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Surface doping of ZnO nanowires with Bi: Density-functional supercell
calculations of defect energetics
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Defect calculations using the density and hybrid functionals in combination with the supercell approach are
employed to characterize the electrical properties of a number of ZnO nanowires of various thicknesses doped
with Bi atoms occupying surface sites. The variation of the differences between the total energies of charged and
neutral supercells with the supercell size is studied, which led the authors to devise an extrapolation procedure to
obtain reliable defect energetics in the dilute defect limit. The calculated defect formation energies indicate that
although the substitution of Bi into Zn or O sites can take place spontaneously under suitable thermodynamic
conditions, the substitution into Zn sites is generally more likely. The defect (charge-state) transition energies are
computed and parameterized as a function of the nanowire thickness. It is revealed that the substitution of Bi into
O (Zn) sites on the surface of ZnO nanowires yields deep acceptor (shallow donor) levels (except for extremely
thin nanowires). It is therefore concluded that the incorporation of Bi into the surface of ZnO nanowires results
in n-type doping.
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I. INTRODUCTION

The use of semiconductor nanowires, like their bulk coun-
terparts, in technological applications is enabled by chemical
doping. Doping ZnO nanowires with a variety of elements is
practicable, leading to functionalities suitable for electronic
[1–3], optoelectronic [2,4–6], spintronic [7–13], photonic
[2,6], sensor [4,14], and other applications. In particular, our
recent predictions indicate that single ZnO nanowires surface-
doped with low concentrations of the heavy element Bi have
potential to be used in spintronic devices [13] thanks to linear-
in-k spin-orbit splitting [12] of the lowest conduction-band
states. Furthermore, we theoretically characterized a thin Bi-
doped ZnO nanowire in a site-specific manner in regard to the
location and charge-state of the dopant [15]. In continuation
and complementary to our previous work, the present paper
is devoted to a theoretical characterization of surface-doped
ZnO:Bi nanowires in a size-dependent manner as regards
the electrical properties. To this end, the defect energetics in
Bi-doped ZnO nanowires of various thicknesses are studied by
performing density-functional supercell calculations. Specifi-
cally, we explore the doping configurations where Bi dopants
substitute Zn or O atoms at the surface sites since we found
[13,15] earlier that the Bi atoms incorporated into a thin ZnO
nanowire are predominantly substituted into the surface sites,
showing a segregation tendency for Bi in ZnO nanowires.
The latter is in accordance with the situation in ZnO varistors
where the Bi dopants segregate to the grain boundaries due to
the low solubility of bismuth in zinc oxide [16–18].

Experimentally, bismuth is known to act as a donor in ZnO
nanowires [19]. It acts, on the contrary, as an acceptor in
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ZnO thin films [20,21], probably owing to the formation of
acceptorlike defect complexes in the grain boundaries [22].
A comparison of the electron concentrations of undoped [23]
and Bi-doped [19] ZnO nanowires (both of which exhibit
n-type conduction) shows a substantial increase in the electron
concentration as a result of doping with Bi. It is thus likely
that Bi dopants substitute Zn atoms to form donorlike defects
BiZn in a positive charge state [19], which is supported by
our computational results. Recently, it has also been suggested
[21] that the Bi atoms could be incorporated substitutionally
into the O sites in Bi-doped ZnO thin films (which might
nevertheless be difficult to achieve given the low solubility
of bismuth in zinc oxide), resulting in p-type conductivity.
The occurrence of p-type conductivity in zinc oxide is an
important issue since undoped ZnO is naturally n-type (due
to the existence of intrinsic donors such as zinc interstitials
and/or unintentional dopants such as hydrogen), and the holes
produced by the acceptors are compensated by the native
defects of ZnO [24]. Thus, in addition to donorlike BiZn

defects, we keep acceptorlike BiO defects under consideration,
and study BiZn and BiO defects in a comparative manner.
The purpose of this paper, in this regard, is to find out if the
incorporation of Bi into the surface of ZnO nanowires results
in n- or p-type doping.

In the rest of the paper, we present and discuss our calcula-
tion results in Sec. III, following a detailed description of our
methodology in Sec. II, and conclude with a brief summary in
Sec. IV.

II. METHOD

Theoretical characterization of doped (bulk) semiconduc-
tors is often accomplished with the aid of defect calculations
performed within the framework of a simple thermodynamic
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FIG. 1. Top view of the supercell containing a [(ZnO)96]n
nanowire. The nanowire diameter D is defined in terms of the
inradius r and circumradius R.

model [25–27] where the host material, viz. undoped and
defect-free semiconductor, is considered in equilibrium with
the reservoirs of atoms and the Fermi sea of electrons. The
latter enables one to study the defect formation energies as
a function of the atomic chemical potentials and the Fermi
level. It is customary to perform defect calculations using
supercells subject to the periodic boundary conditions in
combination with ab initio total-energy methods based on
the density functional theory (DFT) [28,29]. Here we adopt
this methodology for doped nanowires by devising supercells
that include sufficiently thick vacuum regions which make the
nanowire extend to infinity only along the wire axis. Notably,
we study the variation of the differences between the total
energies of charged and neutral supercells with the thickness
of the vacuum region, i.e., the supercell size, which enables us
to obtain reliable defect energetics as explained below.

We consider a supercell that contains the host nanowire
together with a substitutional dopant Bq

A in charge state q.
One could imagine that this doping configuration is generated
by transferring an A (B) atom from (to) the nanowire to
(from) a reservoir of A (B) atoms and q electrons to the
Fermi sea. The host nanowire is denoted as [(ZnO)N ]n, which
is constructed by combining n consecutive unit cells each
containing (ZnO)N , i.e., N denotes the number formula units
in the primitive unit cell of the nanowire. These unit cells are
cut from bulk ZnO in wurtzite structure in such a way that the
wire axis coincide with the [0001] direction of wurtzite. The
host nanowire has therefore a hexagonal cross section with
diameter D = 2

√
rR, where r and R denote the inradius and

circumradius, respectively, as shown in Fig. 1. The supercell
dimensions perpendicular to the nanowire axis are set to
be significantly larger than D in order to create a vacuum
region that reduces interactions between the nanowire and
its periodic images in the neighboring cells. In Sec. III, we
present our results for the Bi dopant substituting A (viz. Zn
or O) at a surface site, denoted as [(ZnO)N ]n:BiA. Although

it is intuitive to use a tetragonal supercell (with side lengths
L⊥, L⊥, L‖) to study quasi-one-dimensional systems such as
nanowires, we found that using cubic supercells (of edge
length L) has practical advantages, as will be revealed in
Sec. III B.

The formation energy of the defect Bq

A is given by

�Hf

(
Bq

A

) = [
E

(
Bq

A

) − E0

] + μA − μB + qμe, (1)

where E0 and E(Bq

A) denote the total energy of the supercells
containing the defect-free nanowire and the nanowire with
defect Bq

A, respectively; μA and μB are the atomic chemical
potentials for atomic species A and B, respectively, and μe

is the electrochemical potential of electrons, viz. Fermi level
EF. Needless to say, it is straightforward to modify Eq. (1)
as well as the forthcoming equations for other defects and
different hosts. It should also be reminded that Eq. (1) is often
expressed as

�Hf

(
Bq

A

) = [
E

(
Bq

A

) − E0 + EA − EB + qEV
]

+μA − μB + qEF (2)

by setting the zero of (i) μA [μB] to the energy per atom
EA [EB] of an elemental reference phase of A [B] and (ii) μe

to the valence band edge energy EV of the host. Moreover, in
the case of bulk semiconductors, EV is usually replaced by the
eigenvalue εv of the valence band maximum, yielding

�Hf

(
Bq

A

) = [
E

(
Bq

A

) − E0 + EA − EB + qεv
]

+μA − μB + qEF. (3)

It is known [30,31] that obtaining the total energy E(Bq

A)
of a charged supercell within a momentum-space formalism
[32] is rather problematic, which involves an arbitrary shift
of the Kohn-Sham eigenvalues since in practice the average
electrostatic potential is set to zero. The latter implies a
redefinition of the vacuum level for each supercell, and affects
the total energy E(Bq

A) when q �= 0. Consequently, even if
when E(B0

A) does not vary with the width of the vacuum
region in the supercell, E(Bq

A) increases (q > 0) or decreases
(q < 0) monotonically as the vacuum region gets thicker. It
is thus clear that the values of E(Bq

A) computed by using
finite-size supercells cannot be used directly. Fortunately, the
total energies E(Bq

A) entering into Eq. (1) are needed only
in the dilute defect limit corresponding to L → ∞ (for cubic
supercells) and L⊥, L‖ → ∞ (for tetragonal supercells). Fur-
thermore, the computation of the formation energies requires
only energy differences such as

�E
(
Bq

A

) = E
(
Bq

A

) − E0 (4)

in Eq. (1). Thus we explored the variation of �E(Bq

A) as
a function of the supercell size, and devised a procedure to
obtain their extrapolated values corresponding to the dilute
defect limit. Based on the results presented in Sec. III B, we
infer that the dependence of �E(Bq

A) on the supercell edge
lengths can be parametrized as

�E
(
Bq

A

) = �E∞
(
Bq

A

)
(1 + C‖e−L‖/l‖ )(1 + C⊥e−L⊥/l⊥ )2 (5)

for tetragonal supercells, which reduces to

�E
(
Bq

A

) = �E∞
(
Bq

A

)
(1 + Ce−L/l )3 (6)
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for cubic supercells. Here, �E∞(Bq

A) denotes the extrapolated
value of �E(Bq

A) corresponding to the dilute defect limit; the
values of the C and l constants will be determined via fitting
in Sec. III B. In order to obtain the defect formation energies
in the dilute defect limit, we replace E(Bq

A) in Eq. (1) by E0 +
�E∞(Bq

A), and obtain

�Hf

(
Bq

A

) = �E∞
(
Bq

A

) + μA − μB + qμe. (7)

It should be pointed out that using Eq. (3) in lieu of Eq. (7)
is straightforward (and computationally less demanding) not
only for bulk crystals but also nanowires [15,33] but Eq. (7)
permits a more reliable description for nanowires. We find it
instructive to compare the results obtained via Eqs. (7) and (3)
among themselves, which is presented in Appendix.

We also consider the energy difference given by

�Eq
0 = Eq

0 − E0, (8)

where E
q
0 denotes the total energy of the supercell with a net

charge q, containing the defect-free nanowire alone. Note that
the ionization potential I and electron affinity of A of the
host nanowire are identical to �E+

0 and −�E−
0 , respectively.

Extrapolated values of these energy differences corresponding
to L⊥, L‖ → ∞ (for tetragonal supercells) and L → ∞ (for
cubic supercells) are obtained using equations in the same
form as Eqs. (5) and (6), respectively.

The defect (charge-state) transition energies ε(q/q ′)
are obtained by determining the value of EF for which
�Hf (Bq

A) = �Hf (Bq ′
A ), which are independent of the atomic

chemical potentials. It follows from Eq. (7) that

ε(q/q ′) = �E∞
(
Bq ′

A

) − �E∞
(
Bq

A

)
q − q ′ . (9)

Computed values of the total energies and energy eigen-
values used in the foregoing equations were obtained from
the total-energy and electronic structure calculations em-
ploying the simplified rotationally invariant DFT+U ap-
proach [34] in combination with the Perdew-Burke-Ernzerhof
(PBE) exchange-correlation functional [35] and the projector
augmented-wave (PAW) method [36,37] as implemented the
Vienna ab initio simulation package (VASP) [38]. Plane-wave
basis sets with a kinetic energy cutoff of 400 eV were used
to represent the electronic states. The 2s and 2p, 3d and
4s, and 6s and 6p states were treated as valence states for
oxygen, zinc, and bismuth, respectively. The Hubbard U was
applied to the Zn 3d states. The Brillouin zone (BZ) sampling
is virtually achieved through zone folding since only the �

point of the supercell BZ is used. Convergence criterion for
the electronic self-consistency was set up to 10−6 eV. The
charged supercell calculations were performed with the aid
of a neutralizing jellium background. Structural optimizations
were performed for each supercell configuration, separately
for each charge state, by minimizing the total energy until
the residual forces on atoms was reduced to be smaller
than 10−2 eV/Å. For host (i.e., undoped and defect-free)
nanowires, the unit cell dimension along the nanowire axis
was also optimized via minimization of the total energy. The
equilibrium values of D were consequently obtained as 1.0,
1.6, and 2.2 nm for N = 24, 54, and 96, respectively.

It is well known that the band gap is not well-described
within semilocal density approximations, especially in the
case of wide band gap semiconductors with localized elec-
trons, e.g., ZnO. We thus repeated some of our calculations
by adopting a hybrid-functional+U approach (HSE+U ∗) [39]
where the range-separated Heyd-Scuseria-Ernzerhof (HSE)
hybrid functional [40,41] is combined with the Hubbard U ,
and computed the defect formation and transition energies for
our thinnest nanowire. We set, as in Ref. [39], U ∗ = 6.0 eV
that is the value of U needed to reproduce the experimen-
tal band gap of wurtzite ZnO bulk crystal. In conjunction
with this, the value U = 7.7 eV for PBE+U is taken from
Ref. [15], which was chosen to ensure that structure opti-
mizations via the PBE+U and HSE+U ∗ calculations yield
similar equilibrium geometries. Comparison of the results
obtained from the PBE+U calculations to those obtained
from HSE+U ∗ calculations is performed in Sec. III.

III. RESULTS AND DISCUSSION

As mentioned in Sec. I, energetics of a number of extrinsic
defects formed through incorporation of Bi into the Zn, O or
interstitial sites in the bulklike, subsurface or surface regions
of a thin nanowire, viz. [(ZnO)24]5, were studied in our previ-
ous publications [12,13,15]. We found that the surface defects
have generally lower formation energies compared to the
respective bulklike and subsurface defects. The latter means
that the Bi atoms incorporated into a thin ZnO nanowire would
predominantly be substituted into the surface sites, which is
conceivable given the low solubility of bismuth in zinc oxide
[16–18]. In this section we therefore focus on the doping
configurations [(ZnO)N ]n:BiZn and [(ZnO)N ]n:BiO, where the
Bi dopant substitutes Zn and O, respectively, at a surface site.
It should also be reminded that the same degree of stability
was assigned [12] to the undoped ZnO and surface-doped
ZnO:BiZn nanowires based on ab initio molecular dynamics
simulations performed at a temperature (600 K) considerably
higher than room temperature.

A. The lowest-energy configurations

For doped, viz. [(ZnO)N ]n:BiZn and [(ZnO)N ]n:BiO, as
well as undoped, viz. [(ZnO)N ]n, nanowires with (N, n) =
(24,5), (54,6), or (96,7), the lowest-energy configurations
obtained from structural optimizations are displayed in Fig. 2
where not only neutral but also charged configurations, viz.
[(ZnO)N ]n:Bi+Zn and [(ZnO)N ]n:Bi−O, are presented. It is seen
that the incorporation of Bi as a substitutional surface dopant
leads to similar ionic relaxations on the nanowire surface
regardless of the thickness of the nanowire, yielding almost
identical local motifs around the Bi atom in the “columns”
of Fig. 2. The coloring of the Zn-O bonds in Fig. 2 as well
as the bond lengths given in Tables S1 and S2 (see Ref. [42])
indicates only slight variation in the doping-induced structural
changes with respect to the nanowire thickness.

In Fig. 2, it is also seen that the Zn-O bonds in the
vicinity of the dopant in neutral [(ZnO)N ]n:BiZn nanowires are
stretched [by ∼2%–4%, cf. Table S1 (see Ref. [42])], which
facilitates the substitution of the Bi dopant into the Zn site.
On the other hand, the substitution of the Bi dopant into the
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MEHMET ARAS AND ÇETİN KILIÇ PHYSICAL REVIEW B 99, 045412 (2019)

FIG. 2. The lowest-energy configurations for Bi-doped and undoped ZnO nanowires. The sticks representing the Zn-O and Bi-O or Bi-Zn
bonds are colored to indicate the respective bond lengths values, i.e., dZn-O (the upper colorbar) and dBi-O or dZn-O (the lower colorbar).

O site causes both elongation (by ∼0.5%–2%) and shrinkage
(by ∼1%–5%) of the Zn-O bonds around the Bi atom, cf.
Table S2 (see Ref. [42]). Moreover, a comparison between the
charged and neutral configurations reveals that the formation
of Bi+Zn from BiZn does not require any significant structural
relaxation since [(ZnO)N ]n:Bi+Zn and [(ZnO)N ]n:BiZn, with the
same N and n, do not only have almost identical motifs in
Fig. 2 but also almost the same Zn-O bond lengths in Table
S1 (see Ref. [42]). In contrast, the formation of Bi−O from
BiO requires significant structural relaxation since the Zn-O
bonds around the dopant are elongated by ∼1%–9%, cf. Table
S2 (see Ref. [42]). In summary, this analysis reveals that the
formation and ionization of BiZn is less disturbing for ZnO
nanowires, requiring smaller lattice relaxations in comparison
to greater relaxations required for the formation of BiO and
Bi−O.

B. Variation of the energy differences with
the supercell dimensions

Here, we study the dependence of the energy differences
�E+

0 and �E−
0 , cf. Eq. (8), and �E(Bi+Zn) and �E(Bi−O ), cf.

Eq. (4), on the supercell dimensions. These energy differences
were calculated using a variety of tetragonal and cubic su-
percells. The results obtained by using tetragonal supercells
with [(ZnO)24]n nanowire are displayed by the solid symbols

in Fig. 3 where the solid curves represent fits according to
Eq. (5). Note that varying L⊥ while keeping L‖ constant means
that only the width of vacuum region is varied. Thus the
monotonically increasing (decreasing) behavior in Fig. 3(a)
reflects that the total energy of positively charged (negatively-
charged) supercells increases (decreases) monotonically as
the vacuum region gets thicker. The saturation of the increase
[decrease] in the variation of �E+

0 and �E(Bi+Zn) [�E−
0 and

�E(Bi−O )] with L⊥ makes the parameterization according to
Eq. (5) suitable. The values of these energy differences in the
L⊥ → ∞ limit are plotted as a function of L‖ in Fig. 3(b)
where a saturation behavior emerges as L‖ → ∞. The latter
justifies fitting according to Eq. (5), the results of which are
given in Table I.

TABLE I. The values of the constants in Eq. (5) obtained by
fitting the points in Fig. 3(a) for tetragonal supercells with [(ZnO)24]n
nanowires.

�E∞ C‖ l‖ C⊥ l⊥

�E+
0 6.422 0.139 11.760 − 0.659 6.703

�E−
0 − 3.604 − 0.310 9.862 − 1.707 4.442

�E(Bi+Zn) 2.373 0.010 7.748 − 2.459 5.888
�E(Bi−O ) 1.470 − 1.559 3.647 2.304 5.616
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FIG. 3. (a) The variation of the energy differences �E+
0 , �E−

0 , �E(Bi+Zn), and �E(Bi−O ) with the lateral dimension L⊥ of tetragonal
supercells with [(ZnO)24]n nanowire for a set of values of L‖ = nc (with n = 5, 6, 7, 8, 9), where c denotes the length of periodicity along the
wire axis. (b) The extrapolated values of the foregoing energy differences corresponding to L⊥ → ∞ as a function of L‖. The solid curves in
each panel represent the results of fitting according to Eq. (5).

It is interesting to see how the foregoing extrapolation
procedure works when partially periodic boundary conditions
[31] are imposed. We thus add a correction to the total ener-
gies of charged supercells given by [43] − q

2 �V , where �V

denotes the shift added to the self-consistent potential in order
to impose the partially periodic boundary conditions. The lat-
ter is computed here as follows: for each tetragonal supercell,
the asymptotic value V∞(Bq

A) of the self-consistent potential
V (Bq

A) corresponding to the L⊥ → ∞ limit is first obtained
via fitting according to V (Bq

A) = V∞(Bq

A)(1 + V⊥e
−L⊥/λ⊥ ).

The potential shift is then computed as �V (Bq

A) = V∞(Bq

A) −
V (Bq

A). The values of V∞, V⊥, λ⊥, and �V are given in
Table S3 (see Ref. [42]). To be consistent with this shift in
the potential, Eqs. (4) and (8) are modified as

�E(Bq

A) =
[
E

(
Bq

A

) − q

2
�V

(
Bq

A

)] − E0,

�Eq
0 =

[
Eq

0 − q

2
�V q

0

]
− E0, (10)

respectively, where �V
q

0 denotes the potential shift for the
defect-free nanowire. The energy differences obtained from
Eq. (10) are marked by the empty circles in Fig. 3(a) where
the dashed curves represent fits in the form of Eq. (5) to
these points. It is seen in each panel of Fig. 3(a) that the
solid and dashed curves approach the same value as L⊥ → ∞.
Thus, partially and fully periodic boundary conditions yield

the same extrapolated values �E∞ corresponding to the dilute
defect limit.

The energy differences �E+
0 , �E−

0 , �E(Bi+Zn), and
�E(Bi−O ) are also calculated using cubic supercells, but by
adopting only fully periodic boundary conditions (i.e., without
applying any potential shift), based on the analysis in the
preceding paragraph. Their variation with the edge length L

is as shown in Figs. 4(a)–4(d) where a saturation behavior
is discernible as L → ∞. The results of fitting according to
Eq. (6) are given in Table II. It is important to notice that
the extrapolated energy differences, i.e., �E∞, for N = 24 in
Table II are identical to the respective values in Table I. Hence
fitting according to Eqs. (5) and (6) using tetragonal and
cubic supercell energies, respectively, yields identical energy
differences in the dilute defect limit. Using cubic rather than
tetragonal supercells is advantageous in practice due to lesser
number of calculations to get the same result.

In Figs. 4(a)–4(d), the blue and brown symbols and curves
represent the results for N = 24 obtained from the PBE+U

and HSE+U ∗ calculations, respectively. It is seen that the
blue and brown curves are almost parallel, indicating a
constant (i.e., L-independent) shift. Taking as reference the
HSE+U ∗ results, it is noticeable that the ionization potentials
I = �E+

0 (the electron affinities A = −�E−
0 ) are substan-

tially underestimated (overestimated) in the PBE+U calcu-
lations. Accordingly, the �E∞ values obtained in the PBE+U

and HSE+U ∗ descriptions differ significantly as seen in
Table II.
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N=24 N=54 N=96

(a)

(b)

(c)

(d)
UPBE+

HSE+ U*

FIG. 4. The variation of the energy differences (a) �E+
0 , (b)

�E−
0 , (c) �E(Bi+Zn), and (d) �E(Bi−O ) with the edge length L of

the used cubic supercells. The solid curves in each panel represent
the results of fitting according to Eq. (6).

C. Band edge and band gap energies

In Fig. 5(a), the extrapolated values of the valence and
conduction band edge energies (EV = −I and EC = −A,
respectively) are plotted with respect to the inverse diameter
1/D, which are obtained from the �E∞ values for �E+

0 and
�E−

0 , respectively, in Table II. The solid curves are fits to the
solid symbols marking the EC and EV values, equations of
which are included in the figure. From the difference of the
latter, the thickness-dependent band gap energy Eg = I − A

is obtained as

Eg(D) = 1.908 + 0.620

D
+ 0.301

D2
, (11)

where D is in nanometers and the energies are in eV. It should
be noted that the value obtained from Eq. (11) in the D → ∞
limit is the same as the band gap of bulk ZnO computed [15] as
an eigenvalue difference εc − εv, where εv and εc denote the
valence band maximum (VBM) and conduction band mini-
mum (CBM) eigenvalues, respectively. For low-dimensional
semiconductors, however, the total-energy difference yields
significantly larger band gaps in comparison to the eigenvalue
differences, which are closer to the measured values [44]. It

TABLE II. The values of the constants introduced in Eq. (6)
obtained by fitting the points in Fig. 4 for cubic supercells. For
N = 24, the HSE+U ∗-calculated values are given in parentheses.

N �E∞ C l

�E+
0 24 6.422 − 0.571 5.430

(7.253) ( − 0.622) (4.836)
54 6.040 − 1.286 5.684
96 5.867 − 1.701 6.805

�E−
0 24 − 3.604 − 0.748 5.948

( − 3.108) ( − 0.882) (5.936)
54 − 3.614 − 2.372 5.320
96 − 3.627 − 3.668 6.032

�E(Bi+Zn) 24 2.373 − 2.761 5.095
(2.119) ( − 4.569) (4.504)

54 2.043 − 8.788 4.927
94 1.656 − 21.523 4.904

�E(Bi−O ) 24 1.470 0.949 6.361
(3.042) (0.515) (5.735)

54 1.472 1.786 7.471
96 1.474 1.967 9.536

might be pointed out in this regard that the band gap error can
be reduced by using energy (in lieu of eigenvalue) differences,
except for bulk calculations. This is seen in Fig. 5(b) where
EV and EC of the ZnO nanowire with N = 24 are compared
to the VBM and CBM eigenvalues (shifted so that the vacuum
potential is zero), respectively. Note that the blue and brown
line segments represent the values obtained from the PBE+U

and HSE+U ∗ calculations, respectively. It should be pointed
out that the calculated nanowire band gap ought to be greater
than the experimental band gap of wurtzite ZnO bulk crystal
(3.44 eV [45]) owing to the decreasing variation of Eg(D)
with D, which is satisfied only in the HSE+U ∗ description.
Taking as reference the HSE+U ∗-calculated band gaps, it is
clear that the PBE+U -calculated energy difference results
in a lesser degree of underestimation for the band gap in

PBE+ U HSE+U*

)b()a(

2344

184

299

2827 3747 4145

272

648

222

176

all values are in meV

N=24
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d 
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ne
rg

ie
s (

eV
)

N= 96 56 24

1.908 eV

FIG. 5. (a) The variation of the extrapolated values of the valence
and conduction band edge energies (EV and EC, respectively) with
the inverse diameter 1/D. (b) An energy diagram showing EV, EC

and the VBM and CBM eigenvalues (εv and εc, respectively) for ZnO
nanowire with N = 24.
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FIG. 6. (a) The formation energies of (ZnO)N :BiZn and (ZnO)N :BiO as a function of the Fermi level EF in the dilute defect limit under
O-rich as well as O-poor conditions. The latter two conditions are maintained by setting μO = 0 and μO = �HN , respectively, where �HN

denotes the heat of formation (per formula unit) of the nanowire made of N Zn–O pairs [15]. The value of μBi is set to correspond to an
equilibrium with the atomic Bi gas adsorbed on the surface of the host nanowire [12]. In each graph, the vertical shading is employed to
highlight the ranges of Fermi level: EF � EV (the left-hand side), EV � EF � EC (unshaded), and EC � EF (the right-hand side). (b) An
energy diagram showing the charge-state transition energies ε(+/0) and ε(0/−) for BiZn and BiO, respectively. (c) The variation of the energy
differences EC − ε(+/0) and ε(0/−) − EV with the inverse diameter 1/D; the solid curves are given by Eqs. (12) and (13).

comparison to the PBE+U -calculated eigenvalue difference.
Even so, the PBE+U -calculated energy difference EC − EV

is substantially smaller than the HSE+U ∗-calculated band
gaps. For this reason, it is necessary to analyze if or to
what extent defect calculations performed in the PBE+U

description are susceptible to the band gap error, which is
done in Sec. III D for our thinnest nanowire via comparison
of the PBE+U results to the HSE+U ∗ results.

D. Defect formation and charge transition energies

Figure 6(a) shows the formation energy as a function of
the Fermi level EF in the dilute defect limit for the doping
configurations displayed in Fig. 2 under O-poor as well as

O-rich conditions. Notice that the PBE+U and HSE+U ∗
results are given for N = 24, 54, 96 and only for N = 24, re-
spectively. The band edge energies and band gap are indicated
by the vertical shading. The charge-state transition energies
are indicated by the solid circles in Fig. 6(a), which are also
represented by the red (BiZn) and blue (BiO) horizontal line
segments in Fig. 6(b) where the band edge energies (EV and
EC) are shown by the black horizontal line segments. Under
O-poor conditions, both the donorlike BiZn and acceptorlike
BiO defects have negative formation energies regardless of
their charge state (i.e., the value of q) as well as the value
of N , i.e., the nanowire thickness. Since �Hf is a significant
portion of the Gibbs energy of formation that determines
the equilibrium defect concentration, having �Hf (Bq

A) � 0
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usually implies spontaneous formation of Bq

A under given
thermodynamic conditions. Hence it is likely that both BiZn

and BiO will form spontaneously under suitable (i.e., O-poor)
conditions. Under O-rich conditions, however, BiO has a
high positive formation energy while the formation energy
of BiZn is further lowered, which means that the equilibrium
concentration of BiZn would be many orders of magnitude
higher than that of BiO. Thus the incorporation of Bi as a
substitutional dopant into the Zn rather than O sites is much
more likely under O-rich conditions.

The red and blue line segments in Fig. 6(b) represent the
electrical levels ε(+/0) and ε(0/−) for BiZn and BiO, re-
spectively. The location of ε(0/−) with respect to the valence
band edge energy EV indicates that BiO forms a deep acceptor
regardless of the value of N (i.e., the nanowire thickness). On
the other hand, the locations of ε(+/0) with respect to the
conduction band edge energies EC indicate that BiZn can act
electrically as a shallow (N � 54) or relatively deep (N = 24)
donor, depending on the thickness of the host nanowire. The
variation of the foregoing donor and acceptor levels with the
nanowire thickness is thus studied in Fig. 6(c) by plotting
the energy differences EC − ε(+/0) and ε(0/−) − EV with
respect to the inverse diameter 1/D. It is seen that these
energy differences take greater (smaller) values for thinner
(thicker) nanowires, in line with the following equations:

EC − ε(+/0) = 0.047 + 0.220

D
+ 0.394

D2
, (12)

ε(0/−) − EV = 1.667 + 0.266

D
+ 0.441

D2
, (13)

where D is in nanometers and the energies are in eV. Ac-
cordingly, BiO remains a deep acceptor even in the D → ∞
limit since ε(0/−) − EV � 1.667 eV. In contrast, the ε(+/0)
level of BiZn becomes an extremely shallow donor level in
the D → ∞ limit. For the experimental diameter values mea-
sured for ultrathin ZnO nanowires (D � 4.1 nm) [46] and
high-aspect-ratio ZnO nanorods (D � 2.2 nm) [47], Eq. (12)
yields EC − ε(+/0) � 0.124 and 0.228 eV, respectively. It
is thus clear that BiZn would act as a shallow donor in ZnO
nanowires as long as the nanowire diameter is larger than
2.2 nm (which is the case with ZnO nanowires produced by
the current synthesis methods).

As seen in Fig. 6(b) for N = 24, the PBE+U and
HSE+U ∗ calculations yield almost the same absolute location
for the ε(0/−) level, which is 2.374 eV (PBE+U ) and 3.190
eV (HSE+U ∗) higher than the valence band edge energy EV,
respectively. This means that the acceptor level of BiO, which
is a deep level in the PBE+U description, becomes deeper
in the HSE+U ∗ description, which is due to the lowering
of EV. This analysis indicates that the error in the energy
difference ε(0/−) − EV due to the underestimation of the
ionization potential is relatively large (∼0.8 eV). There is
an opposite trend concerning the ε(+/0) level of BiZn and
the conduction band edge energy EC: in passing from the
PBE+U values to the HSE+U ∗ values, both ε(+/0) and
EC are raised in energy but the difference EC − ε(+/0) is
only slightly decreased from 0.662 (PBE+U ) to 0.557 eV

(HSE+U ∗). It means that the donor level of BiZn remains of
the same character despite the substantial increase in EC by
0.494 eV. This analysis indicates that the error in the energy
difference EC − ε(+/0) due to the band gap underestimation
(inherent to the semilocal PBE functional) is relatively small
(∼0.1 eV). It is interesting to note that the underestimation
of the ionization potential rather than the band gap leads to a
prominent error in the prediction of defect transition energies.

Based on the discussions in the preceding paragraphs in
this subsection, it can be said that the BiZn defect, which
would abound in the defect structure of Bi-doped ZnO
nanowires, forms a shallow donor level. On the other hand,
the substitution of Bi into the O site as an acceptor yields a
deep acceptor level. It is thus clear that the incorporation of
Bi into the ZnO nanowire as a surface dopant results in n-type
doping, and does not produce p-type doping (even if Bi atoms
substitute into the O sites).

IV. CONCLUSION

In summary, the present paper provides a theoretical
characterization of the electrical properties of surface-doped
ZnO:Bi nanowires in a size-dependent manner. With the aid
of defect calculations using the density and hybrid functionals
in combination with the supercell approach, a number of
ZnO nanowires of various thicknesses doped with Bi atoms
occupying surface sites are explored as regards the formation
energy and charge-state of the dopant. Studying the variation
of the differences between the total energies of charged and
neutral supercells with the supercell size enabled the authors
to devise an extrapolation procedure to obtain reliable defect
energetics in the dilute defect limit. The analysis of the defect
formation energies indicates that (i) the substitution of Bi
into Zn or O sites on the nanowire surface can take place
spontaneously under suitable thermodynamic conditions and
(ii) the BiZn defect would abound in the defect structure of
Bi-doped ZnO nanowires since the incorporation of Bi into Zn
sites is generally more likely. The calculated defect transition
energies reveal that the substitution of Bi into (i) Zn and (ii) O
sites on the surface of ZnO nanowires would yield (i) shallow
donor and (ii) deep acceptor levels, respectively. These find-
ings show that the incorporation of Bi into the surface of ZnO
nanowires results in n-type doping. It is noteworthy that the
BiZn defect formed on the surface of the ZnO nanowire, which
makes the nanowire gain spintronic functionality [12,13], also
donates conduction electrons.
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APPENDIX: COMPARISON OF ENERGY DIFFERENCES
OBTAINED VIA Eqs. (3) AND (7)

As mentioned in Sec. II, using Eq. (3) rather than Eq. (7)
is straightforward. The differences relevant for the doping
character of Bi obtained via Eq. (3) [i.e., εc − ε(+/0) and
ε(0/−) − εv] are compared to those obtained via Eq. (7) [i.e.,
EC − ε(+/0) and ε(0/−) − EV, respectively] in Fig. 7. The
points marked by the solid and empty symbols are off from
each other by a value greater than 0.5 eV for N = 24, which
reduces to a value smaller than 0.2 eV for N = 96. In line
with this, the dashed curves are almost flat (indicating almost
no dependence on the nanowire thickness) whereas the solid
curves exhibit a significant variation with the inverse diameter
1/D (indicating a prominent dependence on the nanowire
thickness). Examining the deviation of the dashed curve from
the solid curve in Fig. 7, it can be concluded that the error
in the electrical levels introduced by using Eq. (3) instead of
Eq. (7) is greater (smaller) than 0.2 eV for nanowires with a
diameter smaller (greater) than 2.2 nm.

1/D (nm )1

En
er

gy
 d

i
er

en
ce

 (e
V

)

N=
245496

D= 2.2nm

FIG. 7. Comparison of εc − ε(+/0) [ε(0/−) − εv] (the empty
symbols) obtained via Eq. (3) to EC − ε(+/0) [ε(0/−) − EV] (the
filled symbols) obtained via Eq. (7). The dashed and solid curves
represent fits to the empty and filled symbols, respectively.
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