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In recent years, there has been an increasing interest in nanomachines. Among them, current-driven ones
deserve special attention as quantum effects can play a significant role there. Examples of the latter are
the so-called adiabatic quantum motors. In this paper, we propose using Anderson’s localization to induce
nonequilibrium forces in adiabatic quantum motors. We study the nonequilibrium current-induced forces and
the maximum efficiency of these nanomotors in terms of their respective probability distribution functions.
Expressions for these distribution functions are obtained in two characteristic regimes: the steady-state and the
short-time regimes. Even though both regimes have distinctive expressions for their efficiencies, we find that,
under certain conditions, the probability distribution functions of their maximum efficiency are approximately
the same. Finally, we provide a simple relation to estimate the minimal disorder strength that should ensure
efficient nanomotors.
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I. INTRODUCTION

In the last decades, control and fabrication of nanoelec-
tromechanical systems have had a huge boost enabled by
the advances in our control over matter at the nanoscale and
stimulated by the applications they promise us [1,2]. For
example, they could be used for harvesting different energy
sources at the nanoscale, cooling nanodevices, or even for
building complex nanomachines [1–14]. Moreover, among all
the proposed mechanisms that can be used to control nanoma-
chines, the use of electric currents is particularly appealing
due to its compatibility with current technologies involved in
modern integrated circuits.

There are several interesting theoretical and experimental
examples in the literature of current-driven nanomachines
[3–5,11–14]. A remarkable proposal, which could take ad-
vantage of quantum effects at the nanoscale, is the so-called
adiabatic quantum motor [10,15–20]. This consists of a me-
chanical device, typically nanometric, capable of being moved
by a “wind” [21] of quantum particles. In the adiabatic quan-
tum motors, the quantum nature of the driving particles can be
exploited to boost the performance of such motors. This is the
case of, e.g., adiabatic quantum motors based on the Thouless
pump [10,15,17,22,23]. There, a mobile piece induces a peri-
odic potential on a conductor where the movement of the piece
translates into a displacement of the potential. The periodic
potential induces a gap in the dispersion relation of the elec-
trons. Carriers with energy within this gap cannot cross the
conductor and, thus, they suffer a backscattering process with
the consequent transfer of momentum to the mechanical piece.
Then, as only backscattered electrons contribute to the transfer
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of momentum, low transmittances are the key to the efficiency
of the Thouless adiabatic quantum motor. However, other
quantum effects can also reduce transmittances and increase
the efficiency of adiabatic quantum motors.

For long conductive wires, impurities or defects are com-
monly present in experimental samples, inducing disorder in
the potential energy perceived by the propagating electrons.
For coherence lengths large enough, Anderson’s localization
of the electrons’ wave functions arises. While localized states
are generally taken as a drawback for quantum transport,1

for adiabatic quantum motors they can turn into a welcomed
feature, if they are caused by impurities in the movable part
of the device as we will see. In that case, the exponentially
reduced transmittances induced by localization can translate
into an increased efficiency of the nanomotors.2

In this paper, we assess the possibility of using Ander-
son’s localization to induce nonequilibrium forces in adiabatic
quantum motors. We study this kind of device, which we
call Anderson adiabatic quantum motor (AAQM), in terms
of probability distribution functions of their properties, dis-
cussing the conditions that would warrant their proper func-
tioning.

The work is organized as follows. In Sec. II, we derive the
general equations of nonequilibrium current-induced forces
(CIFs) for the case of nanodevices where there is a shift of
the potential energy sensed by the electrons. We derive the
expressions of the CIFs by using a scattering-matrix approach

1It has been shown that localization can improve charge pumping,
though. See, for example, Refs. [24,25].

2While this paper was under the reviewing process, we found a
work with a related idea, but about the possibility of using many-
body-localization to make an engine [26].
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FIG. 1. (a), (b) Examples of AAQMs. Panel (a) stands for a
conductive wire coiled around a rotating piece with randomly placed
charges. Panel (b) represents a multiwall nanotube where the inner
nanotube is longer and the outer one has random impurities. The
outer nanotube is supposed to be free to move along the guide given
by the inner nanotube. Panel (c) schematizes the changes of the
potential energy (characterized by a and �E) sensed by the electrons
inside the conductive wire of example (a) or the inner nanotube of
example (b). There, a displacement of the potential by δx produces a
phase change of 2kδx on the reflection coefficient.

but also from intuitive arguments based on momentum con-
servation. In Sec. III, we evaluate the CIFs for the particular
case of quasiunidimensional disordered potentials by means
of the Anderson’s model of disorder. We also compare the
theoretical results of CIFs with numerical simulations. In
Sec. IV, we discuss the efficiency of AAQMs distinguishing
two dynamical regimes of interest: the short-time and the
steady-state regimes (Secs. IV A and IV B, respectively). We
derive expressions for the probability distribution function of
the optimal efficiency of the nanomotors. We also identify the
regime that should ensure that most of the AAQMs will be
efficient. Finally, in Sec. V, we summarize our main results
and discuss the possible extensions and consequences of them.

II. CURRENT-INDUCED FORCES

In the present paper, we deal with devices like those
depicted in Fig. 1. There, the flow of electrons, induced by
a voltage bias between two reservoirs, moves a rotating piece
[the rotor in Fig. 1(a)] or push an artifact along a track [the
shuttle in Fig. 1(b)]. The physical reason why those nano-
electromechanical devices work can be readily understood in
terms of linear momentum conservation. Indeed, the mathe-
matical expressions for the current-induced forces (CIFs) can
be derived intuitively solely based on that.

For simplicity, we will not consider the electron spin and
we will neglect all equilibrium CIFs, e.g., those forces due to
scattering at the system-lead boundaries [10]. Let us take the
case of the shuttle depicted in Fig. 1(b). For the rotor, Fig. 1(a),
the following arguments will remain since the potential sensed
by the electrons changes with θ (the angle that sets the

position of the rotor) in almost the same way as how the
potential in the shuttle changes with x (the coordinate that
sets the position of the shuttle). See Appendix B. In Fig. 1(b),
the presence of the shuttle perturbs the potential sensed by
the electrons moving along the wire yielding a Hamiltonian
Ĥe(x). The dependence of Ĥe with the relative position of the
moving piece x results from the displacement of the potential.
The net force produced by the current comes from the inter-
action of the electrons with this potential. Electrons injected
from a reservoir α can be reflected with probability Rα (ε).
Due to linear momentum conservation, the electrons reflected
transfer a momentum �pα to the shuttle. The number of
electrons per unit time coming from a channel α with energy
between ε and dε is

(fαNαdε/2)vα, (1)

where the first quantity in parenthesis is the number of elec-
trons per unit length moving toward the system and vα (ε)
is the velocity of the carriers. The function fα (ε) is the
occupation probability, Nα (ε) is the density of states per unit
length, and the factor (1/2) comes from counting only the
electrons traveling in one of the two possible directions. Now,
the net force sums contributions of electrons coming from
all reservoirs and possible energies (integrating over ε). The
result is

Fx =
∑

α

∫
fα (ε)

Nα (ε)

2
vα (ε)Rα (ε)�pα (ε)dε. (2)

Noticing that the density of states and the group velocity
compensates precisely Nα ≡ 2/(hvα ), yields the simpler form

Fx =
∑

α

∫
1

h
fα (ε)Rα (ε)�pα (ε)dε, (3)

where h is the Planck’s constant. Similar expressions have
been derived using heuristic or semiclassical arguments
[5,27,28]. In the following, we will arrive at the same expres-
sion through formal quantum arguments.

If the moving piece of a nanodevice is large enough, it is
usually a good approximation to treat the system under the
nonequilibrium Born-Oppenheimer approximation [29,30] or
Ehrenfest approximation [31–33]. In these, the dynamics of
the electronic and mechanical degrees of freedom are well
separated in time and the mechanical degrees of freedom
can be treated classically. The dynamics of the mechanical
nanodevice is governed by the mean value of the CIFs exerted
by the quantum particles over the classical degrees of freedom
�x. The expectation value of the force operator Fx is given by

Fx = −
〈

∂Ĥe

∂x

〉
= tr

[
ih̄

∂He

∂x
G<(t, t )

]
, (4)

where tr[•] is the trace, Ĥe is the electronic Hamiltonian,
and G<(t, t ) is the lesser Green’s function in the Keldysh-
Kadanoff-Baym formalism [34,35], which, evaluated at equal
times, is proportional to the density matrix. The above expres-
sion can be handled to be fully written in term of the scattering
matrix S [29,30,36,37], resulting in

Fx =
∑

α

∫
dε

2π i
fα (ε)

{
S† ∂S

∂x

}
αα

. (5)
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For one-dimensional systems, the scattering matrix of spinless
noninteracting particles is a 2 × 2 matrix. The most general
unitary scattering matrix of this type can always be written as

S =
(

r t ′
t r ′

)
= eiχ

(
eiθ cos β ie−iφ sin β

ieiφ sin β e−iθ cos β

)
, (6)

where r and t are, respectively, the reflection and transmission
amplitude coefficients; χ ∈ [0, π ) is a global arbitrary phase
that depends on the choice of the origin for the two channels;
θ ∈ [0, 2π ) varies when the scatterer is shifted; β ∈ [0, π/2]
determines the module of reflection and transmission coeffi-
cients; and φ ∈ [0, 2π ) only becomes relevant for quantum
pumping [38] (or CIFs) under the presence of a vector poten-
tial varying with x. See Ref. [39] for a deeper discussion.

In this paper, we are only considering systems without
magnetic fields (tLR = tRL ⇒ φ = 0). Then, the quantity
within braces in Eq. (5) results in

{S†∂xS}LL/RR = i(∂xχ ) ± i(∂xθ )R, (7)

where we used S†S = I , and R = cos2 β. The equilibrium
force F eq [defined for the average Fermi energy f0 =
(fL + fR )/2], and the nonequilibrium force Fne (where F =
F eq + F ne) result in [10]

F eq =
∫

dε

π
f0(∂xχ ),

F ne =
∫

dε

2π
(∂xθ )R(fL − fR ). (8)

Now using dθ = 2kdx = 2krRdϕ, ±2h̄k = �pL/R , and ne-
glecting equilibrium forces, one arrives at Eq. (3). As dis-
cussed in Ref. [39] Sec. 2.3, a change in χ is related to
a variation of the occupation of the system. Therefore, the
interpretation of the forces acting on the analyzed systems is
the following: Equilibrium forces come from changes in the
occupation of the system, while nonequilibrium forces come
from momentum conservation of the scattered electrons. As
mentioned before, for simplicity we will neglect equilibrium
forces in the treatments of both the rotor and the shuttle.3

For a small bias voltage and low temperatures, we can
simplify even further Eq. (3), yielding

F = (1 − T )
kF

π
δμ, (9)

where δμ = μL − μR , with μL and μR being the left and
right chemical potentials of the reservoirs respectively, and
kF = k(εF ) is evaluated at the Fermi energy εF . An average
value of T can also be used in Eq. (9) if transmittances varies
significantly in the energy range between μL and μR .

The total pumped charge Q associated to a displacement
L of the shuttle or the rotor can be obtained by using
the Onsager’s relation between the pumped current and the

3As in the case of the Thouless motor [10], in the rotor, weak
potentials and the smoothening of the system’s edges make F eq

small as compared with F neq. For the shuttle, F eq comes from
imperfections of the device, which we are neglecting in the present
paper.

nonequilibrium part of the CIFs [10,15,16,19,20,40]:

∂F

∂ (δμ)

∣∣∣∣
eq

= ∂I

∂ẋ

∣∣∣∣
eq

, (10)

where I is the current. Multiplying both sides of Eq. (10)
by δμ and integrating over the trajectory of the system (the
integration

∫
dx is not necessarily carried out over the period

of a cyclic motion) results in

W − W eq = (Q/e)δμ, (11)

Here, e is the electron’s charge, W is the total work done
by the CIFs, and W eq = ∫

F eqdx. F eq is the equilibrium
component of F , i.e., F ≈ F eq + ∂μFδμ in the limit of small
voltages. The total charge pumped by the motion of the
system, Q, can be calculated by using Eq. (11) and assuming
F eq ≈ 0, giving

Q = e(1 − 〈T 〉x )
LkF

π
, (12)

where 〈T 〉x is the average value of T along the trajectory,
〈T 〉x = ∫ L

0 T dx/L. Note, that, for the case of the shuttle, T

does not change during the trajectory (〈T 〉x and T are the
same), but for the rotor, there can be differences. This will
affect the probability distribution function of T and 〈T 〉x ,
P (T ) and P (〈T 〉x ) respectively. We will address this point
later in Sec. IV B and in Appendix C. Similar expressions to
Eq. (12) have been previously reported in literature [39,41].
Notice that in Eqs. (9) and (12), the particularities of the
potential profile enters only through the transmittance. Thus,
the expressions are quite general.

From Eqs. (3) and (9), it results evident that total reflection
of electrons is crucial to maximize the force. In the Thouless
adiabatic quantum motor studied in Refs. [10,15,17,22,23] the
high performance of the proposed adiabatic quantum motor is
a consequence of a reflection coefficient exponentially close
to 1, as result from a precise periodicity of the potential.
Disordered unidimensional systems also present almost zero
transmittance, with the advantage that much less control is
required for the realization of the device. However, they
have the disadvantage that they are random by nature. In the
following, we will study how the stochastic feature of nano-
electromechanical devices based on Anderson’s localization
affects their performance.

III. CURRENT-INDUCED FORCES IN
THE ANDERSON’S MODEL

Let us consider the case of electrons that move along a
wire of length L but whose potential energy is stochastic.
The aleatory nature of this potential can be due, e.g., to
the proximity of randomly placed impurities on the surface
of the rotor or the shuttle. As we know from the pioneer
works of P. W. Anderson [42], the disorder in unidimensional
or quasi-unidimensional systems causes the localization of
eigenstates. This quantum phenomenon can be understood as
a breakdown of extended states where an eigenfunction of
the system, ψ , can be roughly described by an exponential
function as ψ (x) ∝ e−|x−xc |/ξ for x → ±∞, where ξ is the
localization length and xc is a localization center [43–45].
The transmittance T of such systems connected to reservoirs
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should depend exponentially on the ratio between L and ξ as

T ∼ exp(−2/̃ξ ), (13)

where ξ̃ is the reduced localization length, ξ̃ = ξ/L.
For systems in a strong localized regime, 1/̃ξ � 1, the

factor (1 − T ) in Eq. (9) can be taken as 1. In that case,
the nonequilibrium CIFs take their maximum value, F =
kF δμ/π . However, a complete description of the properties
of these stochastic systems should be given in terms of
probability distribution functions. In our case, first we will
be interested in describing P (̃ξ ), the probability distribution
function of the reduced localization length. This function
depends, in principle, on the model used to describe the
disorder.

The most extensively studied model of disordered one
dimensional systems is the Anderson’s model. There, the
wire is described by a tight-binding chain of length L =
Na, where a is the lattice constant and N the number of sites.
The Hamiltonian in this case is

Ĥ =
N∑

n=1

{Enĉ
†
nĉn − V [ĉ†nĉn−1 + ĉ

†
n−1ĉn]}, (14)

where ĉ
†
n and ĉn are the creation and annihilation operators

at site n, and V is the hopping parameter. The disorder is
modeled by random site’s energies, En, which are chosen
from a uniform random distribution with |En| � �E

2 . At its
edges, the wire is connected to leads. This adds a self-energy
�(ε) at the local energy E1(N ) of the effective Hamiltonian
[10,46]:

Ĥeff = Ĥ + �(ε)[ĉ†1ĉ1 + ĉ
†
N ĉN ], (15)

where

�(ε) = lim
η→0+

ε + iη

2
− sgn(ε)

√(
ε + iη

2

)2

− V 2. (16)

In this model, the parameter a can be interpreted as the
typical length of the defects while �E accounts for the width
of the distribution function of their energy. If required, the
hopping parameter V can be obtained from the discretization
of the Schrödinger equation in the continuous, V = h̄2/2mea

2

where me is the mass of the electron [46].
Within the Anderson’s model, there are different regimes

of disorder. In this paper, we will focus only on the weak
disorder regime, i.e., �E � V . There, the probability distri-
bution function of ξ̃ is well described by [45]

P (̃ξ |̃ξ0) ∝ 1

ξ̃
· exp

(
− (1/̃ξ − 1/̃ξ0)2

2/̃ξ0

)
, (17)

where P (̃ξ |̃ξ0) depends parametrically on ξ̃0 and the en-
ergy of the electrons ε should accomplish |ε| < 2V .4 The
dimensionless parameter ξ̃0 accounts for the disorder-relevant

4In all the figures of this paper, we used Eq. (17) to calculate the
probability distribution function of the properties of interest. For
other types of disorder, alternative expressions for Eq. (17) may hold.
However, the expressions for the probability distribution functions
of the force [Eq. (19)] and the efficiency [Eq. (31)] are written in

P
( ξ
|ξ 0

)

1/ξ

1/ξ0 = 43

1/ξ0 = 43

1/ξ0 = 24

1/ξ0 = 24

FIG. 2. Probability distribution function P (̃ξ |̃ξ0 ) of the reduced
localization length, ξ̃ = ξ/L, calculated analytically (Analyt.) from
Eq. (17) and numerically (Num.) from the Anderson’s model with
ε/V = −1.9, L = 104a, and �E/V equal to 0.15 and 0.20, for
1/ξ0 = 24 and 1/ξ0 = 43, respectively.

microscopic details of the system5 and can be obtained from
[45]

1

ξ̃0
=

(
L

a

)
(�E/V )2

96
(
1 − (

ε
2V

)2) = L�E2a

24v2
F h̄2 , (18)

where vF is the Fermi velocity.
In Fig. 2, we compare the probability distribution function

given by Eqs. (17) and (18) with that obtained from the his-
tograms of numerical calculations. We show P (̃ξ |̃ξ0) for two
different disorder strengths, �E/V = 0.15 and �E/V =
0.2, which gives 1/̃ξ0 = 24 and 1/̃ξ0 = 43, respectively. Only
small deviations were found for the conditions explored. The
value of ξ for each numerical calculation with random site
energies was obtained from the direct inversion of Eq. (13),
1/ξ = − limL→∞ ln (T/(2L)). The transmittances were cal-
culated by using the Fisher and Lee formula and the Green’s
functions were evaluated from the effective tight-binding
Hamiltonian shown in Eq. (15). See Refs. [10,46] for more
details about this type of calculation.

Results shown above confirm that we can describe the
probability distribution function of the localization length by a
closed formula. Given P (̃ξ |̃ξ0), it is not difficult to obtain the
probability distribution function of the transmittance P (T |̃ξ0)
by using Eq. (13) and resorting to the transformation of
stochastic variables, P (T |̃ξ0) = P (̃ξ |̃ξ0)|dξ̃/dT | [47]. The
connection between T and F is given by Eq. (9). Thus,
it should also be easy to obtain the probability distribution
function of the nonequilibrium CIFs P (F ). However, as we
are interested in the regime where L � ξ , it is expected that
the CIF is always very close to its maximum value.

In Fig. 3, we compare the maximum value of the nonequi-
librium CIF (red dashed line), with T = 0, and that obtained

such a way that they are independent of the particular form of the
probability distribution function of ξ .

5The ensemble described by the probability distribution functions
may consist of different realizations of the system but may also come
from evaluating the same system at different Fermi energies, which
should involve distinct sets of localized states.
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0

0.1

0.2
F

(ε − 2V )/V

δμkF /π
F

1
/
ξ 0

(ε − 2V )/V

FIG. 3. CIFs in arbitrary units, F , calculated numerical for the
Anderson’s model, Eqs. (14)–(16), as function of the Fermi energy ε.
The value (ε − 2V )/V = 0 corresponds to the lower band-edge
given by Eq. (16) (close to this region the system is expected to
behave as a continuum). The red dashed line corresponds to the
theoretical maximum value of nonequilibrium CIFs, F = δμkF /π .
Grey solid lines show the force for different disorder realizations.
The black solid line gives the average of the grey solid lines for
N = 20 realizations. In the calculations, we used L = 104a and
�E/V = 0.2.

from the tight-binding calculations. The numerical values of
the CIFs were obtained by using Eq. (5) on the geometry
given by Fig. 1(a). The systems consisted of 10 000 sites with
random values of sites energies but with a linear smoothing
over the first and last 50 sites. The smoothing function,
which always makes zero the energy of the first and last
sites of the chain, was used to emulate the effect of the
cable coming into contact with the rotor, see Appendix B.
Periodic conditions in the sites energies were imposed for
the explicit calculation of the derivatives of the scattering
matrix, [∂xSα,β ≈ Sα,β (x + δx) − Sα,β (x − δx)]/(2δx). The
scattering matrices were obtained from the Green functions of
the tight-binding Hamiltonian as shown in Refs. [6,10,16,46].

As can be seen in Fig. 3, Eq. (9) (with T ≈ 0) is in excel-
lent agreement with the numerical simulations, especially for
energies close to the band-edge. This confirms the validity of
our model. This figure also shows that there is no real need
for a P (F |̃ξ0) under the conditions of interest, ξ̃0 � 1, where
most of the realizations give ξ � L. Note that at low energies
there are some points where the tight-binding CIFs are larger
than the theoretical maximum value. This is only due to the
fact that in deriving Eq. (3) we neglected the reflections due to
the edge of the system. These reflections cause the appearance
of small equilibrium forces that will contribute to the total
force calculated numerically [10]. Just for completeness, we
give the formula for the probability distribution function of
the CIFs:

P (F̃ |̃ξ0) = P (̃ξ (F̃ )|̃ξ0) · ξ̃ 2(F̃ )

1 − F̃
, (19)

where we have defined the reduced CIF F̃ = F/(δμLkF /2π ),
and ξ̃ (F̃ ) = −1/ ln (1 − F̃ ).

The fact that nonequilibrium CIFs can be well approxi-
mated by its maximum value suggests that the efficiency η

of the nanoelectromechanical devices build from them will

always be maximum, i.e., η ≈ 1. However, this naive ap-
proach fails when we include in the analysis the energy
dissipated by the friction and the period of the movement. In
the next section, we will see that even when we approximate F

by its maximum value, the probability distribution function of
P (η) shows a nontrivial dependence on the system parameters
and the type of devices one is dealing with.

IV. EFFICIENCY

The performance of a nanomachine can be evaluated
through its thermodynamic efficiency η = P out/P in, given
by the ratio between the output power P out and the total
incoming power P in. The former, P out, is the difference
between the power produced by the CIFs, W/τ , and the power
dissipated by friction,

∫ τ

0 γ ẋ2dt/τ , where W = ∫
Fdx, γ is

the friction coefficient, and τ is the period of the rotor or the
time during which the shuttle is being moved. The incoming
power P in is the current times the voltage, but the current
has two contributions, the bias-dependent current I bias and the
pumped current I pump. At low voltages and temperatures, the
bias-dependent current is given by I bias(x) = (e/h)T (x)δμL,
while the pumped current is given by I pump = Q/τ . Then, the
efficiency can be written as

η = W/τ − ∫ τ

0 γ ẋ2dt/τ

W/τ + 〈T 〉t
h

δμ2
, (20)

where we have used Eq. (11), F eq ≈ 0, and 〈T 〉t = ∫ τ

0 T dt/τ .
The efficiency depends on the dynamics of the movable piece.
However, as we will show in the next subsections, it is possi-
ble to obtain closed formulas for the probability distribution
function of the maximum (or optimal) efficiency reached with
a given set of parameters.

In particular, we will assume negligible equilibrium forces,
a constant friction coefficient, and insignificant stochastic
forces. The latter implies small temperatures and/or large
masses of the rotor or the shuttle, see Ref. [10]. Let us take the
CIFs as constant in a limit of small temperatures and voltages.
Then, the equation of motion of the system during a given
time interval t ∈ [0, τ ] is

F total = mẍ − γ ẋ, (21)

where m is the mass of the shuttle, ẋ is the velocity, and
ẍ the acceleration (for the rotor just replace the mass by
a moment of inertia and the force by a torque). The total
force is F total = F − F load, i.e., the difference between the
CIF F and the force produced by a load F load. This F load

can have different functional forms. For example, it can be
proportional to a velocity, in which case it can be assimilated
within an effective friction coefficient. But it can also be the
force needed to break or form a molecular bond, or moved
the system against an electric field. In any case, it can be
treated as a correction to an effective voltage bias, possibly an
x-dependent one [10]. It all depends on the case being studied.
For the present purposes, we will consider F load = 0, i.e., its
effect is already included in γ ẋ, or in an effective voltage bias.
Under these conditions, Eq. (21) results in a simple first-order
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differential equation yielding

ẋ(t ) = F

γ

(
1 − e− γ

m
t
)
, (22)

where we have set ẋ(0) = 0 and x(0) = 0 for convenience.
In the following subsections, we will study two differ-

ent dynamical regimes, the short-time and the steady-state
regimes. For an adiabatic quantum motor like that shown in
Fig. 1(a), one is usually interested in steady-state conditions
where the energy dissipated by the friction and the load is
exactly compensated by the input energy and then x(t ) = x

(t + τ ). On the other hand, for the shuttle shown in Fig. 1(b),
the system is expected to be far from the mentioned com-
pensation condition and one is interested in the short-time
regime. In this sense, the examples shown in Fig. 1 are
complementaries.

A. The shuttle in the short-time regime

Unlike the case of the rotor, the movement of the shuttle
is not cyclic but is being driven through a linear and finite
region, see scheme shown in Fig. 1(b) For simplicity, we will
assume that equilibrium forces are negligible and the friction
coefficient is constant. The efficiency will depend on the
specific movement followed by the shuttle. However, just to
gain some insight into its physics we will consider that the
shuttle is at rest at t = 0. Then, a constant voltage bias δμ/e

is applied during a time τ , producing a constant CIF, F . Under
these conditions, the dynamics of the shuttle can be described
by Eq. (22).

The efficiency is given by Eq. (20), where the total work
of the CIFs is now W = Fx(τ ). If the total length of the
guide along which the shuttle is being moved is small and
the friction coefficient is also small, the short-time regime
holds, i.e., τ � m/γ . Then, the movement of the shuttle can
be described by x(t ) ≈ F/(2m)t2 and the power dissipated by
friction results in

∫ τ

0 γ ẋ2dt/τ ≈ 2
3

γ

m
W . Using this, defining

the dimensionless time τ̃ = γ τ/m, and using Eq. (11) to write
(Q/e)δμ/τ = W/τ , where the CIFs are given by Eq. (9), one
can write the efficiency in the limit τ � m/γ as

η = 1 − 2
3 τ̃

1 + 2
ντ̃

. (23)

Here, we have defined an additional dimensionless quantity,
ν = Q2

x2(τ )γ T
h
e2 . Noticing that the x(τ ) factor should be used

instead of L in Eq. (12) and that T is independent of x, allow
us to write ν as

ν = h

γ

(1 − T )2

T

(
kF

π

)2

. (24)

For a given disorder and Fermi energy, the value of ν

is fixed, as it depends only on intrinsic properties of the
system. However, it could still be theoretically possible to
control variables such as the voltage bias or the load to
manipulate τ . Then, it is interesting to study the maximum
value of η accessible within a given device. One can check
that, according to Eq. (23), the value of τ̃ that maximizes η is

τop = (1/ν) · [−2 + √
3ν + 4], (25)

where the subscript op stands for optimal. Inserting Eq. (25)
into Eq. (23) gives

ηop = 1 − 2
3ν

(−2 + √
3ν + 4)

1 + 2
−2+√

3ν+4

, (26)

which is the maximum value of the efficiency in a device
characterized by a given ν in the limit τ � m/γ .

As shown by Eqs. (24) and (26), η not only depends
on T but on a combination of factors, given by ν. One
consequence is that having a small value of T , which ensures
F ≈ kF δμL/π , not necessarily implies values of η close to
one. The difference in the behavior of η and F for small
T is worsened by the nonlinear dependence of η on the
transmittance. Therefore, it is possible to have an ensemble
of nanomotors where almost all of them present CIFs close
to the maximum value, but with low efficiencies. This is why
the probability distribution function of η may be relevant even
when most of the nanomotors have ξ � L.

We can obtain the probability distribution function of the
optimal efficiency P (ηop|ν0) by resorting to the stochastic-
variables transformation theorem [47],

P (ηop|ν0) = P (̃ξ (ηop)|̃ξ0(ν0))

∣∣∣∣ d̃ξ

dT
· dT

dν
· dν

dηop

∣∣∣∣. (27)

The first two derivatives in Eq. (27) can be obtained from
Eqs. (13) and (24), giving

d̃ξ

dT
= ξ̃ 2

2T
and

dT

dν
= −T

ν
. (28)

Note that we used 1 − T ≈ 1 for the second inverse function
as we are interested in the regime ξ̃ � 1. To obtain dν

dηop
, we

need the inverse of Eq. (26), which is

ν = 16

3

ηop

(1 − ηop)2
. (29)

Then, the last derivative needed in Eq. (27) is

dν

dηop
= ν

ηop
· 1 + ηop

(1 − ηop)
. (30)

As shown by Eq. (19), once one works with the reduced CIF,
F̃ , the probability distribution function of the CIFs is con-
trolled by only one parameter, ξ̃0. Regretfully, the probability
distribution function of ηop cannot be written only in terms of
ξ̃0, as it truly depends on other parameters, namely the friction
coefficient γ and kF . However, this issue can be solved by
defining T0 as the value of T obtained by replacing ξ by ξ0 in
Eq. (13), and then ν0 as the value of ν obtained by replacing
T by T0 in Eq. (24) (with kF and γ fixed). Then, one can
use ν0 as the single parameter that controls the probability
distribution function of ηop, P (ηop|ν0). Using Eqs. (27)–(30),
one obtains

P (ηop|ν0) = P (̃ξ |̃ξ0)

∣∣∣∣ dξ̃

dηop

∣∣∣∣,
= P (̃ξ |̃ξ0)

(
ξ̃ 2

2

1 + ηop

ηop(1 − ηop)

)
. (31)

where ξ̃ ≡ ξ̃ (ηop) and ξ̃0 ≡ ξ̃0(ν0). The explicit dependence
of ξ̃ with ηop can be obtained by combining Eqs. (29), (24) (in

045403-6



NONEQUILIBRIUM CURRENT-INDUCED FORCES CAUSED … PHYSICAL REVIEW B 99, 045403 (2019)

100

102

0 0.5 1

P
(η

o
p
|ν 0

)

ηop

(b)

0

1(c)
ν0 = 105

0

1

P
ro

ba
bi

lit
y

ν0 = 1

0

1

0 0.5 1
ηop

ν0 = 10−5

(a)(a)(a)(a)

ν0 = 105

ν0 = 1.0
ν0 = 10−5

0 0.5 1
ηop

10−5

105

1010

ν 0

0.2

0.6

1

P (ηop|ν0)

0 0.5 1
ηop

10−5

105

1010

ν 0

0.2

0.6

1

P (ηop|ν0)

0 0.5 1
ηop

10−5

105

1010

ν 0

0.2

0.6

1

P (ηop|ν0)

0 0.5 1
ηop

10−5

105

1010

ν 0

0.2

0.6

1

P (ηop|ν0)

1.01.01.01.0

FIG. 4. (a) Probability distribution function of the optimal effi-
ciency P (ηop|ν0 ) as function of the optimal efficiency ηop and the
parameter ν0 [see discussion above Eq. (32)]. (b) Horizontal cuts of
panel (a). (c) Probability of achieving a given interval of optimum
efficiency, between ηop and ηop + δηop (δηop = 0.1).

the limit T � 1), and (13):

ξ̃ = 2

[
ln

(
16γπ2

3hk2
F

ηop

(1 − ηop)2

)]−1

. (32)

In Fig. 4(a), we plot the probability distribution function
of the optimal efficiency P (ηop|ν0) (in colors), as function of
ηop and ν0. We can see that the most probable efficiencies
gather around ηop = 0 and ηop = 1 with a clear dependence
on ν0. For small values of ν0 (ν0 � 1), almost all nanomotors
are inefficients, while for large ones (ν0 � 1), almost all
nanomotors are highly efficient. This can be better appreciated
in Figs. 4(b) and 4(c). There is no clear cut between these
two regimes but according to Fig. 4 the region of intermediate
behavior is around ν0 ≈ 1. Equations (13), (18), and (24),
together with ν0 > 1, allow us to write the condition for
the minimum disorder strength needed to ensure efficient
nanomotors:

�E2a > 12
v2

F h̄2

L
ln

[
γ

h

(
π

kF

)2
]
. (33)

In Appendix A, we discuss the feasibility of AAQMs based
on the above equation.

B. The rotor in the steady-state regime

Once the rotor reaches the steady-state regime, the terminal
velocity ẋ can be approximated by L/τ , where L is the

rotor’s perimeter here. Then, the power dissipated by friction
becomes

∫ τ

0 γ ẋ2dt/τ � 〈γ 〉L2/τ 2, where 〈γ 〉 = ∫ τ

0 γ dt/τ .
As discussed in Refs. [10,20], the above approximations will
be accurate when the average kinetic energy of the system
at steady- state is much larger than the difference between
the maximum and minimum of the potential energy given by
the equilibrium forces. This case holds for large moments of
inertia, large voltages, or small friction coefficients. Stochastic
forces can also take us away from the approximation ẋ ≈ L/τ

but their effect on the dynamics diminishes when the moment
of inertia increases or when the temperature decreases. In
summary, the expression we are about to discuss should be
accurate under the former conditions, see Refs. [10,20], but
one should keep in mind that some deviation may appear
for realistic systems, especially for small terminal velocities
(large τ ’s) where equilibrium forces can dramatically alter
the dynamics leading to hysteresis-like cycles for example
[10,20]. One should also keep in mind that high terminal
velocities, small τ ’s, could break the adiabatic approximation
leading to deviations of the equations of motion [20,37].

We start by rewriting Eq. (20) using Eq. (11) to write
(Q/e)δμ/τ = W/τ , and defining the dimensionless period
τ̃ = (Q/e)δμ

L2γ
τ . This yields

η = 1 − 1
τ̃

1 + τ̃
ν

. (34)

As before, we have defined the dimensionless quantity ν =
Q2

L2γ 〈T 〉t
h
e2 , which can be simplified using Eq. (12),

ν = h

γ

(1 − 〈T 〉x )2

〈T 〉t

(
kF

π

)2

. (35)

The optimal value of τ̃ that maximizes the efficiency is
given by

τ̃op = 1 + √
1 + ν. (36)

Now evaluating η at τ̃op yields

ηop = 2 + ν − 2
√

1 + ν

ν
. (37)

To obtain closed formulas for P (ηop|ν0), one requires the
expression for P (〈T 〉x ), the probability distribution function
of the transmittances averaged over a full cycle of the rotor.
We numerically study P (〈T 〉x ) and found two limiting sit-
uations where it can be easily calculated, see Appendix C.
When the wire completely wraps the rotor, P (〈T 〉x ) can be
approximated by P (T ). This finding is, at present, based only
on numerical evidence for the used parameters, �E � V (the
weak disorder limit), the Fermi energy close to the band edge,
and L/a � 1 (such that T � 1). In the opposite case, a small
contact region, P (〈T 〉x ) becomes a narrow function centered
around 〈T 〉, the average value of T over different sampling of
impurities. There, T can be taken as constant, as well as η. The
explanation for this latter limiting situation is simple. In the
limit of R → ∞, at L constant a full rotation of the systems
implies that every possible combination of impurities have
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been sampled for T , then 〈T 〉x is simply 〈T 〉. For intermediate
regimes, the function P (〈T 〉x ) is more difficult to model,
providing a smooth transition between the two other regimes.
However, once obtained, numerically, for example, the formu-
las we are about to discuss can be straightforwardly corrected
following the same procedure to the one discussed here and
in the previous section. Finally, one last assumption has to be
made in Eq. (35), 〈T 〉x ≈ 〈T 〉t . In this case, averaging over
time or averaging over the coordinate are the same for a rotor
moving at a constant velocity, approximation discussed at the
beginning of this section.

Taking into account the above discussion, we propose the
following concrete functional form for P (〈T 〉x ), which should
be a good approximation, according to numerical evidence,
when the wire completely wraps the rotor,

P (〈T 〉x |ξ0) ≈ P (̃ξ |ξ0)
dξ̃

d〈T 〉x
. (38)

Here, P (̃ξ |ξ0) is given by Eq. (17) and 〈T 〉x = exp[−2/̃ξ ].
With this functional form, the equality P (〈T 〉x |ξ0) = P (T |ξ0)
is obviously fulfilled.

To calculate the distribution function P (ηop|ν0), we need
the following inverse functions:

ξ̃ = −2(ln〈T 〉x )−1,

〈T 〉x ≈ h

γ ν

(
kF

π

)2

, and

ν = 4ηop

(1 − ηop)2
. (39)

Note that the last formula is proportional to ν(ηop) for the
short-time regime given in Eq. (29) (with a factor 4 instead
of 16

3 ). Combining the above expressions allows us to obtain
the relation between ξ̃ and ηop:

ξ̃ = 2

[
ln

(
4γπ2

hk2
F

ηop

(1 − ηop)2

)]−1

. (40)

Using the above, one can find that the approximated prob-
ability distribution function of the maximum efficiency of
the example treated here results in exactly the same as that
shown in Eq. (31). Therefore, the discussion about Fig. 4
remains the same for the present case, as well as the condition
for the minimum disorder strength needed to ensure efficient
nanomotors, see Eq. (33) and the discussion in Appendix A.

V. CONCLUSIONS

We have proposed what we called an Anderson adiabatic
quantum motor (AAQM), i.e., a current-driven nanomotor
based on Anderson’s localization. We have studied two ge-
ometries for AAQMs, the shuttle and the rotor (see Fig. 1).
We have derived general expressions to evaluate the nonequi-
librium current-induced forces (CIFs) [Eq. (3)] as well as
the efficiency [Eq. (20)] of this kind of device. Due to the
stochastic nature of AAQMs, we based our analysis on the
probability distribution functions of the properties of interest.
We have shown that, under a certain regime of parameters,

most of the disorder realizations result in systems with a
maximal value of the CIFs, where the reflectance is almost
one. However, the same regime of parameters not neces-
sarily leads to a maximum efficiency. We have studied the
performance of these devices in the short-time dynamical
regime and under steady-state conditions. We have found an
analytical expression of the probability distribution function
of the maximum efficiency of the shuttle, see Eqs. (31) and
(32). For the rotor, we have numerically found that, under
certain conditions, the probability distribution function of the
transmittances averaged over one period is well described by
a simple formula that describes the probability distribution
function of transmittances in the Anderson’s model of disor-
der. Using this, we have shown that, under certain conditions,
both dynamical regimes (the rotor in the steady-state regime
and the shuttle in the short-time regime) present very similar
probability distribution functions of their maximum efficiency
[Eq. (31)] despite having quite different expressions for their
efficiencies [Eqs. (23) and (34)]. Finally, we provide an ex-
pression to estimate the minimal disorder strength required to
obtain efficient nanomotors [Eq. (33)].

As compared with other proposals of adiabatic quantum
motors [10,15–20], the AAQMs require, in principle, less
control over the impurities or charges responsible for the
position-dependent coupling between the electrons and the
moving piece of the nanomotor. For this reason, we believe
AAQMs should be easier to realize than other proposed
adiabatic quantum motors. One drawback, which is common
to most adiabatic quantum motors, is that AAQMs would
require coherence lengths of the order of the nanodevice itself.
Then, it would be interesting to understand to what extent
AAQMs can tolerate decoherence in relation to the amount
of disorder they possess. Although preliminary estimations
seem promising, it would be important to study numerically
concrete examples of AAQMs to evaluate their feasibility
under realistic conditions. From a theoretical point of view,
it would be interesting to understand the reason behind the
found similarity between the probability distribution function
of the transmittance of the rotor at a fixed position P (T ) and
the probability distribution function of the transmittance aver-
aged over one cycle P (〈T 〉x ). Finally, the connection between
disorder-induced localization and incommensurability [43,48]
may open the door to another type of closely related adiabatic
quantum motor.
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APPENDIX A: ESTIMATION OF DISORDER NEEDED
IN AN AAQM

It is difficult to make general statements about the feasi-
bility of AAQMs without resorting to particular cases. For
example, the friction coefficient is expected to depend on the
contact surface between the rotor and the wire (or the shuttle
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and the guide), vF depends on the material and its doping,
the characteristic of the disorder and thus the parameters that
describe it (�E and a) will depend on how the disorder is
realized, etc. However, just for the sake of making a rough
estimation, let us take a concrete example of AAQMs with
a = 2 nm, L = 200 nm, vF = 106 m/s, kF = 1010 m−1, and
γ = 2.5 × 10−8 kg/s.6 With these values and according to
Eq. (33), the minimum disorder needed results in �E =
0.44 eV, which is about 10% of the hopping parameter cor-
responding to a π bond between carbon atoms in a conductive
polymer [49].

As mentioned, the friction coefficient may change substan-
tially from one device to another. However, �E depends only
logarithmically on it, so the above estimation should be robust
against a variation of γ . On the other hand, vF was taken from
the order of magnitude of typical metals [50], where the Fermi
energy is at the center of the conduction band. For energies
closer to a band-edge, vF is expected to be much smaller,
which should reduce considerably the minimum value of the
energy uncertainty required.

APPENDIX B: ON THE ELECTRON’S POTENTIAL IN A
WIRE COILED AROUND A ROTOR

WITH FIXED CHARGES

In Fig. 5, we show a simple example of the interaction
between a rotor with a fixed charge and the electrons in a
wire. As can be seen in Fig. 5(b), the effect of a rotation
of the rotor on the potential sensed by the electrons can be
modeled as a scatterer that appears from nowhere that then
moves in a certain direction until it disappears again. The
details of how the “scatterer” appears and disappears depend,
of course, on the details of how the wire is coiled around the
rotor. However, the shift of the “scatterer” with θ in a certain
region is a universal characteristic that is just consequence of
the fixed distance between the wire and the rotor in that region.
For more complex potentials, caused by random charges, for
example, the effect of a rotation of θ is the same. There
is a small region from where new features of the potential
gently appear, a region where there is a shift of the potential
with θ , and a small region where the features of the poten-
tial gently disappear. In the numerical simulations discussed
around Fig. 3, we modeled the dependence of the potential
with θ in precisely that way. We tried different smoothing
function (linear and Gaussian) to describe the appearance
and disappearance of potential’s features, but only a small
effect on the equilibrium part of the forces was observed. The
same behavior was observed in the Thouless motor studied
previously [10].

The simple example analyzed here illustrates the mech-
anism behind the adiabatic quantum motors studied in this
paper, and the related adiabatic quantum pumps. They are

6The values of vF and kF were taken from the order of magni-
tude of typical metals [50]. The value of γ used (2.5 × 10−8kg/s)
implies τ = 1 × 10−2s at δμ = 1 × 10−3eV . This was estimated
from δμkF /π = γ ẋ and assuming a constant terminal velocity with
F load = 0. The value of τ = 1 × 10−2s is of the order of the nanomo-
tor reported by Kim et al. [11].

e-

 -d
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Rint

0

Rext

0 211-

0

U (a.u.)(b)

(a)

0 2 4

FIG. 5. Example of the potential experienced by the electron
in a wire coiled around a rotor with a fixed charge. (a) Geometry
considered. Rint is the radius of the rotor, Rext − Rint is the minimum
separation between the wire and the rotor, θ is the angle that
sets the position of the rotor, and x∗ is the coordinate along the
wire. The example assumes a potential of the form U ∝ 1/d , where d

is the distance between the fixed charge and the point along the wire
(set by x∗). (b) Potential in arbitrary units as a function of the position
along the wire (x∗) and the position of the rotor (θ ). In the figure, we
set Rint = 0.99Rext.

caused by the “snow-plow” effect [39,41,51] and momentum
conservation of the reflected electrons. Describing the move-
ment of the rotor by the Cartesian coordinates of a point over
its surface, one can readily check that the trajectories will
enclose the origin. This implies a net shift of the “scatterers”
as in the case of impurities, along a conductor, being moved
by the current, see, for example, Sec. 1.7.4 of Ref. [51].
The difference is that here the features of the potential (or
“scatterers”) appear from nowhere in a region and disappear
in another region. A classical picture that can also help to
understand the mechanism behind the rotor shown in panel
(a) of Fig. 1 is that of a water wheel but with paddles
randomly placed. The difference with this classical analog is
that the potential energy caused by the “paddles” is smaller
than the kinetic energy of the electrons. Thus, only quantum
interferences can explain the reflection of the electrons and
the movement of the rotor.

APPENDIX C: DIFFERENCES BETWEEN P (〈T〉x )
AND P (T )

To account for the differences between the probability
distribution function of 〈T 〉x and T , P (〈T 〉x ) and P (T ),
respectively, we performed a set of numerical calculations
using the same tight-binding Hamiltonian as that shown in
Sec. III. In our calculations, we first sampled Nr site’s energies
using a uniform probability distribution function of width
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FIG. 6. Comparison between P (〈T 〉x ) and P (T ). In the numer-
ical simulations, we used �E/V = 0.2, L = 103a, and ε/V = 1.9.
The vertical line is − log[〈T 〉]/2, where 〈T 〉 is the average value
of T .

�E. The Hamiltonian of the system was then constructed
with the consecutive site’s energies Ej starting from j = j0

and finishing with j = j0 + Nsys, with the periodic condition
Ej = Ej+Nr

. The number of sites of the system was kept fixed

in the simulations, Nsys = 1000. As in Sec. III, we imposed
a linear smoothing over the first and last 50 sites and added
a self-energy to the first and last sites of the system. The
transmittances were obtained from the Green function of the
tight-binding Hamiltonian as shown in Refs. [6,10,16,46]. All
this was done to emulate a rotor with Nr sites (2πR = Nra)
in contact with a wire, where the contact region involved
Nsys sites (L = Nsysa). The value of 〈T 〉x was obtained by
averaging T over a cycle of the rotor, j0 from 1 to Nr .
We repeated this procedure to obtain a set of 〈T 〉x val-
ues and made a normalized histrogram to obtain P (〈T 〉x ).
P (T ) was obtained from the same simulations but with
fixed j0.

Some representative results of our calculations are shown
in Fig. 6. There, one can notice that the behavior of P (〈T 〉x )
depends strongly on the ratio L/2πR, the ratio between the
contact region (L) and the perimeter of the rotor (2πR). How-
ever, two important limiting situations can be distinguished.
When the wire completely wraps the rotor, P (〈T 〉x ) and P (T )
are very similar. In the opposite limit, when the wire barely
touch the rotor, P (〈T 〉x ) becomes a narrow function centered
around the average value of T , 〈T 〉 = ∫

T P (T )dT .
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