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Relaxation time of a quantum RL circuit in the presence of Coulomb interactions
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We report on gigahertz admittance measurements indicative of intrinsic relaxation time for an interacting
quantum resistance-inductance (RL) circuit formed by a gate-defined quantum point contact in the quantum
Hall regime. The dependence of the admittance on intrinsic parameters of the circuit is mapped and found
to be highly relevant to the driving frequency, the magnetic field, and the edge potential profile. Remarkably,
measurements show that in the coherent limit the relaxation time is universal irrespective of resistance and
inductance of the circuit, which is given by the electronic time of flight in the circuit. When the quantum RL

circuit is exposed to strong electron interactions, classical laws of electrodynamic response of the whole circuit
are recovered, associated with observable variations of relaxation time with resistance. The observed transition
of the relaxation time is explained in terms of the effect of Coulomb interaction which is tunable in a gate-defined
quantum point contact. Our experiment demonstrates that deviations from the resistance-independent relaxation
time are governed by the strength of Coulomb interactions, which provides valuable information to sufficiently
determine the interaction parameter.
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I. INTRODUCTION

Quantum coherent electronics for the time-dependent elec-
tronic transport in quantum coherent conductors [1] have
attracted great interest due to their potential application in
quantum information processing [2–6]. A quantum point
contact (QPC) [7,8], a short and narrow constriction formed
in a high-mobility two-dimensional gas (2DEG), serves as
the fundamental building block for manipulating coherent
ballistic electronic transport. In QPC systems, many theoret-
ical and experimental investigations have revealed quantum
coherent phenomena for the dc transport [9–13] among which
quantized conductance is the most quintessential. The ac-
transport properties in a QPC, on the other hand, contain
rich new physics, especially for the coherent dynamics of
charge carriers. The dynamical response of a coherent QPC
conductor in electrical isolation has been theoretically ad-
dressed [14,15], which can be described in terms of emittance
including quantum capacitive and inductive effects, and ex-
hibits dramatic discrepancies with its dc properties. Therefore,
the QPC systems can form the basis for the next genera-
tion of quantum electronic circuits. Most strikingly, the new
quantum circuit based on this QPC system has been realized
[16,17], which generates time-resolved single-charge levitons
by applying high-frequency Lorentzian voltage pluses. It leads
to the possibility of an on-demand anyon source for prob-
ing Abelian and non-Abelian anyonic statistics of fractional
charges [18].

Of particular interest in dynamical electron transport is the
characteristic relaxation time of the quantum circuit which
plays a crucial role in characterizing the quantum dynamics
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of electrons. Recently, a seminal experiment by Gabelli et al.
[19] in a coherent resistance-capacitance (RC) circuit has
demonstrated that the dynamical RC-charge relaxation time,
differing from its classical counterparts, is determined by the
charge relaxation resistance RQ independent of the transmis-
sion of the QPC [20]. Likewise, the characteristic relaxation
time of a chiral quantum resistance-inductance (RL) circuit,
given by the ratio of the inductance to the resistance of the cir-
cuit, is determined by the time of flight of the electrons trans-
mitting through chiral edge states [21]. As was theoretically
predicted [14], the steplike behavior of the QPC emittance is
in synchronism with the well-known dc conductance steps, a
characteristic signature of quantum coherent transport in an
isolated QPC. Essentially, the relaxation time, in the coherent
regime, remains constant when the number of propagating
modes is varied.

However, a realistic semiconductor 2DEG QPC is formed
with the help of gates which introduce an unavoidable cou-
pling of the propagating electron channel to some environ-
mental states. Besides, the emittance is strongly sensitive to
the spatial potential distribution inside the QPC, which can be
controlled by the external fields. Moreover, Coulomb interac-
tions can cause the emergence of multiple collective modes
due to the interchannel coupling [22–24]. These considerable
factors lead to electronic decoherence [25,26] and potential
fluctuations [27], which trigger a transition of dynamical
transport from a quantum coherent to a classical regime, thus
provoking a deviation from the constant relaxation time. In
previous experimental study [21], the resistance-independent
relaxation time of a chiral RL circuit in the absence of
Coulomb interaction has been emphasized. Yet, the effects of
electron interactions on the relaxation time have been only
addressed theoretically in a mesoscopic RL circuit [21] and
in a mesoscopic capacitor [28,29]. Therefore, there is demand
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for experimentally investigating the impacts of Coulomb in-
teraction on dynamical transport in a quantum RL circuit.

In this paper, we present the study for probing the intrinsic
time scales of a quantum RL circuit by measuring the ac
admittance of a gate-defined QPC at GHz frequency. We focus
exclusively on the L/R relaxation time of an interacting quan-
tum RL circuit. With tuning the magnetic field, the driving
frequency, and the gate voltage, we detect the evolution of
the L/R time by measuring the dependence of the admit-
tance on intrinsic parameters of the circuit. The resistance-
independent relaxation time, associated with the synchronistic
stepwise manner for both the real and the imaginary parts of
the admittance, is observed only for a frequency-dependent
value of the magnetic field in contrast with that observed
for different magnetic fields in previous experiments [21].
We find a transition from resistance-independent to classical
relaxation time, resulting from Coulomb interactions which
are modified by the magnetic field and the gate potential.
We employ a current and charge conserving scattering theory
extending Ref. [14] to analyze the dynamical conductance
of a three-terminal device, which allows us to describe the
effect of the gate-mediated interactions. Our measurements
demonstrate that the divergence of the L/R time is governed
by Coulomb interactions.

II. DEVICES AND MEASUREMENTS

The sample is made in a GaAs/GaAlAs heterostructure
with a 2DEG 100 nm below the surface. The 2DEG car-
rier mobility and density are 2×106 cm2 V−1 s−1 and 1.4 ×
1011cm−2, respectively. The schematic layout of the device
and the measurement setups are presented in Figs. 1(a) and
1(b). The sample size is short enough compared to the wave-
length of the edge magnetoplasmon. The two large electron
reservoirs, separated by a constriction with a length of l ∼
10 μm [see Fig. 1(b)], are patterned by wet-etching and op-
tical lithography. A pair of needle-shaped Ti/Au split gates
are deposited by electron beam lithography on the middle
of the constriction. The length of the gates is lg ∼ 0.5 μm
and their separation is w ∼ 0.3 μm. A QPC is formed by
applying negative voltage to the gates. As the gates used in our
setup do not cover the whole constriction region (lg � l), the
interactions are not fully screened, which allows us to probe
the effects of Coulomb interactions on dynamical transport.
Two low-resistive Au/Ni/Ge ohmic contacts are located at
the left and right side of the QPC, and the distance between
them is d ∼ 80 μm, which connect to the external circuit via
a printed circuit board with two impedance-matched 50 �

coplanar transmission lines. A constant rf signal is attenuated
by the attenuators distributed at different temperature stages,
and then applied to left ohmic contact. The output rf signal
is amplified by a high-frequency low-noise amplifier and
measured by a vector network analyzer Agilent N5244A over
a frequency range from 0.8 to 2.2 GHz. As the characteristic
impedance Z0 (= 50 �) of the setup is much smaller than the
impendence (∼k� order) of the device, the admittance can be
obtained from the measured scattering matrix element S21 as
G(ω) ∼ S21/Z0. All measurements have performed in a pulse
tube dilution refrigerator Triton 200 with a base temperature

FIG. 1. (a) Views of schematic of the device and measurement
setup. (b) The electrical circuit of the admittance measurements
based on the optical photography of a whole sample and the elec-
tronic photography of the gates. Schematics of the QPC circuit (c)
capacitive behavior for the reflected electron modes associated with
the dipolar structure of the charge and (d) inductive behavior for the
propagating modes through the QPC. C0 represents the geometric
capacitance between the polarized regions �1, �2, and these two
regions are equally coupled to the gates with Cg.

of 10 mK and in perpendicular magnetic fields between B = 0
and 0.5 T.

III. MODEL

In the low-frequency regime, the admittance Gαβ (ω) of a
phase coherent conductor can be expanded to the first order in
frequency [30],

Gαβ (ω) = G0
αβ − iωEαβ, (1)

where ω/2π is the rf driving frequency. The term G0
αβ has

the same form of the dc conductance, G0
αβ = (2e2/h)T .

Here T = nt + T is the sum of the number nt of the fully
transmitted channels and the transmission T of the partially
transmitted channel. The first-order term Eαβ is the emittance,
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which relates to the displacement charge [14,31] Qα =
EαβVβ , passing through contact α due to a small voltage
oscillation Vβexp(−iωt ) in contact β. The charge Qα con-
sists of two parts associated with the kinetic contribution
DαβVβ and the screening charge −∑

k D∗
αkUk induced by the

nonequilibrium electric potential Uk , where Dαβ is the global
density of states scattered from contact β to α and D∗

αk is the
partial density of states scattered from region �k to contact
α. In the linear response regime, the induced potential Uk

is linearly dependent on the potential variation Vβ at the
contact β, Uk = ∑

k ukβ
Vβ , and the response coefficients ukβ

are defined as the characteristic potentials [31]. This leads to
the emittance matrix:

Eαβ (ω) = e2

(
Dαβ −

∑
k

D∗
αkukβ

)
. (2)

In previous theoretical studies [14,15,32], the emittance was
expressed in terms of the capacitance and inductance, which
can be controlled by the gate voltage of the QPC. More
specifically, the negative emittance (Eαβ < 0 for α �= β), cor-
responding to the capacitance, is a mesoscopic manifestation
of the reflection modes [15]. Whereas the positive emittance
(Eαβ > 0 for α �= β) is an inductive character for mesoscopic
conductors with nearly perfect transmission [14], which is
determined by the velocities for the transmitted electrons
[32]. The emittance changes its sign from negative (capacitive
behavior) to positive (inductive behavior) at the certain gate
voltage (T � 1) [schematically shown in Figs. 1(c) and 1(d)]
taking into account the geometric capacitance, as theoretically
predicated in the low-frequency limit [14].

Our starting point is the standard scattering theory for the
emittance of the QPC in the presence of the gates extending
Ref. [14]. The realistic QPC is formed with the help of the
gates, hence it is not in electrical isolation. As the potential
of a QPC has the form of a saddle [33], a valley potential
is formed away from the saddle point towards the 2DEG
[34], which quickly deepens and widens. In contrast to the
quantum Hall conductors [30], the polarized regions of �1

and �2 locate immediately in the vicinity of the saddle [Fig.
1(c)] and thus the equilibrium potential and the density of
states are nonuniform. In this regime, the charge distribution
is not dipolar but consists of three parts Q1, Q2, and Q3

in �1, �2, and at the gates, respectively. Here a symmetric
QPC is considered where the two gates are taken to be at
the same voltage V3. Now Eαβ is a three-terminal emittance
matrix for the QPC conductor in the presence of gates. The
geometric capacitance C0,kj and electrochemical capacitance
Cμ,kβ relate the charge to the induced potential Uj and the
variation potential Vβ which can be expressed as

Qk =
∑

j

C0,kjUj =
∑

β

Cμ,kβVβ. (3)

Charge conservation means Q1 + Q2 + Q3 = 0. For a single
quantum channel, the geometric capacitance matrix can be
written,

C0 =

⎛⎜⎝C0 + Cg −C0 −Cg

−C0 C0 + Cg −Cg

−Cg −Cg 2Cg

⎞⎟⎠, (4)

where C0 is the geometric capacitance between �1 and �2,
and Cg is the geometric capacitance between these regions
and the gates. The electrochemical capacitance matrix with
capacitance coefficients Cμ,kβ can be described by

Cμ =

⎛⎜⎝ Cμ Cμg − Cμ −Cμg

Cμg − Cμ Cμ −Cμg

−Cμg −Cμg 2Cμg

⎞⎟⎠, (5)

where Cμ is the electrochemical capacitance across the QPC
and Cμg is the electrochemical gate capacitance.

The total charges emitted at region �k due to the voltage
variation Vβ are the sum of the injected charges and the
induced negative charges,

Qk = e2
∑
αβ

Dαkβ (Vβ − Uk ), (6)

where Dαkβ is the partial densities of states associated with
carriers in �k scattered from contact β at contact α. Dαkβ is
given by the transmission probability times the densities of
states [32], hence

Dαkβ = Dk[T /2 + δαβ (Rδαk − T /2)], if α, β �= 3. (7)

From Eqs. (3) and (6), we can get ukβ = (Dkβ − Cμ,kβ )/Dk ,
where Dkβ = �αDαkβ corresponds to the partial densities of
states associated with carriers injected in contact β. From Eqs.
(3)–(7) with the help of the characteristic potentials ukβ , one
finds

Cμg = 1

C−1
g + (NCq)−1

, (8)

Cμ = (N − T )C0Cq + (2N − T )(Cg/2)Cq + C0Cμg

NCq + 2C0 + Cg
, (9)

where N is the filling factor that represents the number of
channels around the QPC gate. Using the total density of
states D = 2D1 for the symmetric QPC with D1 = D2. The
quantum capacitance is given by Cq = e2D1 = l/vd, where l

is the propagation length and vd is the drift velocity. Using
the characteristic potential ukβ and Eqs. (2) and (7) we can
calculate the emittance E21,

E21 = T 2

2N2
(NCq − C̃μg) + T

N
C̃μg

− C0(NCq)2

(NCq + Cg)(NCq + 2C0 + Cg)
, (10)

with

C̃μg = NCqCgeom

NCq + Cgeom
, (11)

where Cgeom is the total geometric capacitance defined as
Cgeom = 2C0 + Cg. In contrast to the dc conductance inde-
pendent of the internal potential distribution, the emittance
depends sensitively on the fluctuating induced electrical po-
tential [27]. This fluctuating potential emerges in the con-
ductor as a consequence of modification of the charge dis-
tribution due to Coulomb interactions. As the gates do not
cover the whole interacting region, the interactions, arising
from a capacitive coupling between the QPC conductor and
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the gates, can be treated as short ranged [35]. In essence,
the modification of the charge distribution will substantially
affect the dynamical response of the QPC. Therefore, it is
necessary to further investigate the dynamical effect of short-
range interactions.

We now consider and discuss how interactions quali-
tatively modify the emittance of the QPC predicated in
the standard Büttiker scattering theory [14]. Here we treat
the interactions with help of a geometric capacitance Cgeom

in the random-phase approximation (RPA) [1,35–37] and the
gate as a macroscopic conductor with on dynamics of its own.
For this case, the modification of the charge distribution on the
conductor is δQ̂ = CgeomδÛ (ω), which is the sum of the bare
charge fluctuations eN̂ (ω) and the induced charges generated
by the fluctuating induced internal potential δÛ (ω) [37]. In
the RPA, the induced charges δQ̂ind are directly related to the
average frequency-dependent density of states D(ω) and the
fluctuating potential δÛ (ω), which is determined by δQ̂ind =
−e2ND(ω)δÛ (ω). Thus, the modification of the charge is
given by

δQ̂ = CgeomδÛ (ω) = eN̂ (ω) − e2ND(ω)δÛ (ω). (12)

The operator of the potential fluctuations δÛ (ω) can be ob-
tained by solving this equation as

δÛ (ω) = F (ω)eN̂ (ω), (13)

with

F (ω) = [Cgeom + e2ND(ω)]−1. (14)

Worthy of note here is that F (ω) takes into consideration the
effective interaction potential. Consequently, the frequency-
dependent quantum capacitance is Cq(ω) = e2D(ω), defined
as [38]

Cq(ω) = iCq
1 − exp(iωτt )

ωτt
. (15)

Here τt is the traversal time that an electron spends passing
through the interacting region. As follows from Eq. (15), the
correction to the electrochemical gate capacitance given by
Eq. (11), is relevant to the driving frequency, which then takes
the form as C̃μg(ω) = F (ω)NCq(ω)Cgeom. In this respect, the
emittance [Eq. (10)] can no longer be regarded as a frequency-
independent function.

One can find from Eq. (10) that the emittance E21 of the
generalization QPC system is the nonlinear function con-
taining a quadratic term. When all transport channels are
closed (T = 0), the QPC behaves like a capacitor. Thus, the
third constant term in Eq. (10) corresponds to the purely
capacitive emittance which can be subtracted at experimental
calibration process and allows one to focus on the induc-
tive admittance of the QPC at finite transmission. Namely,
the admittance of a QPC conductor can be described by a
resistance R (R = 1/G0

αβ ) in series with an inductance L,
schematically shown in Fig. 1(d). The L/R relaxation time
τRL = −Im(G)/ωRe(G) is then given by

τRL = h

2e2

[ T
2N2

(NCq(ω) − C̃μg(ω)) + C̃μg(ω)

N

]
. (16)

Note that here τRL is frequency dependent, which is a relevant
time scale characterizing the dynamical response of the QPC
system. It consists of two terms: The first one is a linear
dependence on T , simplified as A1T , while the second one
is transmission independent, simplified as A0. Therefore, τRL

can be simplified as τRL = A1T + A0. It is important to note
that the ratio of the two coefficients is fully determined by
the capacitances as K = A1/A0 = Cq(ω)/2Cgeom, which en-
codes the effect of Coulomb interaction. Electronic transport
in a quasi-one-dimensional QPC system with short-range in-
teractions is well described by Luttinger liquid theory [39,40].
The interaction (Luttinger) parameter g, determining the
amount of screening and the strength of the effective Coulomb
interaction, is related to the density of states and the geomet-
ric capacitance via g2 = 1/(1 + e2D(ω)/Cgeom ) [35], which
gives K = (1 − g2)/2g2. As the density of states significantly
depends on the frequency and the magnetic field, the interac-
tions can be modified by adjusting them in the circuit. Namely,
the quantum capacitance [Eq. (15)] can be suppressed relative
to the geometric capacitance upon increasing the frequency,
which allows for probing the effect of frequency-dependent
screening [25]. At a finite frequency, for Cq � Cgeom, so that
g → 1 and K → 0, the Coulomb energy e2/2Cgeom goes to
zero that the interactions are effectively screened. This means
that the electrons travel ballistically along one-dimensional
channels located at the edge of the sample. The charge be-
haves like a free noninteracting particle. The relaxation time
reduces to τRL = (h/2e2)C̃μg/N which is transmission inde-
pendent, predicting the synchronistic stepwise manner of both
the real and imaginary parts of the admittance at the opening
of the QPC channels. For Cgeom � Cq, g → 0, and K � 1,
the strength of the electron interactions is increased, which
leads to τRL = (h/2e2)(T /2N2)(NCq − C̃μg). The classical
laws are recovered, i.e., the inductance L = (h/2e2)2(NCq −
C̃μg)/2N2 does not vary when the resistance 1/G0

αβ is modi-
fied.

IV. RESULTS AND DISCUSSION

A. The admittance of a QPC in the presence of gates

We first turn to the admittance measurements and demon-
strate how the inductive admittance is differentiated from
the capacitive admittance of a QPC. Figure 2(a) shows the
variation of the phase �ϕ(VG) of the ac admittance relative
to the pinch-off point, �ϕ(VG) = ϕ(VG) − ϕ(Vpin−off ), as a
function of the gate voltage VG at various magnetic fields.
As can be seen from Fig. 2(a), the phase jump �ϕ0→1 for
the first step increases with increasing magnetic field. This
can be understood from the dominant contribution between
the kinetic part and the screening part to the emittance. It
is intuitively obvious that the kinetic contribution increases
which arises from the reduction of the drift velocity of the
transmitted electrons with increasing magnetic field, but no in-
fluence on the reflected electron modes. Thus, the capacitive-
inductive transition point moves toward negative gate voltage
corresponding to smaller transmission due to the increasing
of the inductance contribution as the magnetic field increases
at a fixed frequency. Figures 2(c) and 2(d) show the phase of
the admittance as a function of VG for different frequencies
at B = 0 and 0.2 T, respectively. We find that the location
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FIG. 2. (a) Phase variations �ϕ(VG ) of the admittance mea-
sured from the pinch-off of the gate voltage, �ϕ(VG ) = ϕ(VG ) −
ϕ(Vpin−off ), as a function of VG for various magnetic field at f =
1.2 GHz. (b) Numerical derivative dϕ/dVG of the phase of the
admittance with respect to B and VG. Phase of the admittance for
various frequencies at (c) B = 0 and (d) B = 0.2 T, respectively.

of the capacitive-inductive transition point is independent of
the driving frequency, which is consistent with the previous
theoretical results [15,41]. Another important phenomenon
shown in Fig. 2(a), dictates that the first phase jump �ϕ0→1

changes more rapidly than the subsequent one �ϕm→n at
the opening of the QPC, that is, �ϕ0→1 � �ϕm→n (n >

m � 1), which is further verified in the color-scale plot of
the numerical derivative of the phase dϕ/dVG [Fig. 2(b)]. It
implies that the QPC has an inductive character due to the
predominant role of the open channels (nt > 1), and the ca-
pacitive behavior is mainly determined by the nonpropagating
modes for nt = 0 or 1. This allows us to subtract the capacitive
admittance before the zero transition point and focus on
the evolution characteristics of inductive admittance at finite
transmission.

We now study the dependence of the admittance on the
relevant parameters such as the magnetic field, the driving
frequency, and the gate voltage. Figures 3(a) and 3(b) show
the real and imaginary parts of the admittance [Re(G) and
Im(G)] as a function of VG for five different magnetic fields
at f = 2.0 GHz and 1.5 GHz, respectively. Both the Re(G)
and Im(G) exhibit similar stepwise structure as the number
of open channels increases by changing the transmission of
the QPC. Note that Im(G) is negative, and the height of its
step is proportional to the driving frequency. It reflects the fact
that the measured current flowing across the QPC is delayed
relative to the applied ac voltage due to the inductive contribu-
tion of the emittance. The number of plateaus decreases upon
increasing the magnetic field at the fixed gate voltage range
(−0.55 V < VG < −0.25 V). It indicates that the number
of the opening subbands decreases, which results from the
increasing energy splitting of subbands. On the other hand,
the plateaus of both Re(G) and Im(G) become more flat and
synchronous at a specific magnetic field, marked by red dotted
curves in Figs. 3(a) and 3(b), while Im(G) and Re(G) are no
longer strictly mutual proportional for other magnetic fields

and have relatively larger fluctuations. It signals a possible
transition, and indicates that the admittance of a QPC in the
presence of gates is sensitive to the magnetic field and the gate
potential.

These features can be most directly depicted in Nyquist
representations, i.e., Im(G) as a function of Re(G) [Figs. 3(c)
and 3(d)], which show that the phase of the admittance evolves
as the magnetic field and the gate voltage. Contrasted with the
previous experiments in a two-terminal quantum Hall device
[21], the transmission-independent phase of the admittance
of the gate-defined QPC conductor is observed only for a
critical magnetic field defined as BCO. Note that it relates
to the driving frequency as a higher frequency corresponds
to a smaller magnetic field BCO [see Figs. 3(c) and 3(d)].
Below and above this field BCO, the variations of Im(G)
versus Re(G) follow a quadratic but with opposite concavities
when sweeping the gate voltage of the QPC, which are con-
cave upward for B < BCO and concave downward for B >

BCO. It signals the presence of a transition of the relaxation
time, τRL = −Im(G)/ωRe(G), from resistance-independent
to classical L/R time. We argue that this behavior results from
both Coulomb interactions [42–44] between the propagating
electron edge channels and their coupling to surrounding gates
[27], which were not included in previous experimental study
[21] as they are efficiently screened on a quantum Hall bar by
a pair of large side gates.

The concavity-convexity of Im(G) versus Re(G) is di-
rectly related to the interaction strength |1 − g2| (i.e., detuned
from the noninteracting value 1), which can be measured in
terms of the dimensionless parameter K = e2D(ω)/2Cgeom,
as already defined above. Figures 3(e) and 3(f) show K as a
function of B extracted from the quadratic fits of the data in
Figs. 3(c) and 3(d), respectively. The data agree qualitatively
with the expected linear B dependence of K [i.e., D(ω) ∝
B] but with different slope ratio in different magnetic field
ranges, showing that, upon increasing the magnetic field, the
convexity sharply enhances in the range of B > BCO and the
concavity slowly weakens in the range of B < BCO. This
asymmetric evolution is a direct consequence of the variations
of the local density of states D(ω) relative to the geometric
capacitance accounting for modifications of electron-electron
interactions by tuning the magnetic field and the driving
frequency.

For B < BCO, electronic propagating modes correspond to
magnetoelectric subbands interacting into the edges of the
constriction [45,46], accordingly, that electron-electron inter-
actions are mainly mediated by boundary scattering [47,48].
These interactions are related to electronic exchange and cor-
relations [49], giving a possible explanation for the measured
negative value of the nontrivial factor K � 0. They can be
described by an additional capacitance Cxc, which is expected
to be negative at low densities and crosses over to positive
values at higher densities [49–51]. Thus, whenever opening
a new subband, it adds a new negative Cxc in series with
Cq and Cgeom. As Cq is given by the density of states, Cxc

can be regarded as a correction to the geometric capacitance,
C̃geom = Cgeom(1 + χ )−1, thereby K̃ = (1 + χ )K , where χ is
the capacitance ratio Cgeom/Cxc. As shown in Fig. 3(f), the
negative K increases due to the increase of the density states
in the range of 0 � B � BCO (=0.24 T), corresponding to

045410-5



JIANHONG HE, WEI LIU, HUAZHONG GUO, AND JIE GAO PHYSICAL REVIEW B 99, 045410 (2019)

(a) (b)

(c)

(f)(e)

(d)

FIG. 3. Re(G) (upper half) and Im(G) (bottom half) of the admittance as a function of VG for five different magnetic fields at (a) f = 2.0
GHz and (b) f = 1.5 GHz, respectively. The curves of nonzero magnetic fields are shifted along VG axis by steps of 0.15 V for better visibility.
(c) and (d) The corresponding Nyquist representations of the admittance data in (a) and (b), respectively. Red dashed dotted lines show linear
fits to the data, Im(G) ∝ Re(G), at B = 0.12 T for f = 2.0 GHz and B = 0.24 T for f = 1.5 GHz. (e) and (f) The interaction strength K as a
function of B deduced from the quadratic fits of the data in (c) and (d), respectively. The blue short dashed lines present linear fits to the data,
K ∝ B. The slope of the fitted lines in range of B > BCO is much larger than that in range of B < BCO; see text in detail.

−0.16 � 1 − g2 � 0. Similar behavior is observed for f =
2.0 GHz in Fig. 3(e) with −0.07 � 1 − g2 � 0. This quanti-
tative difference may originate from the enhanced screening
effect at high frequency [38], which will be discussed in the
following section. As the magnetic field further increases,
electronic propagating modes gradually evolve into chiral
edge states surrounding an incompressible bulk [45]. The
widths and positions of these edge and bulk configurations
vary with the magnetic field, resulting in the modification of
Cg and C0 (i.e., Cgeom), and thus the interchannel Coulomb in-
teraction strength [52]. When the magnetic field is increased,

the channels move apart from the gates, thereby reducing
Cgeom and increasing D(ω) simultaneously. Consequently, the
steep enhancement of K in the range of B > BCO [see Figs.
3(e) and 3(f)] indicates the interaction strength (1 − g2) � 0
that changes rapidly in this B range.

Noteworthily, Figs. 3(c) and 3(d) also dictate that, at a
fixed magnetic field and gate voltage, the relaxation time is
strongly sensitive to the driving frequency, consistent with the
above prediction in consideration of the potential fluctuations
induced by boundary-mediated interactions. For instance, at
B = 0.12 T, a linear Re(G) dependence of Im(G) is ob-
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served for f = 2.0 GHz, meaning that the relaxation time is
resistance independent upon varying the gate voltage. While
for f = 1.5 GHz, the dependence of Im(G) on Re(G) is
no longer linear, namely, the relaxation time becomes resis-
tance dependent. It indicates that the driving frequency plays
a crucial role on the dynamics of electrons in the circuit.
This observation for B < BCO can be understood in terms
of the frequency-dependent screening effect for boundary
scattering, which significantly enhances with an increase of
the frequency at a fixed magnetic field, similar to what has
been observed in Ref. [25]. In contrast, for B > BCO, in
spite of the interaction-induced boundary scattering being
relatively weak, interband inelastic scattering is significantly
strengthened. In this regime, increasing the driving frequency
f increases the available energy for inelastic scattering, thus
enhancing interaction effects. Consequently, the concavity
strongly enhances when the frequency is increased, e.g., for
B = 0.48 T as shown in Figs. 3(c) and 3(d). We will study
hereafter the nature of the relaxation time extracted from the
measured admittance of the QPC upon varying the intrinsic
parameters of the circuit, and demonstrate that the divergence
of the relaxation time is indeed due to Coulomb interactions.

B. The resistance-independent relaxation time τ c
RL

Considering that the interactions significantly depend on
both the driving frequency and the magnetic field, and thus
we can tune them, i.e., suppress the quantum capacitance with
respect to the geometric capacitance, for observation of the
resistance-independent relaxation time τ c

RL with g2 = 1. In
Fig. 4(a), we plot the curves with a linear Re(G) dependence
of Im(G) choosing for different driving frequencies at their
corresponding magnetic field BCO. These correspond to the
noninteracting case with a resistance-independent relaxation
time, as expected, for which the interaction parameter g2 ≈ 1
is extracted from the linear fits in Fig. 4(a). For g2 = 1, the
relaxation time reduces to τ c

RL = (h/2e2)C̃μg(ω)/N . Remark-
ably, when the term C̃μg(ω)/N turns to be constant by varying
the driving frequency together with tuning the magnetic field,
the relaxation time τ c

RL becomes universal. As a result, the
phase of the admittance draws a straight line in Fig. 4(b) with
a linear ω dependence of the phase, tan(φ) = −ωτ c

RL ∝ ω.
In this noninteracting limit, the relaxation time τ c

RL is
in striking contrast with the time constant [L/R ∝ Re(G)]
of a classical circuit. Such a violation of classical laws has
been demonstrated that it requires a coherent chiral propaga-
tion of electrons enforced by a magnetic field [21]. As Fig.
4(c) shows, the required magnetic field BCO, accounting for
transmission-independent phase factors [Fig. 4(a)], decreases
with the increase of the driving frequency. This reflects the
intrinsic dynamical characteristics of a coherent RL circuit.
In the ac transport, it is necessary to consider two parts of
the current which includes the particle current Ip(ω) and the
displacement current Id(ω). In the limit of ballistic transport in
a quasi-one-dimensional channel, the particle current Ip(ω) is
primarily determined by the drift velocity vd of the transmitted
electrons as Ip(ω) ∝ neevd, and the total carrier density in the
transmitted channel can be estimated by using the simple ca-
pacitance relation ne = Cgeom�VG/el, where �VG is the gate
voltage measured from pinch-off. The displacement current

FIG. 4. (a) Characteristic linear Nyquist diagram of the admit-
tance [Im(G) as a function of Re(G)] for different frequencies
at their corresponding critical values of the magnetic field BCO.
The dashed dotted lines show linear fits to the data. (b) Frequency
dependence of the phase of the admittance in (a). The blue line is
fit to the data, tan(φ) = −ωτRL ∝ f . (c) Dependence of the required
magnetic field BCO on the driving frequency. The purple solid line is
fit to the data, BCO ∝ f −1.

Id(ω) related to the induced potential U (ω) is proportional
to frequency. According to Eq. (3), it can be expressed as
Id(ω) = −iωC0U (ω). To recover current conservation, they
should satisfy the condition I (ω) ≡ Ip(ω) = Id(ω) [14]. As
the drift velocity vd is inversely proportional to the magnetic
field, one can find BCO ∝ f −1. Consequently, the case for rel-
atively higher frequency requires a much lower magnetic field
to compensate the screening effect. This essentially means
that, when the frequency-dependent screening enhances upon
increasing the driving frequency, the suppression of the in-
teractions created exclusively by the magnetic field reduces
accordingly.

The resistance-independent relaxation time τ c
RL of a co-

herent RL circuit is indeed directly related to the elec-
tronic dwell time τd = l/vc in the circuit, characteristic of
the noninteracting system (g2 = 1) [53]. Note that here
vc = vd + 2e2Nl/hCgeom is the drift velocity renormalized by
the screened Coulomb interaction. From τd = τ c

RL = 0.07 ±
0.015 ns extracted from the linear fits in Fig. 4(b), and the
estimated propagation length l ≈ 10 μm [the length of the
constriction region in Fig. 1(b)], we obtain a drift velocity
vc ≈ 105 m/s in this noninteracting limit. It is in agreement

045410-7



JIANHONG HE, WEI LIU, HUAZHONG GUO, AND JIE GAO PHYSICAL REVIEW B 99, 045410 (2019)

FIG. 5. (a) Nyquist representation of the admittance at B = 0.115 T and 0.385 T for the frequency f = 2.2 GHz. (b) The relaxation time
τRL as a function of VG for data in (a). Variations of the relaxation time �τRL as a function of �VG for four different frequencies at (c) B = 0.4
T and (f) B = 0, respectively. (d) Nyquist representation at B = 0 and 0.4 T for the frequency f = 1.1 GHz. (e) The relaxation time τRL as a
function of VG for the data in (d). The black and red dashed dotted lines are fits to the data, Im(G) ∝ Re(G). The blue and purple dashed lines
represent the curve fits with quadratic function, Im(G) = A1[Re(G)]2 + A0Re(G).

with the result for the noninteracting case in the previous study
[21]. On the other hand, with this relation Eq. (16) can be
rewritten in a more convenient form as

τRL = τd(1 + KT ). (17)

As already mentioned, the nontrivial factor K = (1 −
g2)/2g2 is a sensitive function of the interaction strength,

which evaluates the deviation from the resistance-independent
relaxation time τd.

C. The divergence of the L/R relaxation time

In Fig. 5(a), we show the Nyquist diagram of the admit-
tance for the frequency f = 2.2 GHz at the magnetic fields
B = BCO = 0.115 T and 0.385 T. At B > BCO, the variations
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of Im(G) versus Re(G) follow a quadratic law with concave
downward, indicating that the relaxation time is resistance de-
pendent. The fundamental parameters K and g2 are obtained
through a quadratic polynomial fitting, which gives K = 0.22
and g2 = 0.69. In contrast to K ≈ 0 and g2 ≈ 1 for the non-
interacting case at B = BCO, this value g2 < 1 corresponds to
repulsive Coulomb interactions [40,54]. It confirms that the
positive deviation from the resistance-independent relaxation
time results from the interedge Coulomb interactions which
strongly enhance due to the increasing of the density of states
upon increasing the magnetic field. On the other hand, it
reflects the fact that electrons slow down passing through
the interacting region of the QPC since the drift velocity of
an electron is inversely proportional to the density of states,
D(ω) ∝ v−1

d . The slow electrons undergo strongly enhanced
interactions, thus effectively lengthening the QPC time of
flight [55]. As a consequence, the relaxation time τRL is much
larger than the constant time τ c

RL at B = BCO, as shown in Fig.
5(b), and their difference significantly increases upon opening
more subbands of the QPC. In Fig. 5(c), we plot the variation
of the relaxation time �τRL as a function of �VG for four
different frequencies, where �VG is the gate voltage mea-
sured from pinch-off. Clearly, �τRL > 0 at B > BCO, and it
increases upon increasing the frequency and lowering the gate
potential at a finite magnetic field. This implies that if τRL >

τc
RL electronic transport in an interacting channel decoheres

before the transmitted electrons flow into the contact. This is
confirmed by the emergence of the larger fluctuations of the
relaxation time, notably, when a new subband opens [see Figs.
5(b) and 5(c)]. It results from interband inelastic scattering
induced by the electron interactions, which demolishes the
coherent transport [26,56].

By contrast, we plot in Fig. 5(d) the Nyqusit diagrams of
the admittance for a low frequency of f = 1.1 GHz at zero
magnetic field and B = BCO = 0.4 T. This low frequency is
chosen so that the frequency-dependent screening effect is
relatively weak, namely, the boundary-mediated interaction
effect is significantly strong, which is convenient for obser-
vation of significant deviations from the constant relaxation
time at B < BCO. At zero magnetic field, the variations of
Im(G) versus Re(G) follow an expected quadratic law but
with concave upward. For this case, K = −0.1 and g2 = 1.28
are extracted from the quadratic polynomial fitting [Fig. 5(d)].
For K � 0 and g2 > 1, the boundary-mediated interactions
can reduce the emittance of the QPC via scattering of emitted
electrons back to the QPC [57]. Thus, when the gate voltage
is increased, the relaxation time, E/Re(G), rapidly decreases

that compared with the noninteracting case (g2 = 1 at B =
BCO), as shown in Fig. 5(e). Although qualitatively similar,
this behavior is found to be more pronounced at the lower
frequency; see Fig. 5(f). This is consistent with the frequency-
dependent interaction effects, which should have, in principle,
an enhanced screening effect at high frequencies when the
system resembles Luttinger liquid with boundary-mediated
electron interactions [47,48]. In general, for the noninteracting
case g2 = 1, the relaxation time is constant regardless of
resistance and inductance of the circuit which can be realized
by tuning the magnetic field and the gate potential. For all
g2 �= 1, deviations from the constant relaxation time as a
function of transmission probabilities are governed by the
strength of electron interactions [54].

V. CONCLUSION

In conclusion, we have measured gigahertz admittance of a
QPC in the presence of gates, indicative of intrinsic relaxation
time for an interacting quantum RL circuit. The transmission-
independent phase of the admittance, i.e., Im(G) ∝ Re(G),
is observed only for a critical magnetic field BCO dependent
on the driving frequency, in contrast with that observed for
different magnetic fields in a completely screened Hall system
[21]. Deviating from this critical field BCO, the variations of
Im(G) versus Re(G) follow a quadratic law but with opposite
concavities, which is governed by the strength of Coulomb
interactions. Our observations clarify that phase-coherent dy-
namical transport in a gate-defined QPC is characterized by
the synchronic stepwise manner for both the conduction and
the emittance, associated with the relaxation time regardless
of resistance and inductance of the circuit. We find that the
relaxation time deviates from the resistance-independent time
and even turns to classical L/R time in the presence of strong
electron interactions. Our work provides a dynamical means
to evaluate the effects of Coulomb interaction on the basis
of the relaxation time measurement, and may have impact
on fundamental studies of dynamical quantum transport in
mesoscopic Coulomb-coupled conductors.
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