEL/R . As previously mentioned and supported by numerical
results in Sec. III, including these terms and/or ignoring any
local disorder on the lead end points does not modify our main
results.

We estimate the degeneracy of the zeroth LLs N (from
Ref. [24]) and the number of quasi-one-dimensional, ballistic
modes in each lead M in our setup as

N = SB

�0
, (9)

M = hGL

e2
, (10)

where S is the area of the graphene flake, B is the applied field,
and �0 = hc/e is the quantum of flux. M is related to the
conductance of the extended ballistic leads GL. We also define

the auxiliary quantities p = M/N , G0 = (e2/2h)
√

MN , and
G̃ which can be estimated from

p(B ) = hGL�0

e2SB
, (11)

G0(B ) =
√

e2GLSB

4h�0
, (12)

G̃(ω, T , B ) = G(ω, T , B )

G0(B )
, (13)

where G(ω, T , B ) is the conductance of the junction. As
previously mentioned, with M fixed, the ratio p can be tuned
via the strength of the transverse field applied to the dot. Note
that both G0 and p are functions of the applied field.

III. CHARGE TRANSPORT

The model defined by Hamiltonian HI in Eq. (3) can be
solved analytically using path-integral techniques to average
over disorder in the limit of large N and M . Specifically,
closed form expressions for fermion propagators can be ob-
tained [11] in the conformal regime (ω, T ) � J . From these,
it is possible to evaluate the conductance of the junction in
certain limits, including the linear-response regime (small-
bias voltage U ) and the weak-tunneling regime (small V ).
This leads to our main results already given in the Introduction
as Eqs. (1) and (2).

Away from these simple limits and outside the conformal
regime we solve the model in Eq. (3) numerically using a
large-(N,M) saddle-point approximation and determine the
real-time Green’s functions in the Keldysh basis [17] in
and out of equilibrium. In practice, this amounts to numer-
ically iterating a set of self-consistent equations, given in
Appendix B 1, for the fermion propagators and self-energies.
Based on these solutions, we obtain the response to an applied
bias using a variant of the standard Meier-Wingreen formula
[28]. The numerical results are restricted to finite temperatures
and are matched to the analytical results in appropriate limits.
A detailed discussion of our calculations is given in the
Appendices.

A. Linear-response ac conductance

We first discuss the tunneling conductance obtained via the
Kubo formalism [29] in the presence of a small oscillating
bias applied to the two leads and subsequently present our re-
sults for current with arbitrarily large, static biases. A detailed
account of our calculations is found in Appendix A.

Based on dimensional analysis [30], we expect that the
dimensionless conductance of the junction [Eq. (13)] obeys
the scaling form

G

G0
= g

(
h̄ω

kBT
,

T

T ∗ ,
μ

μ∗ , p

)
, (14)

where g is a dimensionless function which depends on the na-
ture of the phases on either side of the transition. In addition,
ω is the frequency of the driving bias, T is the temperature,
μ is the chemical potential common to both leads and dot,
while p ∝ 1

B
serves as a tuning parameter. T ∗(p) is given

in Eq. (7) and represents crossover scales associated with the
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FIG. 3. (a) Dimensionless tunneling conductance computed us-
ing Eq. (A15) and numerical solutions of the saddle-point equations
in the NFL regime at fixed temperature T = 100 mK and increasing
values of the tuning parameter p [Eq. (11)]. Note the crossover from
the peak at low energies, in the conformal-invariant NFL regime,
to the broad, featureless spectrum beyond a scale h̄ω∗ ≈ kBT ∗.
With increasing p, ω∗ decreases, while the peak is suppressed. The
behavior is consistent with the approach to a second-order quantum
phase transition as sketched in Fig. 2. (b) Same as (a), at fixed
p = 0.2 and for several temperatures. The height of the peak at
lower frequencies decreases with increasing temperature indicating
a smooth crossover away from the conformal-invariant NFL regime.
Also note the crossover to the high-frequency limit which occurs
at roughly the same frequency. The dashed line corresponds to the
high-temperature limit and is included for comparison.

emergence of the NFL and FL scaling regimes. It vanishes at
the critical point from either side. As Ref. [11] pointed out,
away from particle-hole symmetry (μ �= 0), the NFL and FL
phases are separated by an incompressible phase for a finite
range of μ. Since the focus of our work is behavior of the
conductance deep within either NFL and FL phases, we do not
address the intermediate phases. As such, we associate μ∗(p)
with a scale below and above which the conductance follows
either NFL/FL scaling. As discussed below, for frequencies
and temperatures well below T ∗, the conductance shows very
weak dependence on either ω, T , while it exhibits character-
istic scaling with p(B ) in either phase.

In Fig. 3(a), we plot the dimensionless tunneling conduc-
tance G/G0 as a function of frequency at combined half-
filling μ = 0 and at a temperature of 100 mK in the NFL
regime for increasing values of the tuning parameter p <

pc = 1
2 . Here and below, we take J = 25 meV as estimated

for the graphene flake in Ref. [24]. In addition, we assume
t = V = J/2 in the following unless otherwise noted. We
distinguish the presence of a relatively sharp peak in the
conformal-invariant NFL regime at low frequencies followed
by a crossover to an essentially featureless spectrum beyond

FIG. 4. (a) Dimensionless tunneling conductance [Eq. (A15)] in
the NFL regime for p = 0.1 as a function of h̄ω/kBT for several
temperatures. The conductances saturate close to a universal value
g0(p) [Eq. (15)] for vanishing values of the argument. Deviations
are clearly visible for arguments roughly exceeding 1. (b) Scaling
collapse for the function f which determines the corrections to
the universal dimensionless conductance g0(p) in the conformal-
invariant regime [Eq. (15)]. It scales linearly for arguments greater
than O(1).

a scale ω∗(p). Upon increasing p, the height of the peak
increases while the crossover scale tends to zero, as expected
for a second-order quantum phase transition (Fig. 2). In
Fig. 3(b) we plot the conductance at fixed p = 0.2 on the
NFL side for several temperatures. With decreasing T , the
height of the central peak increases while its width remains
roughly constant. The broad spectrum beyond the crossover
scale shows very little dependence on temperature.

The dimensionless conductance G/G0(B ) at half-filling is
shown in Fig. 4(a) as a function of h̄ω/kBT , for p = 0.1,
and temperatures ranging from 400 to 1000 mK. It saturates
to a constant for values of the argument below 1. A weak
temperature dependence in this limit can still be distinguished
from the offsets of the saturated values. These shifts are
due to corrections from leading irrelevant operators about
the conformal-invariant fixed-point value which arise with
increasing temperature. We find that in the h̄ω, kBT � kBT ∗
limit the dimensionless conductance is consistent with the
scaling form

g

(
h̄ω

kBT
,

T

T ∗ → 0, 0, p

)
= g0(p) −

(
T

T ∗

)α

f

(
h̄ω

kBT

)
.

(15)

The universal dimensionless conductance g0(p) is the con-
tribution in the conformal limit. It varies continuously along
the line of fixed points associated with the stable NFL phases.
We estimated α ≈ 1 for a range of temperatures extending
over a decade from the lowest numerically accessible value

045419-5



OGUZHAN CAN, EMILIAN M. NICA, AND MARCEL FRANZ PHYSICAL REVIEW B 99, 045419 (2019)

FIG. 5. (a) Dimensionless tunneling conductance [Eq. (A15)] in
the FL regime at fixed temperature T = 100 mK and increasing
values of the tuning parameter p. The peak around zero frequencies
rapidly broadens and merges with the featureless spectrum at higher
frequencies. (b) Same as (a), at fixed p = 0.8 and for several tem-
peratures. Note the insensibility to variations in temperature relative
to the NFL regime [Fig. 3(b)]. The dashed line corresponds to the
high-temperature limit and is included for comparison.

of 100 mK (see Appendix A 3). The exponent also holds
for higher values of p. In Fig. 4(b), we plot the universal
function f which converges to a constant for small values of
h̄ω/kBT . For higher values of the argument, f scales linearly.
This indicates that corrections to the conductance about the
conformal-invariant NFL fixed point scale linearly with either
frequency or temperature. Similar behavior emerges for other
values of p, as well as in cases away from particle-hole sym-
metry. We note that the temperature- and frequency-dependent
corrections to the universal dimensionless conductance g0

arise from the subleading contributions to the leading spectral
densities shown in Eqs. (A17) and (A18) and Fig. 15.

Turning to the FL regime, in Fig. 5(a) we plot the dimen-
sionless conductance G/G0 as a function of frequency, at
half-filling, for fixed temperature T = 100 mK and several
values of p. Close to the transition, we observe a narrow
peak which quickly broadens and flattens and becomes in-
distinguishable from the high-energy spectrum. In addition,
as shown in Fig. 5(b), it shows a much weaker temperature
dependence relative to the NFL phase in Fig. 3(b). An analysis
similar to the one leading to Eq. (15) reveals a similar scaling
form with an exponent α = 2 which is characteristic of FL
regimes [31] (see Appendix A 3). The relative insensibility to
temperature on the FL side is most likely due to the combined
effect of corrections to the fixed point which scale as (T/T ∗)2

and to a relatively large crossover scale, as sketched in Fig. 2.
A similar picture emerges in this regime away from particle-
hole symmetry.

 
 

FIG. 6. Dimensionless dc conductance G/G0 as function of
tuning parameter p, for a range of temperatures, at particle-hole
symmetry, plotted on a logarithmic scale. The dashed and dotted
gray lines denote the analytically determined, universal conductances
g0(p) given in Eq. (1). The full dots are the numerically extracted
dc conductances obtained by taking the ω → 0 limits of ac conduc-
tances computed using Eq. (A15). (a) When T is below T ∗(p) for
almost all values of p, the numerical results in each phase are in
good agreement with the analytical prediction for g0(p). Deviations
are more pronounced with increasing temperatures, especially on
the NFL side, reflecting corrections due to the finite crossover scale
T ∗(p). (b) For temperatures exceeding T ∗(p) in the entire range
of p values, we observe a crossover to a putative quantum-critical
regime on the NFL side, as illustrated by the T = 10 K curve. As
the temperature is further increased, we note the onset of a high-
temperature regime as indicated by the remaining curves.

B. Linear-response dc conductance

We now discuss the universal dimensionless conductance
g0(p) defined in Eq. (15) and compare our analytical and nu-
merical results. Well below the crossover scales determined by
T ∗(p), g0(p) provides the leading contribution to the dimen-
sionless conductance G/G0. Appendix A 2 gives analytical
calculation of g0(p) in the dc (ω = 0) and zero-temperature
limits. The linear-response dc conductance is then given via
the spectral densities for the coupled leads and dot in the
conformal regime. At particle-hole symmetry, a simple result
already quoted in Eq. (1) is obtained using BA results for
the spectral densities (adapted to two flavors of auxiliary
fermions). It shows a universal jump at p = pc.

At nonzero temperature, the integrals entering the Kubo
formula must be evaluated numerically. Our results for G/G0

are shown in Fig. 6(a) as a function of p, at several lower
temperatures, in the μ = 0 case. On the NFL side (p < pc) we
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FIG. 7. Dimensionless tunneling conductance per lead channel
as a function of flux threading the dot. Note that (�/�0 )

M
= 1/p [see

also Eq. (11)]. The conductance shows linear dependence for low
values of external magnetic field in the FL phase below the critical
point. With increasing field, the sharp crossover to the NFL behavior
is observed. In the latter regime, the dimensionless conductance is
constant in the applied field.

find that the numerically determined dc conductance closely
follows the analytical prediction for g0(p), provided that T

stays well below T ∗(p). We attribute the large deviations
observed above roughly 500 mK to proximity to the quantum-
critical regime. Similarly, crossovers to the quantum-critical
regime with increasing p are more pronounced and occur at
lower values with increasing temperature. This behavior is
completely consistent with the presence of a crossover scale
T ∗(p) which vanishes continuously at the critical coupling, as
sketched in Fig. 2. It is also in agreement with the offsets of
the saturated values in Fig. 4.

Beyond the crossover to the quantum-critical regime, the
dc conductance enters the FL phase, where it exhibits very
little dependence on temperature. With increasing temper-
atures, we find that the dimensionless conductance G/G0

exhibits several crossovers. To illustrate, in Fig. 6(b) we
plot the dimensionless conductance G/G0 as a function of
p for temperatures exceeding 1 K. Note the crossover to a
putative quantum-critical regime for p < 1

2 , as illustrated by
the T = 10 K data. The remaining curves indicate the onset
of a distinct, high-temperature regime. We also note that a
distinction between the NFL and FL regimes survives in this
high-temperature regime.

In order to illustrate the direct dependence of the response
on the applied external magnetic field to the dot, we include
Fig. 7, which shows the dimensionless conductance per trans-
verse channel as a function of the flux threading the dot.
The linear increase in the FL regime reflects the increasing
number of channels available for conduction in the dot which
is linearly proportional to the Landau-level degeneracy N .
Above the transition, which occurs at total magnetic flux � =
2M�0, conductance saturates at a field-independent constant
value π

2
e2

h
M characteristic of the NFL regime. Observing

this remarkable behavior experimentally would constitute an
unambiguous evidence of the SYK physics in the system.

Away from exact half-filling, the dc conductance can still
be evaluated analytically. In the conformal limit on the NFL

FIG. 8. Dimensionless tunneling conductance at T = 100 and
500 mK in the dc limit, away from half-filling (μ = 0.625 meV).
The dashed lines indicate the behavior at particle-hole symmetry. The
curves closely follow the particle-hole symmetric dependence on

√
p

on the NFL side. On the FL side, we observe stronger deviations
in the vicinity of the crossover, although the 1/

√
p behavior is

recovered for p > 1.

side we obtain (Appendix A 2)

g0(p < 1/2) = π sin

(
π

2
+ 2θ

)√
p. (16)

The phase θ ∈ [−π/4, π/4] is related to the “spectral asym-
metry” defined in the context of SYK4 models [3,11,25]. As
discussed in Ref. [11], it is in general a function of the total
filling of dot and lead (end points) and of p = M/N . For
particle-hole symmetry, θ = 0 for all values of p. Away from
particle-hole symmetry, θ must be determined numerically.
In Fig. 8, we show the dc conductance for a chemical po-
tential μ = 0.625 meV (0.025J ) and at two temperatures as
a function of tuning parameter p. The dashed line indicates
the expected value at particle-hole symmetry extracted via
Eq. (1). In the NFL regime, the dimensionless conductance
closely follows the particle-hole symmetric results and shows
similar scaling with p. The total filling at p = 0 is 0.42 and
undergoes a 10% increase up to close to the transition. Larger
deviations of the conductance with respect to the particle-hole
symmetric case are observed in the FL regime for p � 1

2 ,
although the curve approaches the scaling predicted for the
particle-hole symmetric case for p > 1. In this regime, the
total filling varies from 0.46 to 0.48 at p = 1. As mentioned
above, we do not treat the crossover regimes in great detail
in this work. The results indicate that small departures from
particle-hole symmetry do not significantly affect the

√
p

scaling determined for μ = 0.

C. Nonlinear dc response

We also calculated the nonlinear current (C9) for arbitrary
static applied bias across the dot via an approach based on
real-time Green’s functions in the Keldysh basis [28,32]. The
leads are in thermal equilibrium with reservoirs at chemical
potentials shifted by ±eU/2, where U is the applied bias.
The details of the procedure and implementation are given in
Appendix C. In Fig. 9 we plot the current in arbitrary units,
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FIG. 9. Tunneling current [Eq. (C9)] in arbitrary units scaled by√
p, at a fixed temperature T = 400 mK (2.0 × 10−4J ) for the leads,

for several values of the tuning parameters p < pc corresponding to
the NFL near equilibrium, as a function of bias eU in units of J . A
crossover from linear response can be distinguished around U ∗(p).

scaled with
√

p as a function of the applied bias in units of
J , at a lead temperature of T = 400 mK (2.0 × 10−4J ), for
a range of values of the tuning parameter p, corresponding
to the NFL in equilibrium. The factor of

√
p is included to

account for variations with tuning parameter already present
in linear response. The response remains linear up to a bias
U ∗(p) beyond which it saturates to a p-dependent constant.
The crossover scale set by the bias eU ∗(p) decreases and
appears to vanish as p approaches the value at which the
transition occurs in equilibrium pc = 1

2 . We note that this
behavior persists for applied biases which are well above
the scale set by the temperature in equilibrium. In Fig. 10
we show the current, likewise in arbitrary units, at fixed
T = 400 mK for the leads, for a range of applied biases
eU , as a function of tuning parameter p. The dashed line
indicates the current predicted from linear response at the
same temperature. For vanishingly small biases, the current
closely follows the linear-response prediction with charac-
teristic

√
p and 1/

√
p scaling in the NFL and FL regimes,

respectively. Within an expected shift reflecting the linear
dependence on bias, the scaling behavior persists for p away
from pc = 1

2 up to biases of O(10−2)J , while the crossover
region becomes increasingly broader. Beyond this hallmark
bias, the currents for p < pc undergo a clear crossover to
an intermediate regime which is no longer well described by
a

√
p dependence. Finally, for large biases approaching J ,

a completely different p dependence is reached, which still
maintains a distinction between the two regimes encountered
in linear response. There is a striking similarity between the
crossovers observed in the nonlinear response with increasing
bias and the crossovers seen with increasing temperatures in
linear response [Figs. 6(a) and 6(b)] as a function of p.

The numerical saddle-point results are consistent with a
lead-dot coupling which is relevant in the RG sense. Hence,
we expect that the results for the conductance discussed thus
far, which imply renormalized spectral densities for the leads
(Appendix B 3), are always valid in the T � T ∗(p) limit.
Note that according to Eq. (7) the crossover scale T ∗ is
expected [11] to be of O(V 4/t2J ) in the lead-dot coupling V .

FIG. 10. Tunneling current [Eq. (C9)] in arbitrary units, at fixed
T = 400 mK (2.0 × 10−4J ) for the leads, for a range of biases eU

across the dot, as a function of tuning parameter p. The results
are plotted on a logarithmic scale. The dashed line indicates the
prediction based on linear response. For biases up to O(10−2J ), the
current closely follows the

√
p and 1/

√
p dependencies encountered

in linear response, up to a trivial shift due to near-linear depen-
dence of the current on bias. Increasing bias induces a crossover to
an intermediate regime O(10−1) < eU/J < O(1) analogous to the
quantum-critical region near equilibrium. Note the similarity with the
temperature-induced crossovers in Figs. 6(a) and 6(b).

For a weak coupling between leads and dot, the crossovers
determined by T ∗ are expected to occur at very low tempera-
tures. Above T ∗, we can estimate the current-bias curve using
a weak-tunneling approximation discussed below.

D. Weak-tunneling regime

When the coupling between leads and the dot V is suffi-
ciently small, one can calculate the tunneling current pertur-
batively in this small parameter even when the bias voltage
across the two leads is finite. This amounts to the well-
known tunneling Hamiltonian approximation [29] involving a
tunneling rate of O(V 2) and densities of states corresponding
to decoupled leads and SYK4 dot in the conformal-invariant
regime. More specifically, we expect that this regime emerges
for temperatures well above the crossover scale T ∗. Below
this scale, the contribution from V is nonperturbative, as
illustrated by the spectral densities calculated to all orders in
V in Eqs. (A17) and (A18) and Fig. 15. Since we expect that
T ∗ ∝ V 4 [Eq. (7)] in the vicinity of the transition, a reduction
in V will induce a significant decrease in T ∗. We found that
the weak-tunneling current IWT is given by

〈IWT〉 ∝
{

eU/
√

T (eU � kBT ),√
eU (eU � kBT ).

(17)
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FIG. 11. Current in weak-tunneling approximation for the NFL
phase, plotted in arbitrary units as a function of applied bias eU in
units of J . Here, we take t = J/2, V = 0.025J , and p = 0.3. (a) In
high-bias regime eU � kBT we find that the current calculated with
(C9) using numerical solutions of the saddle-point equations match
weak-tunneling analytical prediction (17) plotted with dashed lines.
(b) I

√
T -eU/J characteristics in the weak-tunneling regime for

various temperatures. For low-bias regime eU � kBT we observe
a scaling collapse, confirming the predicted eU/

√
T dependence.

Details of the calculation are presented in Appendix D. The
weak-tunneling approximation is expected to be valid in the
context of scanning tunneling spectroscopy (STM) experi-
ments and in situations when leads are separated from the dot
by a thin oxide barrier.

We match these analytical predictions to the nonlinear cur-
rent (C9) which includes contributions to all orders in V . To
tune the system to the weak-coupling regime, we use a lead-
dot coupling V = 0.025J which is one order of magnitude
smaller than the previously used value while all remaining
parameters, including the temperature range, are kept fixed.
The numerically determined current for p = 0.3, at various
temperatures ranging from T = 200 to 800 mK, as a function
of applied bias eU is shown in Fig. 11. In high-bias regime
[Fig. 11(a)] where eU � kBT the I -V curves do not depend
on temperature and agree with the analytical prediction I ∝√

eU/J . At low biases, we observe a temperature-dependent
behavior which is linear in the applied bias. In Fig. 11(b) we
plot I

√
T versus eU to observe the scaling collapse that oc-

curs for I ∝ eU/
√

T in low-bias regime (eU � kBT ). Once
again, this characteristic behavior, if observed experimentally,
would furnish strong evidence supporting the SYK state on
the dot.

E. Effect of extended leads

Our results thus far have neglected the effect of the
coupling to the bulk of the leads on the low-energy and

 

FIG. 12. Dimensionless conductance for an effective model of
the tunneling junction which includes strong coupling of O(J/2)
to extended, noninteracting leads (see Appendix E) in addition to
the local disorder on the lead end points, plotted versus tuning
parameter p. The same essential features present in Fig. 6(a) for
the effective model without local contributions from the lead bulk
are also apparent here. The main difference is a narrowing of the
crossover regime.

low-temperature spectral densities. Instead, we considered an
effective local model for the junction where disorder scattering
dominated the low-energy dynamics of the end points of the
leads. We now consider an explicit coupling to extended leads
as described by Hamiltonian (8). A detailed discussion of the
modified saddle-point solution is given in Appendix E.

We find that including a coupling to noninteracting ex-
tended leads or ignoring disorder scattering altogether near
the end points has no essential effect on the low-temperature
tunneling current in either phase. Consider the effect of cou-
pling to extended leads, which are modeled as quasi-one-
dimensional, ballistic wires, while maintaining the disorder

 

FIG. 13. Dimensionless conductance for an effective model
which includes strong coupling to extended, noninteracting leads of
O(J/2) but excludes any local disorder on the lead end points. As
in Fig. 12, we observe no essential deviations from the cases shown
Fig. 6.
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at the end points. At weak coupling, such additional terms
are marginal. A complete numerical solution indicates that
both phases survive for couplings to the bulk of the leads of
order J . Likewise, a transition to the FL occurs at the same
value of pc. The dc conductance preserves the same scaling
with p in either phase, as shown in Fig. 12(a) for μ = 0.
A similar picture emerges upon completely neglecting the
disorder in the end points of the leads, as shown in Fig. 13.
We thus conclude that the simplified model of the junction
studied in the earlier subsections constitutes a very reasonable
approximation for a physical setup with extended leads.

IV. SUMMARY AND CONCLUSIONS

We have characterized the tunneling conductance and
current-bias properties of a graphene quantum-dot realization
of the SYK model coupled to leads with and without disorder
in the vicinity of the junction. The problem is highly nontrivial
because the fragile non-Fermi-liquid state on the dot is easily
disrupted by coupling to the leads. We obtained our results
using a saddle-point approximation for an effective model of
the junction in the limit of large number of transverse modes
M for the lead and large degeneracy of the dot zeroth Landau
level N , with their ratio p = M/N finite. The calculations
were carried out analytically in various simple limits and
numerically using real-time Green’s functions in the Keldysh
basis for general parameters. We find clear signatures of
distinct emergent conformal-invariant non-Fermi-liquid and
Fermi-liquid regimes and of the crossovers associated with
a quantum-critical point. The transition can be accessed by
tuning the ratio p via the magnetic field applied to the dot.

Deep within the NFL phase, and for temperatures much
lower than a crossover scale T ∗, we find a universal di-
mensionless conductance which shows a

√
p variation with

the tuning parameter which is directly related to the applied
field B through Eq. (11). This dependence is intrinsic to the
low-energy emergent, conformal-invariant regime. We also
find leading corrections which scale linearly with tempera-
ture and frequency throughout the NFL regime. Beyond the
transition at pc = 1

2 , we find that the low-temperature FL
regime exhibits a 1/

√
p dependence on the tuning parameter

and corrections which are quadratic in either temperature or
frequency. Results obtained at weak particle-hole asymmetry
show a similar scaling with tuning parameter p.

We find that the current is linear with applied bias up to a
bias U ∗(p) when the coupling to the leads is strong. For larger
biases we find crossovers from the linear to intermediate- and
high-bias regimes which are analogous to the quantum-critical
and high-temperature regions in linear response.

In the limit of weak tunneling, relevant for scanning tunnel-
ing spectroscopy and tunnel junction experiments, we find the
tunneling conductance proportional to min(1/

√
U, 1/

√
T ).

The inverse square-root dependence on the bias in the T → 0
limit reflects the |ω|−1/2 behavior of the electron spectral
function in the NFL regime of the SYK model and has
been noted previously [24,26]. Our calculations extend these
results to include the effect of nonzero temperature which is
found to cut off the low-bias divergence of the conductance
at a characteristic value proportional to 1/

√
T . We also find

that the similar scaling with p holds in the absence of local
disorder on the lead end points.

We note that our results are in some ways similar to those
obtained for SU(K ) ⊗ SU(N ) multichannel Kondo impurity
models where K and N refer to the number of conduction
electron channels and spin-symmetry group, respectively [25].
These models host nontrivial emergent conformal invariance
at low temperatures and are amenable to saddle-point approx-
imations. It was found that the conduction electron scattering
rate depends essentially on the ratio between K and N .
Corrections at finite temperature or frequency scale with a
common nontrivial fixed-point-dependent exponent [25,33].
In our case, we find that the conductance in the NFL phase
acquires an analogous

√
p dependence. However, we find cor-

rections which scale linearly with temperature and frequency
throughout the NFL phase for all ratios p < pc.

A closely related aspect involves the small-bias correc-
tions to the differential tunneling conductance (Fig. 9). In
the context of two-channel Kondo models, corrections which
exhibit eU/kBT scaling for eU, kBT � TK have been pre-
dicted based on conformal field theory [34,35], and nonequi-
librium Green’s functions calculations [36,37]. These correc-
tions scale as x2 and

√
x, for x � 1 and x � 1, respectively,

where x = eU/kBT . These predictions were subsequently
observed in experiment [38]. Based on the analogy with the
two-channel Kondo model, and the linear scaling with tem-
perature in equilibrium, we expect a differential conductance
with corrections which are linear in the bias, for kBT �
eU � kBT ∗ in our case. Equivalently, we expect corrections
to the Ohmic dependence which are quadratic in the bias in
this regime. Our results shown in Fig. 9 do not show any
signatures of this behavior as the current exhibits a linear
dependence on bias up to a crossover scale eU ∗ which is
roughly analogous to kBT ∗ in equilibrium. Here, we argue that
this is likely due the smallness of these corrections which are
expected to be ∼(eU )2/T ∗ ≈ O(10−3)J . We reserve a more
detailed analysis of this issue for future work.

As these results indicate, the SYK model realized in a
graphene flake or a similar system shows a remarkable wealth
of experimentally observable transport phenomena when con-
nected to weakly interacting leads. Perhaps the most impor-
tant finding is that the strength of coupling to the leads is
less important than the total number of channels present in
the leads (2M in our notation with two identical leads). When
2M exceeds the number N of the active fermion degrees
of freedom on the SYK dot a quantum phase transition is
triggered to a Fermi-liquid state. Much of the interesting SYK
phenomenology is then lost (although some signatures may
remain in the quantum-critical regime at higher temperatures
or frequencies). This result, already contained in the work
of Banerjee and Altman [11], underscores the necessity of
designing the junction with a small number of conduction
channels coupled to the dot. STM tip normally corresponds
to a single-channel probe, which would be ideal to observe
properties deep in the NFL regime. It is important to remem-
ber, however, that a sample in the STM experiment must
be grounded and, according to our results, coupling to the
ground must be carefully controlled so that the total num-
ber of channels coupled to the dot remains small compared
to N .
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Because N is equal to the number of magnetic flux quanta
piercing the dot, the sensitive dependence on the parameter
p = M/N affords a unique opportunity to study the quantum
phase transition from NFL to FL phase by tuning the applied
field. At low temperature, we predict a universal jump in
dimensionless dc conductance at the transition accompanied
by a characteristic broadening at nonzero T . Observing such a
jump would constitute an unambiguous evidence of the phase
transition as well as the SYK state on the high-field side of the
transition.

We may thus conclude that transport experiments on
a nanoscale graphene flake with an irregular boundary
offer a unique opportunity to study the iconic SYK model,
whose physics cuts across the boundaries of fields ranging
from string theory and quantum gravity to chaos theory and
strongly correlated electron systems.
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APPENDIX A: LINEAR RESPONSE

1. Tunneling conductance in the saddle-point approximation

We calculate the tunneling current as a function of applied
oscillating potentials on the lead (end points) included via the
terms

H →H + HU,L + HU,R, (A1)

HU,L/R = ±
(

eU

2

)
cos(ω0t )

∑
α

ψ
†
α,L/Rψα,L/R, (A2)

where U is the amplitude of the scalar potential and H is the
Hamiltonian for the junction [Eq. (3)].

We eliminate the scalar potential via a temporal gauge
transformation which introduces time-dependent phases (Sec.
3.4 of Ref. [39])

φ(t ) =
(

eU

2h̄

)
sin(ω0t )

ω0
, (A3)

h̄
dφ

dt
=

(
eU

2

)
cos(ω0t ). (A4)

This amounts to the gauge transformation HU,R/L → 0 and

HL/RD → HLR/D (t ) =
∑
iα

Viα

(NM )1/4
c
†
i ψL/Rαe∓iφ(t )

+
∑
iα

V ∗
iα

(NM )1/4
ψ

†
L/Rαe±iφ(t )ci .

(A5)

We remind the reader that the tunneling coefficients VL,R

connecting left/right lead and dot are chosen to be complex,
random, Gaussian-distributed variables of identical variance
V 2. As such, we suppress L/R indices. We expand the
coupling between left/right lead and dot to linear order in the
phase

HL/RD (t ) ≈
∑
iα

Viα

(NM )1/4
c
†
i ψL/Rα +

∑
iα

V ∗
iα

(NM )1/4
ψ

†
L/Rαci

∓ i
eU sin(ω0t )

2h̄ω0

∑
iα

Viα

(NM )1/4
c
†
i ψL/Rα

± i
eU sin(ω0t )

2h̄ω0

∑
iα

V ∗
iα

(NM )1/4
ψ

†
L/Rαci

=HL/RD (U = 0) ± A(t )IL/RD. (A6)

The currents out of left and right leads are obtained from
〈IL/R〉 = (ie/h̄) 〈[NL/R,H ]〉

〈IL/R〉 = ie

h̄

∑
i,α

{
VLiα

(NM )1/4
〈ψ†

Lαci〉− V ∗
Liα

(NM )1/4
〈c†i ψLα〉

}
, (A7)

where NL/R is the total number operator for left and right leads, respectively, and

A(t ) = U sin(ω0t )

2ω0
. (A8)

Following the standard linear-response formalism [40], the current is

〈IL/R (t )〉 =
∫ ∞

−∞
dt ′A(t ′)CR (t − t ′), (A9)

where we defined the disorder-averaged, retarded current-current correlator

CR (t − t ′) = −iθ (t − t ′)〈[IL/R (t ), IL/R (t ′)]〉. (A10)

After a Fourier transform, we obtain

〈IL/R (t )〉 = ImCR (ω0)

ω0

(
± U

2
cos(ω0t )

)
− i

ReCR (ω0)

ω0

(
± U

2
sin(ω0t )

)
, (A11)

where ImCR and ReCR are odd and even functions, respectively.
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We identify the tunneling conductance

G(ω, T ,μ, p) = ImCR (ω)

2ω
. (A12)

Note the additional factor of 1
2 . Recall that we assume symmetric leads implying equal conductance for the left and right

junctions. Furthermore, U is the total potential difference between the two leads, as opposed to U/2 across each left/right
junction. The factor of 1

2 then yields the conductance of the entire system.
The retarded, disorder-averaged, current-current correlator CR can be determined by considering its imaginary-time-ordered

analog:

CT (τ − τ ′) = e2

h̄2(NM )1/4

∑
i,j,α,β

{
ViαV ∗

jβ〈T ψ
†
α (τ )ci (τ )c†j (τ ′)ψβ (τ ′)〉 + V ∗

iαVjβ〈T c
†
i (τ )ψα (τ )ψ†

β (τ ′)cj (τ ′)〉
}

(A13)

= −e2V 2
√

NM

h̄2 {Gc(τ − τ ′)Gψ (τ ′ − τ ) + Gψ (τ − τ ′)Gc(τ ′ − τ )}, (A14)

where the bar indicates disorder averaging. We also temporarily suppressed L/R indices for clarity. In obtaining the last line,
we used the fact that at saddle point the lead and dot electrons are decoupled [11] with single-particle Green’s functions Gc and
Gψ which are diagonal in the α and i indices. Taking into account the definition of V [Eq. (3)], the summation over the indices
produces the overall factor of

√
NM .

Straightforward Fourier transform, change to the Lehmann representation, Matsubara frequency summation [29], and
subsequent analytical continuation lead to the expression for the tunneling conductance

G(ω, T ,μ, p) = e2V 2
√

NMπ

2h̄

{∫ ∞

−∞
dε ρc(ε, T )ρψ (ε + ω, T )

[
f (ε) − f (ε + ω)

ω

]
+ (ψ ↔ c)

}
, (A15)

where we introduced the spectral densities ρc,ψ (ω, T ) = −(1/π )ImGc,ψ (ω, T ), and the standard Fermi-Dirac function f (ω).
We also suppressed the explicit dependence of the spectral densities on μ and p for simplicity.

2. Direct current and zero-temperature limits

In the dc limit the conductance is given by

lim
ω→0

G =e2V 2
√

NMπ

2kBT

∫ ∞

−∞
dε ρc(ε, T )ρψ (ε, T )

(
1

cosh2
(

h̄ε
4kBT

)
)

. (A16)

In the emergent conformal-invariant regime on the NFL side, h̄ω, kBT � kBT ∗, we approximate the spectral densities by the
forms given in Appendix A of Ref. [11]:

ρc(ε, T ) = Bc

J

(
kBT

J

)−1/2
e−α/2

√
2π2

cosh

(
h̄ε

2kBT

)
�
(

1
4 − i α

2π
+ i h̄ε

π2kBT

)
�
(

1
4 + i α

2π
− i h̄ε

π2kBT

)
�
(

1
2

) , (A17)

ρψ (ε) = Bψ

J

(
kBT

J

)1/2
e−α/2

√
2

π2
cosh

(
h̄ε

2kBT

)
�
(

3
4 − i α

2π
+ i h̄ε

π2kBT

)
�
(

3
4 + i α

2π
− i h̄ε

π2kBT

)
�
(

3
2

) , (A18)

where the dimensionless constants are

Bc = �√
1 + e−2α

, Bψ =
√

pπJ 2

2V 2�
√

1 + e−2α
, (A19)

� =
(

(1 − 2p)

cos 2θ

) 1
4

, α = ln

[
tan

(
π

4
+ θ

)]
. (A20)

These are obtained from the general solution in Ref. [11] by
rescaling p and V in the saddle-point equations [Eq. (B14)].
Upon substituting the low-energy forms of the spectral den-
sities in Eq. (A16), the explicit dependence on temperature
cancels and the expression reduces to a dimensionless integral
over four gamma functions. As discussed in Ref. [41], where
a similar calculation was considered, this integral can be

evaluated as

∫ i∞

−i∞
ds �(α + s)�(β + s)�(γ − s)�(δ − s)

= 2πi
�(α + γ )�(α + δ)�(β + γ )�(β + δ)

�(α + β + γ + δ)
, (A21)

where Re(α, β, γ, δ) > 0 according to Eq. 6.412 of Ref. [42].
After some straightforward algebra, the dc conductance
reduces to

G(ω → 0, T , μ) =
(

e2

2h

√
NM

)[
π sin

(
π

2
+ 2θ

)]√
p,

(A22)
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valid for p < pc = 1
2 . As initially discussed in the context of

overscreened Kondo impurities [25] and subsequently in SYK
models [3,11], the phase θ is related to p and the total filling
on dot and lead (end points) via a form of Luttinger’s theorem.
At particle-hole symmetry, θ = 0 for all p.

We follow a similar procedure to determine the zero-
temperature tunneling conductance from

lim
T →0

G = e2V 2
√

NMπ2

hω

∫ 0

−|ω|
dε[ρc(ε)ρψ (ε + ω)

+ ρψ (ε)ρc(ε + ω)], ω � 0. (A23)

The spectral densities in the conformal regime h̄ω � kBT ∗
on the NFL side can be obtained by using Sterling’s formula
[43] for the gamma functions in Eqs. (A17) and (A18) or by
using an analytical continuation from the ansatz in Ref. [3]:

ρc(ε, T = 0) = 1

π

�√
J h̄|ε|L(ε), (A24)

ρψ (ε, T = 0) = 1

π

√
p
√

J h̄|ε|
V 2�

L(ε), (A25)

where

L(ε) =
{

sin(π/4 + θ ), ε � 0

cos(π/4 + θ ), ε < 0.
(A26)

Substitution into the zero-temperature expression for the con-
ductance and use of Eq. 3.192 in Ref. [42] gives

G(ω, T → 0, μ) =
(

e2

2h

√
NM

)[
π sin

(
π

2
+ 2θ

)]√
p,

(A27)

valid for p < pc = 1
2 . This is identical to the dc conductance

in Eq. (A22). The dimensionless conductance g0(p) discussed
in the main text follows from these expressions. Note that
these results correspond to the leading contribution in the
emergent conformal-invariant regime on the NFL side. We

ignored corrections ∼(T/T ∗), (h̄ω/kBT ∗) due to leading ir-
relevant terms which break this symmetry [3].

In the FL regime at particle-hole symmetry, we determine
the leading contribution to the conductance by substituting
Eqs. (B15) and (B16) into Eq. (A23):

G(ω, T → 0, μ = 0, p > 1/2) =
(

e2

2h

√
NM

)
2√
p

.

(A28)

The same expression holds in the ω → 0 limit as obtained by
substituting the forms in Eqs. (B15) and (B16) into (A16).

3. Corrections to the universal conductance

In the main text, we discussed corrections to the conformal-
invariant NFL and FL solutions which are linear and quadratic
in temperature, respectively. Here, we support these state-
ments with numerical results.

In Fig. 14(a), we plot deviations from the universal
conductance g0(p < 1

2 ) [Eq. (15)] in the NFL regime, for
p = 0.1, versus temperature. The linear dependence is
apparent. Corrections to the universal conductance g0(p > 1

2 )
in the FL regime, for p = 0.8, versus temperature are shown
in Fig. 14(b). We see that they scale quadratically with
temperature.

APPENDIX B: LARGE-(N, M) SADDLE-POINT
SOLUTIONS

1. Saddle-point equations

Following Ref. [17], we write the path integral for our
model, ignoring the extended leads [Eq. (3)] and obtain an
effective action after disorder averaging:

Z =
∫

D[ψL/R,ψL/R, c, c]eiS, (B1)

where the Grassmann fields correspond to left and right lead
end points and dot, respectively. The real-time action is de-
fined on the Keldysh contour [44] and can be written as a sum
of contributions from the left/right leads, dot, and coupling
between them:

S = SL + SR + SD + SLD + SRD, (B2)

SL/R =
∑

s

∑
α

∫
dt{ψαs (t )s[i∂t + μ]ψαs (t )} −

∑
ss ′

∫ ∫
dt dt ′

⎧⎨
⎩ss ′ it2

2M

(∑
α

ψαs (t )ψαs ′ (t ′)

)⎛
⎝∑

β

ψβs ′ (t ′)ψβs (t )

⎞
⎠

⎫⎬
⎭,

(B3)

SD =
∑

s

∑
i

∫
dt{cis (t )s[i∂t + μ]cis (t )} +

∑
ss ′

∫ ∫
dt dt ′

⎧⎨
⎩ss ′ iJ 2

4N3

(∑
i

cis (t )cis ′ (t ′)

)2
⎛
⎝∑

j

cjs ′ (t ′)cjs (t )

⎞
⎠

2⎫⎬
⎭, (B4)

SL/RD = −
∑
ss ′

∫ ∫
dt dt ′

{
ss ′ iV 2

√
NM

(∑
i

cis (t )cis ′ (t ′)

)(∑
α

ψαs ′ (t ′)ψαs (t )

)}
. (B5)

We suppressed the L/R indices on the lead fields for clarity. The integrals run from −∞ to ∞ and the index s = ±1 labels
the forward and backward directions on the Keldysh contour [17]. We introduce the fields Gc,ψ together with the Lagrange
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FIG. 14. (a) Corrections to the universal dc conductance g0(p) in the NFL regime [Eq. (15) in the main text, for ω → 0], for p = 0.1, versus
temperature. The linear dependence is apparent. (b) Same as (a) in the FL regime, for p = 0.8, versus temperature. A quadratic dependence is
obtained.

multipliers �c,ψ :

∫
D[Gc,�c] exp

(
N

∑
ss ′

∫ ∫
dt dt ′

{
�c,ss ′ (t, t ′)

[
Gc,s ′s (t ′, t ) − i

N

∑
i

cis (t )cis ′ (t ′)

]})
= 1,

∫
D[Gψ,�ψ ] exp

(
M

∑
ss ′

∫ ∫
dt dt ′

{
�ψ,ss ′ (t, t ′)

[
Gψ,s ′s (t ′, t ) − i

M

∑
i

ψis (t )ψis ′ (t ′)

]})
= 1.

The resulting action is

SL/R =
∑
ss ′

∑
α

∫ ∫
dt dt ′

{
ψαs (t )

[
σ z

ss ′δtt ′ (i∂t +μ) − �ψ,ss ′ (t, t ′)
]
ψαs ′ (t ′)

}

+
∑
ss ′

∫ ∫
dt dt ′

{
iss ′ Mt2

2
Gψ,s ′s (t ′, t )Gψ,ss ′ (t, t ′) − iM�ψ,ss ′ (t, t ′)Gψ,s ′s (t ′, t )

}
, (B6)

SD =
∑
ss ′

∑
i

∫ ∫
dt dt ′

{
cis (t )

[
σ z

ss ′δtt ′ (i∂t + μ) − �c,ss ′ (t, t ′)
]
cis ′ (t ′)

}

+
∑
ss ′

∫ ∫
dt dt ′

{
iss ′ NJ 2

4
G2

c,s ′s (t ′, t )G2
c,ss ′ (t, t ′) − iN�c,ss ′ (t, t ′)Gc,s ′s (t ′, t )

}
, (B7)

SL/RD =
∑
ss ′

∫ ∫
dt dt ′{iss ′√NMV 2Gc,s ′s (t ′, t )Gψ,ss ′ (t, t ′)}. (B8)

After integrating out the fermions, we find the saddle point of the action

δS

δGa,ss ′ (t, t ′)
= 0,

δS

δ�a,ss ′ (t, t ′)
= 0, (B9)

where a stands for c and ψ indices for dot and leads, respectively. We drop the dependence on two time indices and obtain the
saddle-point equations that follow from Eq. (B9):

�c,ss ′ (t ) = ss ′J 2G2
c,ss ′ (t )Gc,s ′s (−t ) + ss ′√pV 2Gψ,L,ss ′ (t ) + ss ′√pV 2Gψ,R,ss ′ (t ), (B10)

�ψ,L/R,ss ′ (t ) = ss ′t2Gψ,L/R,ss ′ (t ) + ss ′ V 2

√
p

Gc,ss ′ (t ), (B11)

where p = M/N . These are supplemented by the (matrix) Dyson equation for the frequency-dependent Green’s functions which
we obtain from (B9):

Ga,ss ′ (ω) = [σ z(ω + μ) − �]−1
a,ss ′ . (B12)
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The matrix equations are cast in a Keldysh basis for retarded,
advanced, and Keldysh components via the standard trans-
formation [44]. In equilibrium, a “fluctuation-dissipation”
relation [45] is imposed:

GK (ω) = 2i tanh

(
βω

2

)
ImGR (ω). (B13)

Recall that we consider identical left and right leads. In this
case, Gψ,L = Gψ,R the saddle-point equations [Eqs. (B10)
and (B11)] are formally identical to those in Ref. [11] after
a simple rescaling of V and p:

V 2 →
√

2V 2, p → 2p. (B14)

Consequently, the phase transition occurs at pc = 1/2.

2. Numerical solution

The saddle-point Eqs. (B10)–(B12) are solved by direct
numerical iteration with Green’s functions defined on a dis-
crete set of 216 time points, with an ultraviolet cutoff of 10J in
the frequency domain. Since the saddle-point equations have
a simpler form in time while the frequency representation
is more natural for Dyson’s equation, we used NFFT [46]
library for Python to switch between the time and frequency
representations of the Green’s functions at each iteration.
Using the NFFT with nonequispaced frequencies allows for an
effective sampling the of the spectral weights near zero and
shorter computation times. The plots shown in the main text
are determined for fixed V = t = J

2 unless stated otherwise.

3. Spectral densities in equilibrium

In equilibrium, the spectral densities in the conformal-
invariant NFL regime were shown in Eqs. (A17) and (A18).
Our numerical solutions are consistent with these forms. In
Fig. 15(a) we plot the spectral densities for the dot electrons
ρc scaled by

√
JkBT , for p = 0.1 < pc, at particle-hole

symmetry, for several temperatures, versus the dimensionless
parameter h̄ω/kBT . We see scaling collapse for values of
the abscissa below roughly 102. Above this cutoff, clear
departures from scaling associated with the crossover scale
kBT ∗ are apparent. Immediately below it, the curves follow a
1/

√
x dependence corresponding to the high-frequency limit

of Eq. (A17) in the conformal regime, as can be checked
by using Sterling’s formula (Eq. 6.3.17 in Ref. [43]). For
h̄ω/kBT � 1, the divergence in the high-frequency regime
is cut off by a peak of width ∼T . A similar scaling holds for
the lead end-point spectral densities ρψ as shown in Fig. 15(b).
In either case, we also observe slight departures from the ideal
scaling of the conformal-invariant solutions due to corrections
∼T/T ∗.

At particle-hole symmetry, the leading spectral densities
in the FL regime can be obtained from Ref. [11] via the
transformation defined in Eq. (B14):

ρc = 1

π

1√
2p − 1

t√
2V 2

, (B15)

ρψ = 1

π

√
2p − 1

2p

1

t
. (B16)

FIG. 15. (a) Spectral density ρc for the dot electrons scaled by√
kBT , for several temperatures, at p = 0.1 < pc and particle-hole

symmetry, as a function of the dimensionless parameter h̄ω/kBT .
The curves show scaling collapse below values of the abscissa
of O(102). This regime corresponds to the leading behavior for
conformal-invariant solutions in Eq. (A17), as indicated by the
dashed line. For lower temperatures, the divergence is cut off by
a finite peak of width ∼T . (b) Same as (a) for the lead end-point
spectral functions in Eq. (A18).

APPENDIX C: TUNNELING CURRENT FOR STATIC BIAS
BEYOND LINEAR RESPONSE

We determine the steady-state current by allowing the
biases defined in Eq. (A2) to be arbitrarily large. The disorder-
averaged currents out of the left and right leads, respectively,
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are obtained from Eq. (A7). Recall that we consider couplings
to the L/R leads which are statistically identical with equal
variance V 2. We determine the current for arbitrary applied
bias U and to all orders in the coupling constants t, V , J

by keeping contributions to leading order in N,M . The di-
agrammatic expansion is evaluated using a contour-ordered
formalism, followed by an analytic continuation to real times.
For an in-depth discussion of this we refer the reader to
Refs. [32,47]. More specifically, we allow for noninteracting,
disorder-free leads at t → −∞ which are in equilibrium with
large reservoirs at shifted chemical potentials μ ± eU/2 for
left and right leads, respectively. We subsequently turn on
all couplings adiabatically. In practice, we ignore the initial
state of the dot. This is a commonly employed approximation
when calculating steady-state currents [32,48]. In addition,
we assume that for sufficiently long times, the leads reach
equilibrium with the large reservoirs. Likewise, we ignore the
time dependence of the current.

To calculate the steady-state current we require the <

Green’s functions

G<
I (t, t ′) = i 〈ψ†

Lα (t )ci (t
′)〉, (C1)

G<
II (t, t ′) = i 〈c†i (t )ψLα (t ′)〉. (C2)

Consider the related, contour-ordered Green’s functions

GC,I (τ, τ ′) = − i
V ∗

Liα

(NM )1/4
〈TCcτ (t )ψ†

Lα (τ ′)〉, (C3)

GC,II (τ, τ ′) = − i
VLiα

(NM )1/4
〈TCψLα (τ )c†i (τ ′)〉, (C4)

defined on the contour extending from −∞ and back, passing
through τ and τ ′ once [32]. TC stands for ordering along
the contour. These functions coincide with the real-time <

propagators when τ and τ ′ are on the upper and lower branch
of the Keldysh contour [44], respectively. As discussed in a
number of references [32,44,47], the contour-ordered Green’s
functions allow for a straightforward application of Wick’s
theorem. We note that this procedure entails no difficulties
with respect to disorder averaging. One can check that the
diagrammatic expansion in Fig. 16, followed by analytical
continuation [32] to the real axis, reproduces the saddle-point
equations in equilibrium [Eqs. (B10) and (B11)], within minus
signs for �

〈,〉
c,ψ . The difference between the two approaches

is due to a convention in defining the self-energies which
appear in the saddle-point derivation [17], and is otherwise
innocuous. In order to keep the sign convention common in
the literature on transport through quantum dots [29,32,44], in
this section we use the more typical convention for the signs
of the 〈, 〉 self-energies.

Once the functions GC
I,II (τ, τ ′) are known, we proceed to

determine their real-time counterparts via the same analytical
continuation.

Using the diagrammatic expansion in Fig. 16, we deter-
mine

GC,I (τ, τ ′) = V 2

√
NM

δαβδij

∫
C

dτ1GC,c,ij (τ, τ1)

×GC,ψL/R,αβ (τ1, τ
′), (C5)

2

Left/Right

(b)

, , =

2

Left/Right

(a)

, , =

2
2

+
Left

2

+
Right

(c)

Σ , , =

22

1
+

Left

(d)

Σ , , =

22

+

Right

(e)

Σ , , =
1

FIG. 16. Contour-ordered diagrammatic expansions for the
disorder-averaged tunneling current to leading order in N, M and
to all orders in t, V , J . The dashed, double line represents the fully
dressed dot propagator, while the continuous, double lines stand for
the fully dressed left/right lead propagators. Internal vertices are
indicated by filled symbols, while the external vertex for the current
is denoted an empty circle. Dotted lines connecting vertices represent
disorder averages. (a) The contour-ordered Green’s function GC,I in
Eq. (C4) for either left or right lead. (b) Same as (a) for GC,II in
Eq. (C3). (c) Diagrams which determine the self-energy for the dot
to leading order in N, M . (d), (e) Same as (c) for the left and right
leads. Note that the saddle-point equations in Eqs. (B10) and (B11)
can also be obtained via analytical continuation [32]. The effect of
the bias is included via the unperturbed lead propagators.

GC,II (τ, τ ′) = V 2

√
NM

δαβδij

∫
C

dτ1GC,ψL/R,αβ (τ, τ1)

×GC,c,ij (τ1, τ
′), (C6)

where factors of 1/
√

NM are due to the definition of the
hybridization V [Eq. (3)]. We analytically continue these
expressions onto the real axis according to the following rule
[32,47]:

C =
∫

C

dτ1AB → C< =
∫

t

dt1[ARB< + A<BA], (C7)

where the R,A indices stand for the retarded and advanced
components. The corresponding expression for the current
from the left or right leads into the dot is

〈IL/R〉 = e

h̄
V 2

√
NM

∫ ∞

−∞
dt1

[
GR

c (t, t1)G<
ψL/R (t1, t

+)

+G<
c (t, t1)GA

ψL/R (t1, t
+) − GR

ψL/R (t, t1)G<
c (t1, t

+)

−G<
ψL/R (t, t1)GA

c (t1, t
+)

]
. (C8)

Note that this expression can also be obtained by using
diagram rules directly in the matrix formulation [44]. The
factor of

√
NM is due to the summation over the α, i indices
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[Eq. (A7)]. As we are considering the steady-state current
t � t0 = −∞, for a static bias, and since the interactions are
turned on adiabatically, we can consider only the difference
between the time arguments. We obtain the steady-state cur-
rent

〈IL/R〉 = e

h̄
V 2

√
NM

∫
dω

2π

{
G<

ψL/R (ω)
[
GR

c (ω) − GA
c (ω)

]
−G<

c (ω)
[
GR

ψL/R (ω) − GA
ψL/R (ω)

]}
. (C9)

This is the central result of this section.
Note that our expression for the tunneling current (C9) is

analogous to cases involving an interacting dot coupled to
noninteracting leads [28,32,49]. The important difference is
due to the disordered coupling between leads and dot Vi,α

which implies that both dot and lead Green’s functions must
be determined self-consistently. Indeed, the single-particle
propagators which enter our expression for the current are
determined via the same set of saddle-point equations encoun-
tered in equilibrium [Eqs. (B10) and (B11), see Fig. 16], with
the additional contribution due to the biases.

Before proceeding to a discussion of the numerical imple-
mentation, we note a number of important points. First, the
current vanishes in equilibrium, as expected. This can be seen
by using the equilibrium forms for the < Green’s functions
(Eq. 2.160 of Ref. [29]), which are given by

G< = 2πif (ω)ρ(ω). (C10)

The components which enter this expression are the Fermi-
Dirac function f (ω) and the spectral density ρ(ω). When
the bias is set to zero, the left and right leads have the same
chemical potential. Substitution of the equilibrium forms into
the expression for the current ensures that the latter vanishes,
as expected.

Second, we consider the condition for charge conservation
on the dot in the steady-state regime:

IL + IR = 0. (C11)

Using the well-known analytical property [29,44] G> −
G< = GR − GA, the conservation of charge is equivalent to∫

dω{G>
c (ω)[V 2G<

ψL(ω) + V 2G<
ψR (ω)]

−G<
c (ω)[V 2G>

ψL(ω) + V 2G>
ψR (ω)]} = 0. (C12)

From the diagrams shown in Fig. 16 we obtain for the dot
self-energy

�〈,〉
c = √

pV 2[G〈,〉
L + G

〈,〉
R ] + �

〈,〉
int , (C13)

where �int ∼ J 2 is the proper self-energy of the dot due to
interactions. Following Eq. 12.28 in Ref. [32], we solve for
V 2[G〈,〉

L + G
〈,〉
R ] in terms of the self-energies, substitute into

the charge-conservation condition, and obtain∫
dω{G>

c [�<
c − �<

int] − G<
c [�>

c − �>
int]} = 0. (C14)

In our case, the Keldysh equation for G<
c reads as [32]

G<
c = GR�<

c GA
c . (C15)

This differs from the full expression (Eq. 2.159 in Ref. [29])
by terms proportional to G<,(0)

c . These functions represent

the initial correlations at t → −∞ which are ignored in our
calculations (see, for example, comment 33 in Ref. [48]). This
is a standard approximation in the context of transport through
interacting quantum dots [32]. The simplified Keldysh equa-
tion implies that

G>
c �<

c − G<
c �>

c = 0. (C16)

Therefore, conservation of charge reduces to the condition
involving the self-energy of the dot due to interactions∫

dω{G<
c �>

int − G>
c �<

int} = 0, (C17)

which is also well known in the context of transport through
interacting Anderson impurity models [49]. We show that our
saddle-point approximation, as given by the self-consistent
diagrams in Fig. 16, ensures that this condition is satisfied
for each frequency. At saddle point, the self-energy due to
interactions is

�
〈,〉
J (t ) = J 2[G〈,〉

c (t )]2G>,<
c (−t ). (C18)

Fourier transforming and substituting into the condition for
charge conservation [Eq. (C17)] we obtain∫

dω

∫
dω1,2,3δ(ω1 + ω2 − ω3 − ω)

× [G<
c (ω)G>

c (ω1)G>
c (ω2)G<

c (ω3)

−G>
c (ω)G<

c (ω1)G<
c (ω2)G>

c (ω3)] = 0. (C19)

We can relabel the indices in the second term as (ω1, ω2) ↔
(ω,ω3). The even δ function of the same term is invariant
under the transformation. Thus, our approximation satisfies
the conserving condition for each frequency ω.

This important point allows us to determine an effective
distribution function F (ω) for the dot out of equilibrium. To
do so, we rewrite the charge conservation as a sum of left and
right currents [Eq. (C9)]

〈IL + IR〉 = e

h̄
V 2

L

√
NM

∫
dω

2π

{[
GR

c (ω) − GA
c (ω)

]
× [G<

ψL(ω) + G<
ψR (ω)]

−G<
c (ω)

[
GR

ψL(ω) − GA
ψL(ω) + GR

ψR (ω)

−GA
ψR (ω)

]}
. (C20)

Since the integrand vanishes for all frequencies, we can read-
ily solve for

G<
c (ω) = G<

ψL(ω) + G<
ψR (ω)

GR
ψL(ω) − GA

ψL(ω) + GR
ψR (ω) − GA

ψR (ω)

× [
GR

c (ω) − GA
c (ω)

]
. (C21)

We assume that the leads are maintained in thermal equi-
librium at shifted chemical potentials throughout the temporal
evolution, implying the equilibrium forms [Eq. (C10)] for
either left/right leads with Fermi-Dirac distributions

fL/R (ω) = 1

eβ(h̄ω−μ±eU/2) + 1
, (C22)
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where U is the applied bias. We obtain the distribution func-
tion for the dot out of equilibrium according to

G<
c (ω) = 2πiFc(ω)ρc(ω), (C23)

Fc(ω) = fL(ω)ρL(ω) + fR (ω)ρR (ω)

ρL(ω) + ρR (ω)
. (C24)

To summarize, we employ the following procedure:
(1) The lead end points are kept in thermal equilibrium

with large reservoirs at shifted chemical potentials according
to the distribution in Eq. (C22). Likewise, we include the bias
terms ∼±eU/2 in the Hamiltonian for left and right leads,
respectively, in accordance with the standard procedure for
systems under an applied constant field (Eq. 10-7 in Ref. [50]).

(2) The saddle-point equations [Eqs. (B10) and (B11)] in
the presence of the biases are solved numerically by imposing
the form in Eqs. (C23) and (C24). This step determines the
local spectral densities for the lead end points ρL,R , and the
spectral density for the dot ρc together with the distribution
function Fc.

(3) The tunneling current is determined according to
Eq. (C9) via the functions G<

L/R/c and the spectral functions.

APPENDIX D: WEAK-TUNNELING APPROXIMATION

In order to determine the disorder-averaged current in the
weak-tunneling approximation, we employ the standard tun-
neling conductance formula [29]. The latter gives the current
as a convolution of the spectral densities of the lead and the
dot calculated with their mutual coupling set to zero. After
Gaussian averaging over the couplings Vij , we obtain the
following formula for our setup:

〈IWT〉 = 4π2 e

h
V 2

√
NM

∫ ∞

−∞
ρψ

(
ε + eU

h̄

)
ρc(ε)

×
[
f (ε) − f

(
ε + eU

h̄

)]
dε. (D1)

We assumed that both leads and dot are kept in thermal
equilibrium at the same temperature with separate, large reser-
voirs. However, we assume that the chemical potentials for the
leads and dot are shifted due to a finite bias. Furthermore, we
assume that the current from left lead to dot is equal to the
current from dot to right lead, as in the previous sections.

The spectral functions are obtained from the retarded
Green’s function of the SYK4 model [3]. At particle-hole
symmetry and nonzero temperature, the dot Green’s function
is given by

GR = −iC√
2πT

�(1/4 − iβh̄ω/2π )

�(3/4 − iβh̄ω/2π )
,

which gives the spectral density ρc = − 1
π

ImGR ,

ρc ∝ 1√
T

|�(1/4 + iβh̄ω/2π )|2 cosh

(
βh̄ω

2

)
.

The Green’s function for the lead can be obtained by setting
V = 0 in saddle-point equations given in Appendix B1 and

solving for the lead Green’s function. One obtains

ρψ = 1

πt
Re

√
1 −

(
h̄ω

2t

)2

.

Substituting these expressions into Eq. (D1) we find

〈IWT〉 
 e
V 2

t

√
NM

1√
T

×
∫ ∞

−∞
|�(1/4 + iβh̄ε/2π )|2 cosh

(
βh̄ε

2

)

×
[
f (ε) − f

(
ε + eU

h̄

)]
dε,

where we assumed that the lead spectral density ρψ ≈ 1
πt

is
flat. This will be valid when the range of integration |ε| � t

which we expect to be true at reasonable bias voltages. We
estimate this integral in two limits:

(a) eU � kBT . In this case Fermi factors reduce effec-
tively to a derivative and we have

lim
eU→0

f (ε) − f
(
ε + eU

h̄

)
eU
h̄

= h̄β

4 cosh2 (βh̄ε/2)
.

The integral above becomes

〈IWT〉 
 e
V 2

t

√
NM

1√
T

× eU

∫ ∞

−∞

|�(1/4 + iβh̄ε/2π )|2
4 cosh (βh̄ε/2)

d(βh̄ε).

Substitution y = βh̄ε reduces the integral to a dimensionless
constant. From this expression we can easily extract the
dependence on the bias voltage and temperature

〈IWT〉 ∝ eU√
T

(eU � kBT ). (D2)

(b) eU � kBT . In this case, Fermi factors introduce limits
to the integral, as they are effectively step functions. We have

〈IWT〉 
 e
V 2

t

√
NM

1√
T

× 1

β

∫ 0

−βeU

|�(1/4 + iβε/2π )|2 cosh

(
βε

2

)
d(βε).

For βε � 1 the integrand can be approximated as

|�(1/4 + iβε/2π )|2 cosh

(
βε

2

)

 1√|βε| .

The integral can be estimated as

〈IWT〉 ∝ e
V 2

t

√
NM

1√
βT

√
eU,

from which we can extract the dependence of the average
tunneling current on the external parameters

〈IWT〉 ∝
√

eU (eU � kBT ). (D3)

It is important to recall that we assumed ε � t above, which
implies that the results will be valid only when the temperature
and the bias are much smaller than t .
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To summarize, we found that the weak-tunneling current
IWT is given by

〈IWT〉 ∝
{
eU/

√
T (eU � kBT ),√

eU (eU � kBT ).
(D4)

APPENDIX E: SADDLE-POINT EQUATIONS IN THE
PRESENCE OF EXPLICIT COUPLING

TO EXTENDED LEADS

The discussion in the main text involved an effective local
model [Eq. (3)] for the junction between lead end points
and graphene dot. We assumed that the lead end points are
dominated by local disorder scattering. Consequently, they
were described by a local SYK2 Hamiltonian. As such, we
effectively ignored a coupling to the bulk of the leads. This
approximation is expected to be valid provided that the phase
diagram in Fig. 2 is essentially unchanged when a coupling
to the bulk of the leads is included in the effective model
for the junction. We find that this is indeed the case for
quasi-one-dimensional ballistic leads.

We model the extended leads as a set of M-independent,
semi-infinite noninteracting chains, labeled by an index α.
Each of the chains includes simple nearest-neighbor hopping
and is coupled to a single end-point state ψL/R,α , as indicated
by Hamiltonian (6). In the absence of interactions, the cou-
pling to the leads can be included in the effective local model
for the junction to all orders by a redefinition of the bare lead
end-point propagator

G0
ψ,L/R (iωn) → G̃0

ψ,L/R (iωn) = 1

iωn + μ − �EL/R (iωn)
,

(E1)

while the saddle-point equations [Eqs. (B10) and (B11)] pre-
serve their form. This can be seen via expanding the diagrams
in Figs. 16(b) and 16(c) and inserting all corrections due to
HEL/R in all of the bare lead propagators (full lines).

The self-energies due to the additional coupling to the
extended leads are given by

�EL/R,α (iωn) = (t−1/1,α )2
∫

dε
ρloc,L/R,α (ε)

iωn − ε
. (E2)

These depend on the local density of states at sites −1, 1,
ρloc,L/R,α (ε) = −(1/π )ImGR

ĩ=−∓1
(ε).

Our goal is to account for the effect of the bulk of the leads
in an effective model for the junction. In a manner analogous
to treatments of Anderson impurity models coupled to a
bath of conduction electrons [31], we approximate ρloc by a
constant density of states near the end of a semi-infinite chain
[51]. Furthermore, we assume that the chains are identical and
ignore the α index. The local density of states is then given by

ρloc,L/R,α (ε) = ρE, |ε| � D (E3)

where D � V, J is a cutoff of the order of the bandwidth of
the extended leads.

For simplicity, we relabel t−1/1 = tE . By substituting ρE

in Eq. (E2), and continuing to real frequencies we obtain the
retarded self-energy due to coupling to the extended leads

Re�R
E (ω) = ρEt2

E ln

∣∣∣∣ω + D

ω − D

∣∣∣∣, (E4)

Im�R
E (ω) = −πρEt2

E. (E5)

In equilibrium, the Keldysh component is given by [44]

�K
E (ω) = 2i tanh

(
βω

2

)
Im�R

E (ω). (E6)

These components are added to the self-energies in the matrix
Dyson equation [Eq. (B12)] and solved together with the
saddle-point equations numerically.
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