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Decomposing the field scattered by an object into vector spherical wave functions (VSWF) is a useful tool
when discussing its optical properties on more analytical grounds. Thus far, it was frequently required in the
decomposition that the scattered field is available on a spherical surface enclosing the scatterer. This requirement
is adapted to the spatial dependency of the VSWFs but is rather incompatible with many numerical solvers. To
mitigate this problem, we propose an orthogonal expression for the decomposition that holds for any surface that
encloses the scatterer, independently of its shape. We also show that the orthogonal relations remain unchanged
when the radiative VSWF used for the expansion of the scattered field are substituted by the regular VSWF used
for the expansion of the incident illumination as test functions. This is a key factor for the numerical stability of
our decomposition. As an example, we use a finite-element based solver to compute the multipole response of a
nanorod illuminated by a plane wave and study its convergence properties.
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I. INTRODUCTION

The vector spherical wave function (VSWF) decompo-
sition, or multipole expansion, is a useful tool to study
electromagnetic scattering phenomena. Vector spherical wave
functions are well known solutions to the time harmonic
Maxwell’s equations in homogeneous media [1,2], forming
a complete basis for the electromagnetic field. The field
scattered by an object immersed in a homogeneous medium
upon interacting with an incident field can be decomposed into
the radiative VSWFs N(3)

m,n(r) and M(3)
m,n(r) as

Escat(r) =
∞∑

n=1

n∑
m=−n

[
am,nN(3)

m,n(r) + bm,nM(3)
m,n(r)

]
. (1)

This decomposition is only valid in the region outside the
smallest sphere circumscribing the scatterer object [3–5]. The
elements of the basis correspond to the field created by a point
multipole with definite properties: n refers to the total angular
momentum and m to the angular momentum along a chosen
axis. N(3)

m,n(r) and M(3)
m,n(r) are multipolar fields with different

parity symmetry and their definition is shown in Appendix A.
They correspond to the electric field of electric multipoles
and the electric field of magnetic multipoles, respectively. The
complex amplitudes am,n and bm,n in the expansion express
then the contribution of the respective multipolar field to
the total scattered field. It is the purpose of the multipole
expansion to identify these amplitudes.

These amplitudes contain valuable information about the
interaction of light with the scatterer. In consequence, the
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decomposition is used in many streams of research. Prime ex-
amples would be the study of optical nanoantennas [6–10], the
study of meta-atoms and metamaterials [11–14], or the anal-
ysis of the interaction of scatterers with isolated molecules
[15–17]. Using the multipole expansion we can also construct
the T matrix of a scatterer that entirely expresses how an arbi-
trary incident field is scattered by the pertinent object [18,19].
Once the T matrix of different individual scatterers is known,
the interaction of light with a larger cluster of heterogeneous
particles can be solved using a multiple-scattering algorithm
[20,21].

For spherical particles, the multipole expansions can be
calculated analytically using Mie theory [22]. However, for
more complex structures, the use of numerical solvers is
needed in order to obtain the scattered field first and to
decompose it afterwards [23]. Among other methods, FEM
is specially suitable for the first task, as it can accurately
deal with structures possessing complex shapes. When the
scattered field [Escat(r)] produced by a particle under a certain
illumination has been calculated, the multipole coefficients
can be obtained thanks to the orthogonality relations of the
VSWFs

∫
S2

R
N(J )∗

m1,n1(r) · N(J )
m2,n2(r) dS∫

S2
R

∣∣N(J )
m1,n1(r)

∣∣2
dS

= δm1m2δn1n2, (2)

∫
S2

R
M(J )∗

m1,n1(r) · M(J )
m2,n2(r) dS∫

S2
R

∣∣M(J )
m1,n1(r)

∣∣2
dS

= δm1m2δn1n2, (3)

∫
S2

R

M(J )∗
m1,n1(r) · N(J )

m2,n2(r) dS = 0, (4)
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where the integrals are on the surface S2
R of a sphere of

radius R centered at the origin of coordinates. The above
expressions hold for the radiative VSWFs (J = 3), which
fulfill the radiation condition and can be used for decomposing
a scattered field, and for the regular VSWFs (J = 1), used
for example for expressing an illumination field in terms of
multipoles.

Therefore, coefficients am,n and bm,n in Eq. (1) can be
obtained by computing the integrals

am,n =
∫
S2

R
N(3)∗

m,n (r) · Escat(r) dS∫
S2

R

∣∣N(3)
m,n(r)

∣∣2
dS

, (5)

bm,n =
∫
S2

R
M(3)∗

m,n (r) · Escat(r) dS∫
S2

R

∣∣M(3)
m,n(r)

∣∣2
dS

. (6)

However, the fact that the domain of integration has to be
a perfect sphere has some drawbacks. First, the numerical
solution Escat(r) must be interpolated across the sphere in
order to perform the decompositions (5) and (6). This interpo-
lation produces accuracy losses and it is also computationally
expensive, considerably increasing the total computation time.

One possible solution to overcome these drawbacks is
to perform the expansion based on volume integrals of the
currents induced in the scatterer structures [12,24,25]. In this
work, we propose a different approach, using the orthogo-
nality property for VSWF extended to any closed surface.
In this way, any surface which encloses the scatterer can be
used to perform the decomposition, including the boundary
of the computational domain or the surface of the scatterer. It
is normally easier to implement fast and highly-accurate sur-
face integration methods over these natural boundaries of the
problem. Furthermore, most of the available FEM and FDTD
software have already efficient built-in implementations for
these integrals that we can profit from.

II. DECOMPOSITION OF THE SCATTERED FIELD OVER
A GENERAL SURFACE

We derive in the following an expression to decompose the
scattered field into VSWFs via an integration over a surface
with a nonconstrained shape. We assume that the scatterer
is localized in space and surrounded by a homogeneous,
isotropic, and lossless medium.

Let us denote by Escat(r) the field solution of our time-
harmonic scattering problem and by F(r) another field so-
lution of Maxwell’s equations. Under the above conditions,
Maxwell’s equations can be written as

∇ × ∇ × Escat(r) − k2Escat(r) = 0, (7)

∇ × ∇ × F(r) − k2F(r) = 0, (8)

with k being the wave number k = ω
√

με, μ and ε are the
magnetic permeability and the electric permittivity of the
homogeneous medium, respectively, and ω is the angular
frequency of the field.

FIG. 1. Illustration of the problem considered in this contribu-
tion. An object of arbitrary shape generates some scattered field
everywhere in the outer region. We consider the integration of
Eq. (10) in a volume V surrounding the scattered object. The volume
is delimited by two surface boundaries �1 and �2. Eventually, only
the integral across �1 is used to express the multipole coefficients.
The shape of this surface can be arbitrary.

We consider that both fields fulfill an outwards Silver-
Müller radiation condition [26]

lim
r→∞

[(
1√
μ

∇×{Escat, F}(r)

)
×r−|r|iω√

ε{Escat, F}(r)

]
= 0. (9)

We want to obtain a scalar product, which shows an orthogo-
nality relation similar to expressions (2) to (4) but featuring an
integral over a surface with a shape not restricted to a sphere.
In order to obtain this expression, we start by multiplying
Eq. (7) with the complex conjugate of the field F

F∗ · {∇ × (∇ × Escat )} − k2F∗ · Escat = 0. (10)

In this derivation we omit for brevity the explicit position
dependency (r) of the fields Escat, F, M(J )

m,n and N(J )
m,n but it

is implicitly assumed all the time.
Integrating Eq. (10) over a volumetric region V that sur-

rounds but does not contain any part of the scatterer (see
Fig. 1) we get∫

V

(F∗ · {∇ × (∇ × Escat )} − k2F∗ · Escat ) dV = 0. (11)

Applying two partial integrations over the integration volume

0 =
∫

�

{(∇ × Escat ) × F∗} · dS

+
∫

V

{(∇ × Escat ) · (∇ × F∗) − k2F∗ · Escat}dV

=
∫

�

{(∇ × Escat ) × F∗ + Escat × (∇ × F∗)} · dS

+
∫

V

(Escat · {∇ × (∇ × F∗)} − k2F∗ · Escat )dV (12)

and exploiting the fact that F fulfils Maxwell’s equations
[Eq. (8)]∫

V

(Escat · {∇ × (∇ × F∗)} − k2F∗ · Escat )dV

=
∫

V

({∇ × (∇ × F∗) − k2F∗} · Escat )dV = 0, (13)
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we get∫
�

{(∇ × Escat ) × F∗ − (∇ × F∗) × Escat} · dS = 0, (14)

where � is the boundary of the volume V .
Now we split the surface integral into the contribution of

an inner surface �1 and an outer surface �2 (see Fig. 1),

−
∫

�1

{(∇ × Escat ) × F∗ − (∇ × F∗) × Escat} · dS

+
∫

�2

{(∇ × Escat ) × F∗ − (∇ × F∗) × Escat} · dS

= I1 + I2 = 0. (15)

Integrals in the previous equation are defined to have dS
elements pointing inwards and outwards the volume V in �1

and �2, respectively, as seen in Fig. 1.
As we have not imposed any condition on �1 or �2, the

integral values must hold independently of the shape of the
surfaces. Since we want an expression that equals relations
(2)–(4), we will consider in the following the exterior surface
�2 to be a sphere of radius R (S2

R).
Now we will apply the circular shift invariance of the scalar

triple product to the terms of I2. The reason for this change
will be clear a few lines below. It reads as

I2 =
∫

S2
R

{(∇×Escat )×F∗}·dS−{(∇×F∗)×Escat}·dS

=
∫

S2
R

{dS×(∇×Escat )}·F∗−{dS×(∇×F∗)}·Escat. (16)

Since I2 = −I1, I2 must be independent of the radius R of
the sphere. We can assume it to be big enough for the far-
field approximation to hold. Using spherical coordinates, the
Silver-Müller radiation boundary condition given in Eq. (9)
reads

lim
R→∞

(∇ × {Escat, F}) × Rr̂ = + lim
R→∞

ikR{Escat, F}. (17)

By expressing the differential surface element of a sphere
in spherical coordinates,

dS = R2 sin θ dθ dφ r̂, (18)

we can formulate the Silver-Müller radiation condition as

lim
R→∞

(∇ × {Escat, F}) × dS = + lim
R→∞

ikdS {Escat, F}. (19)

Both fields Escat and F fulfill the outward radiation boundary
condition Eq. (9). F∗ fulfils the inward radiation boundary
condition, which is obtained changing the minus sign for a
plus sign in Eq. (9). We use Eq. (19) in Eq. (16) to get

lim
R→∞

I2 = − lim
R→∞

ik

∫
S2

R

(Escat · F∗ + F∗ · Escat ) dS. (20)

Note that the last expression holds only in the far field.

Finally, substituting F by M(3)
m,n or N(3)

m,n into Eq. (20), we
get from Eqs. (15) and (20)∫

�1

{
(∇ × Escat ) × {M, N}(3)∗

m,n

−(∇ × {M, N}(3)∗
m,n

) × Escat

}
· dS

= lim
R→∞

2ik

∫
S2

R

Escat · {M, N}(3)∗
m,n dS. (21)

In comparison with Eqs. (5) and (6), we see that the last
integral provides the coefficient of the decomposition of the
scattered field into the basis of VSWF times the norm of the
VSWF in the far field, i.e.,

2ik lim
R→∞

∫
S2

R

Escat · {M, N}(3)∗
m,n dS

= {a, b}m,n2ik lim
R→∞

∫
S2

R

∣∣{M, N}(3)
m,n

∣∣2
dS

= {a, b}m,n

2i

k
, (22)

where we have used that the integral of the norm of every
VSWF has a value of 1/k2 in the far field [cf. Ref. [2],
Eq. (C.152)]. We, therefore, conclude from Eqs. (21) and
(22) that we can decompose the scattered field into the vector
spherical wave functions as the integral over the boundary �1

{a, b}m,n = k

2i

∫
�1

{
(∇ × Escat ) × {M, N}(3)∗

m,n

− k{N, M}(3)∗
m,n × Escat

}
· dS, (23)

where we have used the well known properties [2] ∇ ×
M = kN and ∇ × N = kM to replace ∇ × {M, N}(3)

m,n by
k{N, M}(3)

m,n. We note that it is also possible to reach Eq. (23)
by starting from Lemma 6.38 of Ref. [27] and applying it to
Escat and the VSWF basis functions.

Expression (23) lets us implement the multipole expansion
in an easier way, without the need to perform any expensive
interpolation to a spherical domain. This is done by including
an explicit contribution of the rotational of the electric field
into the orthogonality expression, in contrast with Eqs. (5)
and (6).

Note that even if the expansion in Eq. (1) is only valid
outside of the smallest sphere circumscribing the scatterer,
there is no restriction in the above derivation regarding the
surface of integration provided it is outside of the interior
volume of the scatterer. It is even possible to apply Eq. (23)
on the surface of the scatterer, independently of its shape, as
we will later show in an example.

After implementing expression (23) into a FEM solver,
we observed large errors in higher order multipoles when
decomposing the fields caused by small scatterers. We found
that the reason for this numerical error are the singularities of
M(3)

m,n and N(3)
m,n at the origin of the coordinates. The numerical

error produced by the singular fields increases the closer the
integration surface is to the origin of the coordinates and the
higher the multipole order is. Furthermore, these singularities

045406-3



X. GARCIA SANTIAGO et al. PHYSICAL REVIEW B 99, 045406 (2019)

FIG. 2. Top: Decomposition of the scattered field (0.5 +
0.5i )M(3)

0,1 + 0.0277N(3)
3,3 into the multipoles M(3)

0,1, M(3)
−1,2, N(3)

3,3 and
M(3)

0,10 using expression (23). The integration surface consist of a cube
of length Lcube centered at the origin of coordinates. Bottom: Same
decomposition using expressions (24) and (25).

make the decomposition very sensitive to numerical noise,
amplifying the noise frequently present in the solutions of the
scattered fields computed using numerical solvers.

To analyze and to illustrate this problem, we artificially
generated a scattered field composed of the multipoles M(3)

0,1

and N(3)
3,3 and computed their analytical expansion. We chose

the amplitude of the higher order multipole such that there is a
strong near field with an amplitude of around 20 V/m at a dis-
tance of λ/10 away from the origin of coordinates. The actual
field considered was ((0.5 + 0.5i)M(3)

0,1 + 0.0277N(3)
3,3) V/m.

This field was then decomposed using a cubical surface
surrounding the origin of coordinates. The implementation of
expression (23) was done using a trapezoidal integration with
a regular grid of 40 000 points for each of the faces of the
cube. We then tried to decompose the scattered field into the
multipole contributions M(3)

0,1, M(3)
−1,2, N(3)

3,3, M(3)
0,10. The error

of the decomposition is shown in the top graph of Fig. 2 as
a function of the length of the cube edge. It can be seen that
for the amplitudes absent in the actual source field, the error
exponentially increases the closer the integration surface is to
the origin of coordinates. Since our final interest is to have
an efficient tool for the decomposition of the field obtained
from numerical solvers, it is important that the integration
surface can be close to the scatterer in order to reduce the
computational domain.

To mitigate the numerical stability problems, we need to
replace the basis functions M(3)

m,n and N(3)
m,n by some regu-

lar fields, which fulfill an orthogonal relation equivalent to
expression (21). The most natural solution are the regular
[2] vector spherical wave functions M(1)

m,n and N(1)
m,n. These

fields also fulfill Maxwell’s equations in homogeneous media
but not the Silver-Müller radiation condition, i.e., they are
frequently used to expand the incident field. In Appendix B
we demonstrate the following relations that allow to calculate
the amplitudes of the multipole moments as

am,n = −ik

∫
�1

{
(∇ × Escat ) × N(1)∗

m,n

− kM(1)∗
m,n × Escat

}
· dS, (24)

bm,n = −ik

∫
�1

{
(∇ × Escat ) × M(1)∗

m,n

− kN(1)∗
m,n × Escat

}
· dS. (25)

Note that am,n and bm,n are the coefficients of the expansion
of Escat into the radiative fields N(3)

m,n and M(3)
m,n, even though

N(1),∗
m,n and M(1),∗

m,n are used in the expressions. We note that
equations (24) and (25), when particularized to the boundary
of a scatterer, are equivalent to Eq. 5.175 of Ref. [2], derived
in the context of the extended boundary condition method for
computing the T matrix of simple homogeneous particles.

Unlike the spherical Hankel functions, the spherical Bessel
functions involved into the regular VSWF do have zeros for
some values of the spherical coordinate r . Note that this
fact does not affect the stability of the decomposition, as
expressions (24) and (25) are functions of both the electric and
magnetic field. Therefore, one of the terms of the integrand
will always be nonzero in the radial regions where the other
term vanishes.

Computing again the same decomposition with the new
expression, we got the results shown in the bottom graph
of Fig. 2: The problem with the exponentially increasing
error is solved with these new expressions. The remaining
existing errors are due to the discretization in the trapezoidal
integrations.

III. FINITE ELEMENT METHOD IMPLEMENTATION

We have implemented the derived expressions (24) and
(25) into the commercial finite element solver JCMsuite [28].
The surface integral is computed on the boundary of the
computational domain.

In order to test the implementation, we calculate the de-
composition of the scattered field generated by a sphere when
illuminated with a plane wave. The scattered field produced
by a homogeneous sphere is a very well known solution and
can be computed using the analytical expressions from Mie
theory [22]. In the top part of Fig. 3 we show the contribution
of the different multipoles to the spectral scattering cross
section of the sphere. The results were obtained with the
FEM implementation (lines) and with Mie theory (dots). In
the bottom part of the figure a convergence test of the FEM
solution is shown for an illumination wavelength of 450 nm.
The errors were calculated with respect to Mie theory. The
sphere was placed into the center of a cubic computational
domain. The cube has a side length of 1000 nm and the
decomposition was performed on its boundary.
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FIG. 3. Top: Spectrally resolved multipole decomposition of the
scattering cross section for a silver sphere illuminated with a linearly
polarized plane wave. The sphere has a radius of 112.5 nm. The
plane wave is propagating in the −z direction and the electric field
is polarized in the x direction. The dots correspond to the results
from Mie theory. Bottom: Convergence study of the multipolar
decomposition with respect to the average side length of the tetra-
hedra FEM discretization, hFEM. hFEM indicates the average side
length of the mesh elements discretizing the domain surrounding the
sphere. The average side length of the tetrahedra in the sphere equals
hFEM/nsphere, nsphere being the refractive index of the sphere. The
study has been done at a wavelength of 450 nm with FEM elements
of polynomial order p = 2. The error of the scattering cross section
for each multipole order is relative to the value of its cross section.

We can see that the results of the decomposition coincide
with the analytical results of Mie theory. The validity of the
method is also shown in the convergence study. The errors
follow a power law with respect to the side length of the
mesh elements, being higher for the multipoles with a lower
contribution to the total scattered field. We have included in
the convergence results the line αhp for a α value of 8e-4.
We can see from this curve that the FEM implementation of
the multipole decomposition follows a similar behavior as the
asymptotic FEM convergence (cf. Ref. [29] Sec. 5.7) for the
electromagnetic field values.

Finally, we compute the spectral multipole contribution
of the scattered field of a silver nanorod illuminated with a
linearly polarized plane wave. The nanorod is modelled as a
body of revolution with a major and minor semiaxis of 225 nm
and 37.5 nm, respectively. The schematic of the simulated
structure is shown in the inset of Fig. 4.

FIG. 4. Spectrally resolved multipole decomposition of the scat-
tering cross section for a silver nanorod. The nanorod is illuminated
with a plane wave propagating in the −z direction and a wavelength
of 450 nm. The incident electric field is linearly polarized in x. The
nanorod is modeled as a body of revolution with an elliptical shape
where the major axis is parallel to the x axis. The major and minor
semiaxis have a length of 225 and 37.5 nm, respectively. Lines:
decomposition performed over the boundary of the computational
domain. Dots: decomposition performed over the nanorod surface.

For this specific scatterer, the use of expressions (24) and
(25) leads to a reduction in the computational costs of around
70% with regards to Eqs. (5) and (6). This is because the
nanorod is four times longer in the X axis than in the Y and
Z axis. Therefore, the volume of the computational domain
needed to surround the nanorod can be approximately four
times smaller than if it had to contain a sphere surrounding the
scatterer. To be precise, the computational domain consisted
of a cuboid with side lengths of 562.5 nm, 300 nm, and
300 nm, respectively. The incident plane wave is propagating
in the −z direction, with an amplitude of 1 V/m and is
polarized in the x direction. The results are shown in Fig. 4.
To show that the decomposition is valid over any surface
surrounding the scatterer, we performed the decomposition
over the computational domain, represented by lines, and also
on the surface of the scatterer, represented by dots. It can be
clearly seen that the results are indistinguishable.

We can see how the resonance shifted to longer wave-
lengths compared with the sphere and how the scattered field
is mainly an electric dipolar field at these frequencies. In
Fig. 5 we compare the total scattered cross section calculated
based on the results of the multipole expansion and also with
the calculation of the integral of the time averaged scattered
energy flux 〈S〉

Cscat,total =
∫
S
〈S〉 · dS

2Z2|Ei |2 , (26)

where Z the characteristic impedance of the surrounding
medium and Ei the amplitude of the incident plane wave.

We can see that the results obtained from both methods
coincide. The total scattering cross section at the resonance
wavelength is 0.648 μm2. For the sphere, the resonance peak
of the total scattering cross section has a value of 0.27 μm2

at a wavelength of 364 nm and it has four mainly multipole
contributions. The geometrical cross sections are 0.027 μm2

and 0.039 μm2 for the nanorod and the sphere, respectively.
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FIG. 5. Comparison between the values of the total scattering
cross section obtained based on the integral of the scattering energy
flux and based on the results of the multipole expansion.

IV. CONCLUSIONS

We have proposed an orthonormal relation in order to
implement the multipole expansion of scattered fields by
integrals on generic surfaces. This is particularly suited for
use in combination with numerical solvers relying on methods
such as FDTD or FEM. The main advantages of this imple-
mentation are the convenience and a better tradeoff between
accuracy and computational costs, as no interpolations of the
scattered field needs to be computed. We have also shown
how to use the regular VSWF in order to decompose the
scattered field into the radiative VSWF. The use of regular
fields significantly improves the numerical stability of the
implementation. Finally, we have tested the implementation
using Mie theory and shown one example for a structure
which cannot be decomposed with analytical means.
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APPENDIX A: RADIATIVE AND REGULAR VSWF

In this work we use the below definition for the vector
spherical wave functions MJ

m,n(r) and NJ
m,n(r) in spherical

coordinates,

MJ
m,n(r) = Emn(0, iπmn(θ ),−τmn(θ ))ZJ

n (kr )eimφ, (A1)

NJ
m,n(r) = Emn

(
NJ

m,nr , N
J
m,nθ , N

J
m,nφ

)
eimφ (A2)

NJ
m,nr (r) = n(n + 1)Pnm(cos θ )

ZJ
n (kr )

kr
, (A3)

NJ
m,nθ (r) = τmn(θ )

−nZJ
n (kr ) + krZJ

n−1(kr )

kr
, (A4)

NJ
m,nφ (r) = iπmn(θ )

−nZJ
n (kr ) + krZJ

n−1(kr )

kr
, (A5)

with Emn being the normalization factor given by Eq. C.25 of
Ref. [2]

Emn =
√

(2n + 1)(n − m)!

4π (n + 1)(n + m)!
. (A6)

πmn and τmn functions are defined in terms of the associated
Legendre polynomials,

πmn(θ ) = m

sin θ
Pnm(cos θ ) (A7)

τmn(θ ) = n

tan θ
Pnm(cos θ ) − (n + m)

sin θ
Pn−1,m(cos θ ), (A8)

Pnm(θ ) = (−1)mP m
n = (1 − x2)m/2

2l l!

dl+m

dxl+m
(x2 − 1)l . (A9)

The superscript J indicates the radial dependence of
the VSWFs in terms of the Bessel functions Jn+0.5(x) and
Yn+0.5(x),

Z(1)
n (x) = jn(x) =

√
π

2x
Jn+0.5(x), (A10)

Z(2)
n (x) = yn(x) =

√
π

2x
Yn+0.5(x), (A11)

Z(3)
n (x) = jn(x) + iyn(x), (A12)

Z(4)
n (x) = jn(x) − iyn(x). (A13)

With the normalization factor given by Eq. (A6), the power
radiated by a scattered field decomposed into VSWF as given
in Eq. (1) can be calculated as

P = 1

2Zk2

∞∑
n=1

n∑
m=−n

(|am,n|2 + |bm,n|2), (A14)

Z being the characteristic impedance of the medium.

APPENDIX B: REPLACING RADIATIVE VSWF
BY REGULAR VSWF

In this Appendix, we show that substituting the radiative
VSWF {M, N}(3)

m,n by the regular VSWF {M, N}(1)
m,n as test

functions in expression (15) ends in a relation proportional to
Eq. (21). This new relation lets us express the decompositions
(5) and (6) as an integral over a general surface involving the
scattered field and the regular VSWF. In order to simplify the
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expressions, in this section we will just use now the VSWF
M(1)

m,n. The same procedure can be applied to the fields N(1)
m,n

giving equivalent results.
Let’s start from Eq. (16) by substituting F with M(1)

m,n,

I2 =
∫

S2
R

{dS × (∇ × Escat )} · M(1)∗
m,n

− {
dS × (∇ × M(1)∗

m,n

)} · Escat. (B1)

The regular VSWF M(1)
m,n can be decomposed into a combina-

tion of radiative M(3)
m,n and M(4)

m,n vector spherical wave func-
tions, fulfilling an outwards and inwards radiation condition,
respectively,

M(1)
m,n = M(3)

m,n + M(4)
m,n

2
, (B2)

lim
R→∞

(∇ × M(3)
m,n

) × Rr̂ = + lim
R→∞

ikRM(3)
m,n, (B3)

lim
R→∞

(∇ × M(4)
m,n

) × Rr̂ = − lim
R→∞

ikRM(4)
m,n. (B4)

By plugging Eq. (B2) into Eq. (B1) we get,

I2 =
∫

S2
R

{dS × (∇ × Escat )} · M(3)∗
m,n + M(4)∗

m,n

2

−
{

dS ×
(

∇ × M(3)∗
m,n + M(4)∗

m,n

2

)}
· Escat. (B5)

By applying now Silver-Müller radiation conditions (B3) and
(B4), we get

lim
R→∞

I2 = lim
R→∞

−ik

∫
S2

R

(
Escat · M(3)∗

m,n + M(4)∗
m,n

2

+ M(3)∗
m,n − M(4)∗

m,n

2
· Escat

)
dS

= lim
R→∞

−ik

∫
S2

R

Escat · M(3)∗
m,n dS. (B6)

Finally, using Eq. (15)∫
�1

{
(∇ × Escat ) × M(1)∗

m,n − (∇ × M(1)∗
m,n

) × Escat
} · dS

= lim
R→∞

ik

∫
S2

R

Escat · M(3)∗
m,n dS (B7)

and using the fact that ∇ × M(1)
m,n equals kN(1)

m,n, we obtain∫
�1

{
(∇ × Escat ) × M(1)∗

m,n − kN(1)∗
m,n × Escat

} · dS

= lim
R→∞

ik

∫
S2

R

Escat · M(3)∗
m,n dS. (B8)

An analogous procedure gives an equivalent relation for
fields N(1)

m,n,∫
�1

{
(∇ × Escat ) × N(1)∗

m,n − kM(1)∗
m,n × Escat

} · dS

= lim
R→∞

ik

∫
S2

R

Escat · N(3)∗
m,n dS. (B9)

These expressions are just the desired relations correspond-
ing to Eq. (21) but with the regular VSWF. They can be used
analogously to derive Eqs. (24) and (25) of the main paper.
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