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Nonreciprocal hyperbolic propagation over moving metasurfaces
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Hyperbolic propagation offers exciting opportunities in nanophotonics, from subdiffraction imaging to
enhanced local density of states. This transport regime is typically induced by strong modulation of conductivity,
i.e., with alternating metallic and dielectric material properties. Here, we analyze a moving impedance surface,
showing that suitably tailored homogeneous metasurfaces can support one-way hyperbolic propagation when
in motion, adding nonreciprocity to hyperbolic propagation phenomena, and without suffering from nonlocal
effects stemming from discretization or finite granularity of the surface.
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I. INTRODUCTION

The electrodynamics of moving media has been an active
research topic for a long time [1–5], highlighting various un-
usual properties, such as nonreciprocity and large anisotropy.
Recently, with the growing interest in exotic phenomena in
photonics, the interest in moving media has grown, including
opportunities to induce parity-time symmetry and symmetry
breaking [6,7], quantum friction [8–11], and wave instabilities
[12,13]. Recently, fast-moving systems were proposed and
studied, such as rapidly rotating particles [14,15] and optome-
chanical systems [16,17], which present promising platforms
to realize these unusual effects. In a different context, hyper-
bolic wave propagation in metamaterials has also attracted
significant interest, offering opportunities to engineer and
enhance the emission of particles and molecules [18,19], for
imaging and focusing [20]. To date, hyperbolic propagation
has been mostly achieved using layered or wire bulk meta-
materials [21], which may be accompanied by broadband
nonreciprocity when a large magnetic bias is applied [22].
Hyperbolic metasurfaces, formed by alternating conductive
and insulating impedance strips, enable direct and easier
access to these unusual and enhanced light-matter interactions
[23–25], supporting hyperbolic transport over a surface. In
both approaches, however, the finite periodicity ultimately
limits the exotic response by setting a limit on the cutoff wave
number for hyperbolic propagation and introducing nonlocal
effects [26]. Naturally hyperbolic materials, such as boron
nitride, may provide enhanced light-matter interactions within
a homogeneous bulk response, but they typically suffer from
loss and are limited to narrow frequency ranges of operation
[27,28]. In the following, we explore nonreciprocal hyperbolic
propagation over a surface without the need for either strong
modulation of the conductivity properties or magnetic bias,
based on moving homogeneous surfaces. We show that mo-
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tion above a certain velocity can support hyperbolic propa-
gation with highly anisotropic and nonreciprocal responses,
offering a way to combine hyperbolic regimes with directional
features.

II. FORMULATION

The geometry of interest, shown in the inset of Fig. 1(a),
consists of a homogeneous impedance surface moving with
velocity tangent to the surface in the laboratory frame S. In S’,
the system where the surface is at rest, we use the conventional
impedance boundary condition:

n̂ × (H′
2 − H′

1) = σE′
tan (1)

where 1 and 2 refer to above and below the surface, respec-
tively, and σ is the conductivity tensor. We utilize the Lorentz
transformations for the electromagnetic fields [1]:

E′ =γ (α−1E + cμ0βH),

H′ =γ (−cε0βE + α−1H) (2)

with β = v/c, β = |β|, γ = (1 − β2)−1/2, and the matrix
operators α,β are defined in the Appendix. Upon substituting

Eq. (2) into Eq. (1), after some straightforward steps we obtain
the equivalent boundary condition for a tangentially moving
metasurface:

x̂ × (H2 − H1) = γα−1σ α−1Etan + γ (v × Hx x̂)

+ ε0n̂ · (E2 − E1)v, (3)

expressed in terms of the fields in the laboratory frame S. The
right-hand side contains three electric current contributions:
the first is an effective conduction current, displaying motion-
induced anisotropy; the second term indicates magnetoelectric
coupling arising from the Lorentz force sustained by the
normal magnetic field; the third term is a convection current,
generated by the mechanical motion of the induced surface
charge. The effective masses and distances associated with the
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FIG. 1. (a) Isofrequency contours for the normalized wave num-
ber. The value of β is color coded. A topological transition from
elliptical to hyperbolic is noticed around the threshold value βTH ≈
0.1(green thick line), also highlighted in the color bar. The surface
inductance is X = 5η0. The inset shows the geometry of interest.
(b) Ez distribution when the surface is stationary. (c) Ez distribution
when β = 0.05, corresponding to the magenta curve in panel (a).
(d) Fourier transform of Ez presented in (c). The dominant wave
numbers are labeled.

surface structure are also altered due to the motion by a factor
γ , and these second-order effects are taken into account in the
effective conductivity matrix σ̃ = γα−1σ α−1. In this paper,
we assume the surface has an isotropic surface impedance
Zs = 1/σ = jX, with σ being the surface conductivity (ejωt

time dependence used throughout the paper), and the motion
is chosen such that v = vẑ (β = β ẑ) with v > 0 (β > 0).
We consider an inductive surface (X > 0) which may de-
scribe, for instance, a sheet of pristine graphene or other
two-dimensional (2D) materials in the midinfrared range, or
suitably designed metasurfaces in optics or radio frequencies
[29–32]. After substituting these assumptions into Eq. (3), the
boundary condition used assumes the form

x̂ × (H1 − H2) = σ̃Etan + σγ (vẑ × μ0Hx )

+ (vẑ)n̂ · (ε0E1 − ε0E2), (4)

with the effective conductivity now expressed in the simple
form σ̃ = σ (γ 0

0 γ −1 ).

III. QUASI-TM ONE-WAY HYPERBOLIC MODES

In S’, only TM modes are supported, as expected for
homogeneous inductive impedance surfaces [33,34]. Due to
the anisotropy induced by the motion, the surface waves
propagating in S will no longer be pure TM [30] when
considering propagation into various angles, but since they
are obtained from the transformation of pure TM waves in
S’, and for moderate speeds are still dominated by their
TM component, we shall term them quasi-TM (qTM). The
electromagnetic fields associated with the surface waves have
the form e−jkt ·[y,z]e−α|x|, with in-plane wave vector kt and
confinement coefficient α. Their dispersion relation in S is
obtained by substituting the surface-wave fields into boundary
condition (4), which results in

α =
√

δ(k0 − βktz), (5)

with δ = (2γX/η0)2. Combining this with the free-space
dispersion (k2

tz + k2
ty = α2 + k2

0) gives the in-plane dispersion
isofrequency contour in S:

[1 − δβ2]

(
ktz

k0
+ βδ

1 − δβ2

)2

+
(

kty

k0

)2

= 1 + δ + β2δ2

1 − δβ2
. (6)

The dispersion is clearly nonreciprocal, due to the odd ktz

term, induced by the linear motion that breaks time-reversal
symmetry. Its expression yields an ellipse (δβ2 < 1) or hyper-
bola (δβ2 > 1), as shown in Fig. 1(a) for varying values of β.
The threshold of β for which the topological transition occurs
is

βth,TM = vp,TM

c
, (7)

where vp,TM = c(1 + 4X2/η2
0 )−1/2 is the phase velocity of the

TM surface waves on the stationary surface. Since α in Eq. (5)
must be positive for the wave not to diverge, we additionally
obtain βktz < k0. When β > βth,TM this inequality forbids one
branch of the hyperbola in (6), yielding a one-way hyperbolic
dispersion contour, as seen in Fig. 1, where the slope of the
hyperbola asymptote is γ

√
v2/v2

p,TM − 1.
In the qTM regime, due to the nature of the fields (normal

electric field and very weak normal magnetic field) the con-
vection current is the dominant term compared to the Lorentz
current. Therefore, in this regime we may define an effective
qTM conductivity tensor:

σ̃Etan + (vẑ)n̂ · (ε0E1 − ε0E2)

=
(

σγ 0

2jvktyα
−1 σγ −1 + 2jvktzα

−1

)
Etan, (8)

which captures the propagation properties in this system:
hyperbolic propagation is associated with a change of sign of
the first diagonal term of (8) for large enough values of v, and
nonreciprocity arises from the odd dependence in ktz.

We validated our analysis calculating with a full-wave elec-
tromagnetic solver (COMSOL), the fields induced on a finite
segment of moving impedance by a source on the left side
of the strip, and the motion was modeled using the effective
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FIG. 2. (a) Dispersion of the qTE modes on a moving inductive surface, color coded according to the value of β, for X/η0 = 1/20. (b)
Map of the possible guiding regimes of qTM and qTE modes over a moving inductive surface. (c) Excitation of one-way TE surface wave on
a moving impedance surface by a 2D magnetic dipole with β = 0.15. (d) Excitation of qTM waves in the elliptic regime, X/η0 = 5, β = 0.05
[purple region in (b)]. (e) Excitation of qTM surface waves in the hyperbolic regime, X/η0 = 5, β = 0.15(orange region). (f) Excitation of
qTE surface waves in the hyperbolic regime, same parameters as (c) (purple region).

boundary condition in Eq. (4). Figure 1(b) shows the a snap-
shot of the longitudinal electric field Re{Ez} when the surface
is static and X = 5η0 (η0 = √

μ0/ε0) when exciting from the
z = 0 by an aperture field distribution corresponding to the
+ẑ propagating wave. Here, the supported surface wave has
the expected wave number ktz ∼ 10k0 for β = 0.05 [Fig. 1(c)]
nonreciprocity, as evident from the different wavelength for
forward and backward waves. The extracted wave numbers,
after Fourier transforming the fields [shown in Fig. 1(d)], are
consistent with our analytical dispersion, ktz,forward ≈ 6.7k0

and ktz,backward ≈ 20.15k0. Nonreciprocal propagation of sur-
face waves was also discussed in [35], where nonreciprocity
was induced by a drift current driven over graphene, and in
[36] through a metallic slab; here mechanical motion effec-
tively replaces the current bias.

IV. QUASI-TE ONE-WAY HYPERBOLIC MODES

Interestingly, the surface motion enables TE surface
modes, which are forbidden along inductive impedance sur-
faces at rest. The dispersion equation for the quasi-TE (qTE)
surface waves can be obtained in the same way as qTM, and
it reads

αTE = − η0

2X
γ (k0 − βkt cos ϕ). (9)

For low speeds, αTE > 0 can be satisfied only for capacitive
surfaces X < 0. However, X can be positive in (9) when the
term in brackets becomes negative. In this case, while the
surface at rest is inductive, the motion enables TE propaga-
tion. Interestingly, these waves can only have nonreciprocal
hyperbolic dispersion and, using Eq. (9), we find that these
modes are supported for velocities satisfying β > βth,TE =
[1 + (η0/2X)2]−1/2. For large surface inductance values, like
those examined in Fig. 1, i.e., far from resonance, this value
is close to 1, implying fast required speeds. However, this
requirement can be relaxed using lower inductance values,
for metasurfaces closer to resonance, enabling unique prop-
agation features of both qTE and qTM modes. The effective

boundary condition in (4) shows that for qTE propagation
the conduction and Lorentz currents are dominant compared
with the convection current, which defines the equivalent qTE
conductivity:

σ̃Etan + σ̃ (vẑ × μ0Hx )

=
(

γ σ (1 − βktz/k0) γ σβkty/k0

0 σγ −1

)
Etan. (10)

In Figure 2(a) we show the dispersion of qTE waves on
an inductive surface for increasing velocity, with X = η0/20,
yielding a threshold value of βth,TE � 0.1. As the velocity
increases the dispersion hyperbola become wider. Figure 2(b)
maps various propagation regimes for qTE and qTM modes
versus X,β. The black curves represent the threshold val-
ues βth,TE, βth,TM. For low velocities only anisotropic qTM
propagation is possible, but as the speed increases additional
regimes arise: high-inductance surfaces allow one-way hy-
perbolic qTM modes, whereas low-inductance surfaces allow
hyperbolic qTE modes. For high velocities, both hyperbolic
regimes are possible. Figure 2(c) shows the emission of a
magnetic 2D dipole m = mx̂ exciting a TE mode for β =
0.15 > βth,TE, and one-way efficient emission takes place.
Figure 2(d) shows qTM excitation in the elliptic regime,
yielding anisotropic nonreciprocal propagation. Figure 2(e)
shows qTM excitation in the hyperbolic regime for the same
surface at a faster speed; one-way hyperbolic emission is
visible, with enhanced emission rates and stronger spatial
localization. Figure 2(f) shows excitation of the surface in
Fig. 2(c) by a magnetic dipole, inducing one-way qTE hy-
perbolic surface waves. Both hyperbolic regimes display high
intensity of the excited waves in the directions parallel to
the hyperbola asymptotes, which leads to the expected light-
matter interaction enhancement, here combined with strong
nonreciprocal response.

Close examination reveals that qTE propagation over mov-
ing inductive surfaces arises from TE modes excited at neg-
ative frequencies in S’. Heuristically, Eq. (9) shows that in
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FIG. 3. Real and imaginary parts of the longitudinal wave num-
ber kz for propagation on a lossy impedance surface. The conductiv-
ity parameters chosen here are XR = 5η0 and XI = 0.1η0.

S’ TE modes are supported on inductive surfaces (X > 0) if
ω < 0. Negative frequencies in S’ can be Doppler shifted to
positive in S for sufficiently large velocities, allowing access
to these modes. Coupling of radiation processes with negative
frequency waves using motion was studied in [12,37].

V. EFFECT OF LOSSES

When losses are considered, we expect waves with dif-
ferent wave numbers to have different decay constants. To
incorporate losses in our model, we let the surface impedance
obtain a complex value: Zs = jX = −XI + jXR . In this
scenario, α, kt are also complex valued, α = αR + jαI , kt =
ktR + jktI , and for simplicity we assume ẑ propagation con-
sidering qTM propagation, and substituting the complex val-
ued parameters into the boundary condition in Eq. (4) we get

αR + jαI = 2γ (XR + jXI )(k0 − βktR − jβktI ). (11)

An example for the asymmetric attenuation is shown in
Fig. 3. We see that, as the speed of the surface increases, the
separation in the attenuation coefficients becomes larger, in

conjunction with the real parts of kz. This can be attributed
to the fact that larger real parts of the wave number imply
stronger confinement of the fields, which lead to enhanced
absorption, larger imaginary parts of kt , and asymmetric
propagation distances.

VI. CONCLUSIONS

We have shown that moving metasurfaces enable a unique
regime of nonreciprocal hyperbolic wave propagation, sup-
porting the insurgence of TM and TE surface modes coupled
over the same surface, which enable the directional emission
of localized electric and magnetic emitters over a surface with
strongly localized enhanced light-matter interactions. While
the required speeds may be impractical in some scenarios, one
may consider alternative systems to qualitatively demonstrate
some of these effects, such as rotating surfaces [14,15], or
space-time modulated surfaces that effectively mimic motion
[38–40]. We are currently exploring these opportunities.
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APPENDIX

To compactly define the electromagnetic field Lorentz
transformations we use matrix operators defined in [1], listed
here for the sake of completeness. The operator β represents

the β× operation:

β = β × I =

⎛
⎜⎝

0 −βz βy

βz 0 −βx

−βy βx 0

⎞
⎟⎠. (A1)

α is defined as

α = I + (γ − 1)
ββ

β2
(A2)

where I is the 3 × 3 unit matrix, and ββ is the external
product.
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