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Energy relaxation in hot electron quantum optics via acoustic and optical phonon emission
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We study theoretically the relaxation of hot quantum-Hall edge-channel electrons under the emission of both
acoustic and optical phonons. Aiming to model recent experiments with single-electron sources, we describe
simulations that provide the distribution of electron energies and arrival times at a detector a fixed distance from
the source. From these simulations we extract an effective rate of emission of optical phonons that contains
contributions from both a direct emission process as well as one involving inter-edge-channel transitions that are
driven by the sequential emission of first an acoustic and then an optical phonon. Furthermore, we consider the
mean energy loss due to acoustic phonon emission and resultant broadening of the electron energy distribution
and derive an effective drift-diffusion model for this process.
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I. INTRODUCTION

Dynamical quantum dots have emerged as accurate, on-
demand sources of single electrons [1–8]. One particularly
novel feature of these charge pumps, as compared with other
single-electron sources [9–13], is the high energy at which
they inject electrons into quantum-Hall edge channels. This
opens up the possibility of performing quantum-optics-like
experiments with electrons [14–24] in a new energy regime.
Clearly, the success of such experiments will depend crit-
ically on the relaxation and decoherence properties of the
hot electrons as they are transmitted along edge channels.
At low injection energies, electron-electron interactions will
dominate the relaxation of hot electrons [25]. However, at
high energies and fields, the transport electrons become ever
more localized in the edge of the sample and their interaction
with the cold, bulk electrons becomes much reduced. This
then opens up the possibility that other relaxation mecha-
nisms, principally phonon emission, will become the limiting
inelastic mechanism.

Longitudinal-optical (LO) phonon emission from the hot
electrons emitted by dynamic-quantum-dot single-electron
sources has been observed in Refs. [4–8], and most recently
studied in detail in Ref. [26]. The theory of direct LO-
phonon emission within a Fermi’s golden rule approach was
discussed in Ref. [27], the key prediction of which was
that increasing magnetic field strength should dramatically
suppress LO-phonon emission. In Ref. [26], however, rates
of LO-phonon emission extracted from time-of-flight and
survival-probability measurements were seen to be signifi-
cantly greater than those predicted by this theory. The mech-
anism proposed to explain this was that the observed LO
emission was, in fact, a sequential two-phonon process, where
the electron first emits a longitudinal acoustic (LA) phonon
and then the LO phonon.

In this paper we investigate more fully the role of acoustic
phonons in the relaxation of hot single electrons and focus

on LA phonons interacting via the deformation potential
interaction, which is expected to be dominant in GaAs het-
erostructures [28]. We consider both LA and LO phonons
and calculate the respective rates for emission by hot elec-
trons in quantum-Hall edge channels. These rates then form
the basis for the simulations of single electrons injected as
localized wave packets into a quantum-Hall edge channel.
These simulations allow us to calculate the energy-resolved
arrival-time distribution (ATD) of the electrons at a detector
some fixed distance from the electron source [7,8]. From this
we extract survival probabilities, mean time-of-flight, and also
the effective LO emission rate as in Ref. [26]. We study
the energy and field dependence of this effective rate and
highlight contributions from direct LO emission processes and
the sequential LA+LO channel. We show how, in the regime
dominated by the sequential channel, the effective LO rate
is given by the total LA emission rate for inter-edge-channel
scattering [29].

We then consider the impact of LA-phonon emission in its
own right, and in particular, its influence on the distribution of
electron energies observed at the detector. We show how this
mechanism leads to a drop in mean energy of the electrons,
as well as an increase in the width of their distribution in
energy. Moreover, we show that these features can be captured
by an analytically solvable drift-diffusion model and derive
explicit expressions for the behavior of the energy cumulants.
One key prediction of this model is that, at high energies, the
width of electron energy distribution should be proportional
to the square of the mean time of flight of the electrons.
Furthermore, we show that the effects of acoustic phonons on
the electron energy distribution increases algebraically with
magnetic field.

With our focus on single-electron sources and observables
pertinent to current experiments, our work differs consider-
ably from earlier works on phonon emission in quantum-Hall
systems, e.g., Refs. [29,30].
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This paper is structured as follows. In Sec. II we set up
our model of quantum-Hall electrons interacting with LO and
LA phonons. In Sec. III we derive from this model phonon
emission rates and write down a master equation. In Sec. IV
we describe our simulations and the calculation of electron
arrival-time distributions. Section V contains our discussion
of the effective LO-phonon emission rate, and Sec. VI details
our drift-diffusion model for relaxation under acoustic phonon
emission. We finish with discussions in Sec. VII. A number of
calculational details are given in the Appendix.

II. ELECTRON-PHONON INTERACTIONS

We consider a Hamiltonian H = He + Hp + Vep, where
the three contributions respectively describe the electrons, the
phonons, and electron-phonon interactions. The electrons we
model as quasi-two-dimensional with strong confinement in
the z direction and weak harmonic confinement transverse
to the transport direction. In the presence of perpendicular
magnetic field strength B, electron states are described by the
edge-channel index n = 0, 1, 2, . . ., and wave number k > 0
in the transport direction [27,31]. The electron Hamiltonian
reads

He =
∑
nk

Enkc
†
nkcnk, (1)

with energies measured from the bottom of the n = 0 sub-
band,

Enk = nh̄� + 1

2

(
�

ωc

)2

m∗
eω

2
yy

2
G(k). (2)

Here, m∗
e is the effective electron mass, ωy is the parabolic

confinement frequency, � = (ω2
y + ω2

c )1/2, ωc = |eB|/m∗
e is

the cyclotron frequency, and

yG(k) =
(

ωc

�

)2
h̄k

eB
(3)

is the “guide center” of the transverse wave function.
The transverse extent of these wave functions is given
by the length l� = (h̄/m∗

e�)1/2, and the velocity of an
electron with energy E in edge channel n is vn(E) =
(ωy/�)[2(E − nh̄�)/m∗

e ]1/2 [32].
We assume that the LO phonons are dispersionless with

energy h̄ωLO = 36 meV [25] and that the LA phonons have
linear dispersion with speed of sound cLA. With annihilation
operators aq and bq for LO and LA phonons of wave vector q,
the phonon Hamiltonian reads

Hp = h̄ωLO

∑
q

a†
qaq + h̄cLA

∑
q

q b†qbq. (4)

Specified in terms of c̃k, the annihilation operator for
plane-wave electrons with three-dimensional wave vector
k, the Fröhlich Hamiltonian for electron-phonon interac-
tions [33,34] reads

Vep =
∑
k,q

MLO(q) c̃
†
k+qc̃k(a†

−q + aq)

+
∑
k,q

MLA(q) c̃
†
k+qc̃k(b†−q + bq). (5)

The momentum dependence of the matrix elements is given
by [34,35]

|MLO(q)|2 ≡ M2
LO

L3

1

q2
, |MLA(q)|2 = M2

LA

L3
q, (6)

where q = |q| and L3 is the sample volume. Details of
the couplings MLO and MLA are given in Appendix A. We
have assumed here that the interaction with LA phonons
is exclusively through the deformation-potential interaction
(LADP for short) [36]. [We have also considered the effects
of piezoelectric phonon interactions, but these are generally
unimportant here (see Appendix D).]

In terms of the edge-channel states, the interaction reads

Vep =
∑
nn′

∑
kk′

∑
q

�LO
n′k′nk (q)c†n′k′cnk (a†

−q + aq)

+
∑
nn′

∑
kk′

∑
q

�LA
n′k′nk (q)c†n′k′cnk (b†−q + bq), (7)

with matrix elements �LO
n′k′nk and �LA

n′k′nk obtained as in
Ref. [27].

III. RELAXATION RATES AND MASTER EQUATION

We consider single electrons injected into the system,
and since experiments are performed at low temperature, we
consider phonon emission only. Let Pnk be the probability
to find an electron in edge channel n with wave number k.
Within a master equation approach [37], the equation for the
evolution of these probabilities reads

Ṗnk = −
∑
n′k′ν

�ν
n′k′nkPnk +

∑
n′k′ν

�ν
nkn′k′Pn′k′, (8)

where �ν
n′k′nk is the transition rate from state nk to n′k′ induced

by the emission of a ν = LO, LA phonon. According to
Fermi’s golden rule [36,38], these rates read

�ν
n′k′nk = 2π

h̄

∑
q

∣∣�ν
n′k′nk

∣∣2
δ(En′k′ − Enk + h̄ων ), (9)

with ων = ωLO for ν = LO and ων = ωLA = cLAq for ν =
LA. The explicit evaluation of these quantities for the LADP
interaction is discussed in Appendix B. Details of the evalua-
tion of the LO emission rates are as in Ref. [27].

Taking the continuum limit and defining the continuous
distributions ρn(E) = ∑

k δ(E − Enk )Pnk in terms of electron
energy E, our master equation becomes

ρ̇n(E) = −
∑
n′ν

∫
dE′ �̃ν

n′n(E′, E)ρn(E)

+
∑
n′ν

∫
dE′ �̃ν

nn′ (E,E′)ρn′ (E′), (10)

with “rate densities”

�̃ν
n′n(E′, E) ≡ L

2π

1

h̄v0(E′)

∫
dEk

∫
dEk′

× δ(E − Ek )δ(E′ − Ek′ )�ν
n′k′nk. (11)
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FIG. 1. The rate densities �̃LA
n′n(E − ε, E) as a function of energy

loss ε for transitions induced by acoustic phonon emission in the
outermost two edge channels n, n′ = 0, 1. The initial energy E was
100 meV above the n = 0 band bottom, and results are shown for
two values of the magnetic field: B = 6 T (black solid), B = 12 T
(blue dashed). Other parameters are as set out in Appendix A. At
these fields, the subband spacings are respectively h̄� = 10.3 meV
and h̄� = 20.9 meV. The rate densities are defined such that the area
under each curve gives the total rate out of a state with energy E and
subband n into subband n′. The curves for off-diagonal rates end
abruptly at low ε due to the cut-off Eq. (13).

The total scattering rate out of state in subband n with energy
E into subband n′ is given by the integral

�ν tot
n′n (E) =

∫
dE′�̃ν

n′n(E′, E). (12)

Figure 1 shows these rate densities for transitions in the
outermost two edge channels with magnetic field strengths of
B = 6 T and B = 12 T. For all transitions, we observe that
LADP phonon scattering is significant only for changes in
electron energy ε = E − E′ of a few meV. In addition, the
rate densities at 6 T are smaller than their 12-T counterparts.
Given the greater electron velocity at lower fields, most of
this difference arises from the difference in density-of-states
factor 1/(h̄v0) in Eq. (11). The n �= n′ rates that describe inter-
edge-channel scattering [29] are finite only above a certain
minimum value of ε given by

ε � h̄cLA|k − k′|. (13)

This lower cutoff arises because of energy and momentum
conservation and the fact that, when changing subband, a
small drop in electron energy necessarily has associated with
it a change in electron wave number.

IV. ARRIVAL-TIME DISTRIBUTION AND SIMULATIONS

The stochastic nature of phonon emission means that
different electrons emit a different sequence of phonons as
they travel. This, coupled with the energy dependence of the
electron velocity, means that after traveling a distance xD from
source to detector, the electrons will arrive at a range of times.
The distribution of such times is called the arrival-time distri-
bution, and currently the most general such object accessible

in experiment is the energy-resolved arrival-time distribution
A(E, τ, xD ), defined such that A(E, τ, xD )�E�τ is the prob-
ability that an electron arrives at detector position xD with an
energy between E and E + �E between times τ and τ + �τ

(in the limit �E, �t → 0). The calculation of the ATD within
quantum mechanics involves some subtleties [39–42]. How-
ever, we shall here pursue a semiclassical description [43] in
which these issues do not arise.

We assume that the electrons are emitted in Gaussian wave
packets [44] centered around an energy E=E0 and time t =0,
with energy and time widths of σE = 1 meV and στ = 5 ps,
in line with recent experiments [7,8,45]. Furthermore, we
assume that these wave packets remain coherent during their
transmission to the detector and that their shape remains con-
stant. The absence of significant dispersion over the relevant
timescales was discussed in [27]. The maintenance of coher-
ence under phonon emission can be justified by considering
the Bloch-Redfield equations for the coherences, analogous
to those for the populations in Eq. (8). This analysis shows
the rates for the transfer of coherences to be approximately
the same as those for the transfer of populations [Eq. (9)]
when the spread in k vectors is � l−1

� . This is the case for
the conditions studied here.

In this picture, then, phonon emission transfers traveling,
fixed-shape wave packets between different energies. What
remains is to track the motion of the center of these wave
packets as they travel, and this we do using a Monte Carlo
simulation of individual electron trajectories based on the
master equation, Eq. (10).

We first discretize the electron energy, Ei = i�E; i =
0, 1, 2, . . .. In discrete time step �t , then, an electron in band
n with energy Ei has a probability to emit a phonon and scatter
into a new state with Ej in band n′ given by1

T n′n
ji ≈ �t

∫ Ej +�E/2

Ej −�E/2
dE′ �̃n′n(E′, Ei ). (14)

During this time step, an electron will also propagate a dis-
tance �x = vn(Ei )�t . Thus, our procedure is to iterate these
two steps of probabilistic phonon emission and deterministic
electron propagation until the distance traveled reaches xD .
This is then repeated many times and the convolution of this
set of wave-packet centers in E-t space with the Gaussian
wave packet of the individual electrons builds up a picture of
the energy-resolved ATD.

For the results we present here, the electron always starts
in the outermost edge channel, n = 0 [44]. For numerical
simplicity, our simulation considers only subbands n = 0, 1,
where the majority of the dynamics takes place. We consider
the detector to be positioned a distance xD = 28 μm from the
center of the initial distribution.

Figures 2 and 3 show the energy-resolved ATD for two
different starting energies E0 = 70, 120 meV with a field
of B = 6 T. Results are shown only for electrons detected

1We found that numerical integration over the small energy interval
is preferable to using the approximation T n′n

ji ≈ �t �E �̃n′n(Ej , Ei ),
since this avoids problems with the cutoffs in Eq. (13), as well as with
the rapid variations in the rates that occur in their vicinity.
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FIG. 2. Energy-resolved arrival-time distribution (ATD)
A(E, τ, xD ) plotted as a function of energy loss δE = E − E0,
with E0 the initial energy, and the arrival time τ . White indicates
absence of electrons, darker colors greater electron probability
density. Clustered around δE = 0 (horizontal line) is the ATD for
electrons that arrive at the detector without having emitted any LO
phonons. Around δE = −h̄ωLO = −36 meV we see the ATD of
the first LO-phonon replica. Parameters: B = 6 T, E0 = 70 meV,
xD = 28 μm, σE = 1 meV, and στ = 5 ps. The number of electron
trajectories followed was 105.

in the n = 0 edge channel. This is by far the majority for
these parameters, since only <3% of electrons end up in
the n = 1 band at the detector. In both plots, a portion of
the electron density remains clustered around the original
injection energy δE = E − E0 = 0 with central arrival time
of τ = 176 ps for E0 = 70 meV (Fig. 2) and τ = 136 ps for
E0 = 120 meV (Fig. 3). These distributions represent those
electrons that reach the detector without having emitted any
LO phonons, and this part of the ATD we shall denote as the
A(0) distribution.

FIG. 3. As in Fig. 2, but here with the higher injection energy
of E0 = 120 meV. Distributions corresponding to three LO-phonon
replicas (the third is faint), plus that of the directly transmitted
electrons, are observed.

The ATD also shows clusters positioned approximately
around energy losses equal to multiples of the LO-phonon
energy. These are the LO-phonon replicas, in which electrons
have emitted 1, 2, . . . LO phonons en route to the detector. In
Fig. 2 one replica is visible; in Fig. 3 there are three, and this
number depends on both the initial energy as well as the dis-
tance of travel. The initial energy sets the maximum number of
phonon replicas that can be observed, since once within h̄ωLO

of the band bottom, no further LO phonons can be emitted.
The distance traveled determines the degree to which each of
these phonon replicas are actually realized, with lower-energy
replicas becoming more populated the further the electron
travels. As is clear from these figures, the phonon-replica
distributions arrive later than the original distribution due to
the energy lost to LO phonons. They are also broadened along
the time axis, which is due to the uncertainty in the emission
time of the LO phonons and corresponding uncertainty in the
fraction of total distance traveled in lower-energy states.

V. EFFECTIVE LO-PHONON EMISSION RATE

The LO-phonon rate analysis of Ref. [26] was based on
estimation of the “survival probability,” i.e., the probability
of reaching the detector without having emitted a LO phonon
or, in other words, the total weight of the A(0) distribution.
Although a counting-field approach would permit the calcula-
tion of exactly that part of the distribution having emitted m

LO phonons, we elect here instead to use a procedure based
on inference from the ATD that matches the experimental pro-
cedure. With only LO-phonon processes active, it is a simple
matter to infer this probability from the energy distribution
of the electrons at the detector—surviving electrons reach the
detector with exactly the same energy with which they are
injected. In the presence of the continuous energy loss from
LA-phonon emission, however, this picture is complicated by
the fact that the electron energy distributions drop and broaden
as they transit. Therefore we here define “survival” to mean
that the energy of the electron at the detector satisfies E >

Esurv = E0 − h̄ωLO + 10 meV. The choice of 10 meV here
is somewhat arbitrary, but the value should be large enough
to ensure we avoid the tails of the emitted distribution and
yet small enough that the A(0) distribution does not drop near
this line under the emission of acoustic phonons. The value of
10 meV was found to perform well in both these respects. In
terms of the ATD, the survival probabilities are obtained as

Pn =
∫

dE

∫
dτ An(E, τ, xD )�(E − Esurv), (15)

where Pn and An are quantities conditioned on finding the
electrons in edge channel n. Thus, P0 is the survival proba-
bility with the electron being detected in the outermost edge
channel; P1 is the same but with the electron being detected
in the n = 1 channel.

Figure 4(a) shows survival probabilities P0,1 as a function
of injection energy for B = 6, 12 T. At low energies, P0 ≈ 1,
with the vast majority of electrons reaching the detector
without having emitted an LO phonon and being detected
in the original edge channel. As injection energy increases
above E0 > h̄ωLO, however, P0 drops rapidly as LO emission
becomes active. The other striking feature in Fig. 4(a) is that,
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FIG. 4. (a) The survival probabilities P0 and P1 as a function of
injection energy E0 for two magnetic field strengths, B = 6, 12 T.
(b) Mean time of flight for electrons in the A(0) distribution, i.e., those
that reach the detector without having emitted a LO phonon. 〈τ 〉0

counts only those electrons detected in the outermost edge channel,
whereas 〈τ 〉01 counts those in both n = 0, 1 states. The difference
between these two quantities is seen to be minor.

at low field, we see that there exists an energy range for which
P1 is significant (up to about 22% in the figure). For higher
fields, as exemplified by B = 12 T, however, this feature is
almost completely absent.

If LO-phonon emission was the only process operative
here, then the survival probability P0 would show an expo-
nential decay as a function of time with rate given by the
LO-phonon emission rate [27]. Let us therefore assume that
a similar relation exists in the presence of LA-phonon emis-
sion and write an exponential relation between the survival
probability, P0 ≈ e−γ0t , where γ0 is an effective rate parameter
describing the total decay of the survival probability. We
then approximate the time t in this expression with 〈τ 〉0 the
mean time of flight for electrons in the A(0) distribution and
outermost edge channel [this is shown in Fig. 4(b)]. Thus, the
expression we use to extract the effective LO emission rate is

γ0 = −〈τ 〉−1
0 log P0. (16)

We also define γ01 = −〈τ 〉−1
01 log(P0 + P1), which takes into

account “survived” electrons in both n = 0 and n = 1 sub-
bands.

Simulation results for γ0 and γ01 are shown in Fig. 5 for
both B = 6 T and B = 12 T. At high energies, γ0 and γ01

are similar and both very well approximated by the bare
LO-phonon emission rate (green solid lines). In this regime,
therefore, we expect the conclusions of Ref. [27] to hold. At
lower energies, however, the effective rates develop a “knee,”
which is more pronounced at lower fields and also more
extreme in γ0 than γ01. Responsible for this enhancement
is a relaxation process that involves first the emission of an
LA phonon from the outermost edge channel to the n = 1
channel, followed by the sequential emission of an LO phonon
from n = 1 back to the outermost edge channel. This pro-
cess is best first analyzed by looking at the B = 12 T case,
Fig. 5(b). Alongside simulation results (γ0 and γ01 are pretty
much identical at this field), we plot the direct LO rates
from n = 0 to n′ = 0 (solid green lines) and from n = 1
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FIG. 5. The extracted LO emission rates γ0 (solid circles) and
γ01 (empty circles) as a function of injection energy for (a) B = 6 T
and (b) B = 12 T. Also plotted are the calculated LO emission rates
�LO tot

00 , �LO tot
01 and total LA emission rate �LA tot

10 .

to n′ = 0 (dashed blue lines). We also plot the total LA
rate from n = 0 to n′ = 1 (dot-dashed purple lines). At high
energy, �LO tot

00 
 �LA tot
10 and the direct optical phonon process

dominates. Then, as the energy decreases there is a crossover
in these rates and �LA tot

10 
 �LO tot
00 . Outscattering into the

n = 1 edge via LA emission then dominates over direct LO
emission. However, the rate �LO tot

01 from n = 1 back to n = 0
is yet greater than all other rates considered and thus, upon
arriving in the n = 1 subband the electron rapidly emits an
LO phonon and relaxes back into the n = 0 subband. The
speed of this two-step process is governed by the slowest step,
which is the LA-phonon emission. Thus, in the “knee” region,
the effective LO rate γ0 is well approximated by the total LA
rate �LA tot

10 . This approximation is observed to work well in
Fig. 5(b). Furthermore, the rapidity of the n = 1 to n = 0 LO
process also explains why for B = 12 T the population of the
n = 1 level at the detector is always small.

The story for B = 6 T is similar [Fig. 5(a)], with one
significant difference. The rate �LO tot

01 drops rapidly, and
around an energy of E0 ≈ 47 meV, falls below that of �LA tot

10 .
Below this point, there is no longer a rapid outscattering of
electrons back from the n = 1 to n = 0 level. This then leads
to the finite occupancy of the n = 1 level which, in Fig. 4,
is observed from E0 ≈ 47 meV down until the rates drop off
near the band bottom. This reduced outscattering also means
that there is a significant difference between the effective rates
γ0 and γ01 in this regime.

VI. ACOUSTIC-PHONON-INDUCED DRIFT DIFFUSION
IN ENERGY SPACE

Emission of LA phonons leads electrons to lose energy
and, unlike LO emission, this occurs over a continuous range
of energies. Furthermore, the stochasticity of this process
leads to a broadening of the electron distributions as they
travel. This broadening is just about apparent in Fig. 2, where
the standard deviations of the A(0) distributions are greater
than the starting value of 1 meV; the shift in the center of
distribution is too slight to see from this figure for these
parameters.
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As in the last section, we here focus on the behavior of the
A(0) electrons and will write down an approximate analytic
theory for the behavior of this distribution. To do so, we
first discard LO processes (these we assume can be taken
into account by an overall loss factor e−γ0t which, since γ0

is effectively constant over the energy scale relevant for LA
emission, can simply be removed by normalizing the A(0)

distribution) and confine ourselves to the outermost n = 0
edge channel. To simplify notation, we thus drop the LA
superscript and channel index for this section.

With injection energy much higher than the scale of any
loss due to LA-phonon emission, the dispersion relation can
be linearized

Enk ≈ ε(0)
n + h̄v0k, (17)

where v0 is the electron velocity, here assumed constant,
and ε(0)

n is the energy offset. As shown in Appendix C,
this linearization means that the LA-phonon rate becomes
dependent only on the energy difference and we thus write
�̃(E′, E) → �̃(E − E′) for E > E′. The relevant part of our
master equation, Eq. (10), then becomes

ρ̇(E) =
∫ ∞

0
dε �̃(ε)[−ρ(E) + ρ(E + ε)], (18)

where we have extended the limits of integration commensu-
rate with the linearization.

Equation (18) can be solved by introducing the generating
function of energy moments

ρ(χ, t ) ≡
∫ ∞

−∞
dE eiχEρ(E, t ). (19)

We then obtain

ρ̇(χ, t ) = [�(χ ) − �(0)]ρ(χ, t ), (20)

with

�(χ ) ≡
∫ ∞

0
dε �̃(ε)e−iχε . (21)

Equation (20) can be solved to give

ρ(χ, t ) = e[�(χ )−�(0)]t ρ(χ, 0), (22)

such that the cumulant-generating function for the system is

F (χ, t ) ≡ ln ρ(χ, t ) = [�(χ ) − �(0)]t + F (χ, 0), (23)

where F (χ, 0) describes the energy statistics of the initial
distribution. From this we obtain the kth cumulant (subscript
c) as

〈Ek (t )〉c = ∂k

∂ (iχ )k
F (χ, t )

∣∣∣∣
χ=0

. (24)

Explicit expressions for the first two cumulants read

〈E(t )〉 = vEt + E0, 〈E2(t )〉c = 2DEt + σ 2
E, (25)

where E0 = 〈E(0)〉, σ 2
E = 〈E2(0)〉c, and

vE ≡ −
∫ ∞

0
dε ε�̃(ε), DE ≡ 1

2

∫ ∞

0
dε ε2�̃(ε). (26)

These last two quantities are the mean drift velocity of the
electron energy distribution and the diffusion constant [46]

associated with the spreading of the distribution. The higher
cumulants of the A(0) distribution are nonzero (and could be
calculated straightforwardly within this approach). Indeed, a
distribution starting as a Gaussian leaves a small tail at higher
energies as it relaxes downwards. For relevant parameters,
this tail is small and approximation of the complete behavior
as a Gaussian with just the first two cumulants provides a
reasonably accurate description of the entire distribution.

The integrals of Eq. (26) can be computed numerically.
They can also be evaluated approximately using a saddle-
point technique as outlined in Appendix C. This approxima-
tion yields the expressions

vE ≈ − 1

16
√

2π

cLAM2
LA

a3l�h̄v0
, (27)

DE ≈ 1

4(2π )3/2

c2
LAM2

LA

a4l�v0
. (28)

The derivation of these expressions also uses the fact that
the ratio cLA/v0 is small. Physically, this means that the
phonons are emitted preferentially in a direction transverse
to the electron propagation. Figures 6(a) and 6(b) show both
full and approximate values for vE and DE . Here we have
plotted ṽE ≡ vE/v0 and D̃E ≡ 2DE/v0, as these give the
energy drop and variance increase per unit distance traveled.
We see that, except for close to the band bottom, the energy
lost is a fraction of a meV per micron. The diffusion constant
gives a similar increase in variance per micron. These figures
also show that our approximations capture the qualitative
behavior well across the energy range but are quantitatively
most accurate in the high-energy limit.
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FIG. 6. Drift diffusion of the A(0) electron distribution. (a) The
scaled energy-drift parameter ṽE ≡ vE/v0, which gives the mean
energy loss of the electron per distance traveled (in meV/μm).
(b) The similarly scaled diffusion parameter D̃E ≡ 2DE/v0, which
gives how much the variance increases per distance traveled (in
meV2/μm). Solid lines are from the full integrals of Eq. (26),
whereas the dashed lines show the approximate forms from Eqs. (27)
and (28). (c) The variance 〈E2〉c of the A(0) distribution as a function
of mean time-of-flight-squared 〈τ 〉2

0 for B = 6, 12 T. The symbols
represent results extracted from simulations; the straight lines are the
analytic result from Eq. (29) with coefficients calculated from the full
integrals.
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The only energy dependence in Eqs. (27) and (28) is
through the 1/v0 factor. Thus, with time of flight τ = xD/v0

we can rewrite Eq. (25) as

〈E(t )〉 = λ1τ
2 + E0, 〈E2(t )〉c = λ2τ

2 + σ 2
E, (29)

where

λ1 = vEv0

xD

, λ2 = 2DEv0

xD

(30)

are energy-independent gradients. Thus plots of the energy
drop and variance against the mean time of flight for the A(0)

distribution should be straight lines. Figure 6(c) illustrates
this for the energy variance. To compare with simulations,
we extract the A(0) distribution in the outer edge channel and
renormalize with the survival probability P0. From this we
extract the variance of the distribution and the mean time of
flight. In the high-energy range shown here (corresponding to
low τ 2), the analytic theory matches the simulations well at
high field (here B = 12 T). Deviations from the analytic result
for B = 6 T are apparent, but this is not surprising, given
that at lower fields we have significant scattering out of the
n = 0 edge channel. We might expect further improvements
in the agreement at even higher energies. However, here the
survival probability becomes very small and statistics from
simulations becomes unreliable (as would also be the case in
experiment). At lower energies (high τ 2), we come close to
the band bottom, and the approximations used here cease to
be valid.

VII. DISCUSSION

From the point of view of probing fundamental semicon-
ductor physics, single-electron sources offer rich possibilities.
The results here show that the information encoded in the
single-electron ATD can give significant insight into acoustic
and optical phonon emission processes. Nevertheless, for
applications, and particularly applications in the arena of hot
electron quantum optics, it would presumably be best if all
inelastic processes could be “switched off.” The results we
have presented here show that there are significant experimen-
tal handles that can be used to modify and suppress both LO
and LA interactions. However, many of these handles effect
the strength of the two interactions in opposite ways and thus
care must be taken to find an optimal tradeoff between the
two.

At low injection energies, E0 < h̄ωLO, the lack of possible
destination states means that LO-phonon emission is absent.
However, in this regime, the effects of LA-phonon emission
are most pronounced, mainly because of the low velocity of
electrons.2 At higher energies, the relaxation effects of LA
phonons are considerably suppressed, mainly due the speed
of transit of the electrons through the system. However, higher
energy means an increase in activity of LO-phonon emission.

2The electron velocity is important on two accounts: first, faster
electrons obviously have less time in the system during which to emit
phonons; second, the phonon emission rates depend inversely on the
electron velocity thanks to the one-dimensional density of electronic
states entering in Eq. (11).

The role of magnetic field strength also plays a conflicting
role. While increasing B suppresses the LO emission rate
exponentially, it increases the effects of LA emission, and
quantities such as mean energy drop and energy spread in-
crease algebraically with magnetic field. Thus it would appear
that intermediate values of injection energy and magnetic field
offer a good compromise.

More significantly, perhaps, is the dependence of the
acoustic phonon emission rates on the strength of confinement
in the z direction, which enters our calculation through a
parameter a that characterizes the extent of wave function
in this direction [see Eq. (A3)]. The energy lost to phonons
scales like 〈�E〉 ∼ a−3, and the distribution width scales like√

〈E2〉c ∼ a−2.3 This means that the most prominent effects
of acoustic phonon emission can be significantly reduced
by using a wider well (and hence larger a) to define the
two-dimensional electron gas. From Ref. [27] we see that the
LO-phonon rates are, to first approximation, independent of
this width and should thus be unaffected by this.

In the calculations presented here, we have considered
only electron-acoustic-phonon scattering via the deformation
potential interaction. In GaAs, piezoelectric field scattering is
also known to be significant in low-dimensional geometries
in some parameter regimes [35]. We have repeated our sim-
ulations with these piezoelectric interactions present, and as
we show in Appendix D, these generally have little influence.
The only exception to this is at low fields in the region where
a significant population of the n = 1 subband is observed
at the detector. This population is increased slightly by the
piezoelectric interactions.

We have focused here exclusively on the case where
electrons are injected into the outermost edge channel, cor-
responding to the situation generally held to be the case
in experiments with dynamic-quantum-dot sources [7,8,45].
Injection into the n = 1 might one day be possible, and we
here comment on this possibility. On the numerical side, it
is clear that our approach can be extended to this scenario
(e.g., Fig. 1 contains the n = 1 to n′ = 1 acoustic phonon
rate). Within the analytic approach of Sec. VI, both drift and
diffusion parameters in the n = 1 subband are scaled by a
factor of 1/

√
3 relative to those within the n = 0 subband.

However, the most significant effect of injecting into the n = 1
subband is that the fast LO emission process n = 1 → n′ = 0
involved in the two-phonon emission described in Sec. V is
now a relaxation channel directly open to the hot electron,
rather than needing first the emission of an LA phonon.
For this reason we expect the LO emission rates from the
inner channels to be significantly increased over those for the
outermost channel; see Ref. [27] for more details.

The Monte Carlo procedure that we have used to find
the arrival-time distribution is manifestly a semiclassical one,
where the rates are determined by quantum mechanics but the
behavior of the electron distribution is taken to be a fixed
wave packet around a classical trajectory. As discussed in
Ref. [27], this approach is justified for time-of-flight–type
experiments with hot electrons, e.g., [26], where the effects of

3A general energy cumulant scales like 〈Ek〉c ∼ 1/ak+2.
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quantum dispersion can largely be neglected. However, in fu-
ture quantum-optics style experiments relying on interference,
this approach will need to be extended to treat coherences as
well as populations. It also remains as future work to evaluate
the extent to which residual interactions with the Fermi-sea
electrons contribute to the relaxation and decoherence of these
electrons. In this context, we note that much progress has
been made in understanding the decoherence and relaxation
of low-energy single-electron sources through bosonization
techniques, e.g., Refs. [47–49].
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APPENDIX A: ELECTRON-PHONON MATRIX ELEMENTS
AND CONFINEMENT PARAMETERS

We take the matrix element for the interaction of electrons
with LO phonons to be [34]

M2
LO = 4παh̄

(h̄ωLO)3/2

(2m∗
e )1/2

, (A1)

with the following parameters for GaAs: electron effective
mass, m∗

e = 0.067me; LO-phonon energy, h̄ωLO = 36 meV;
and coupling constant, α = 0.068.

For the interaction with acoustic phonons, we assume the
LADP interactions with matrix element [35]

M2
LA = h̄ D2

2 d cLA
, (A2)

with density d = 5310 kg m−3, crystal acoustic deformation
potential D = 8.6 eV, and speed of sound cLA = 4720 ms−1.

In contrast to Ref. [27], which considered a square-well
confinement in the z direction, we consider here a triangular
quantum well with ground-state wave function given by the
Fang-Howard ansatz [50],

φ0(z) = (2a3)−1/2ze−z/(2a), (A3)

where the parameter a determines the extent of the wave func-
tion. Here we choose a value of a = 3 nm. For the transverse
harmonic confinement, we take a parameter of h̄ωy = 2.78
meV, obtained as a fit to the VG5 = −0.25 V time-of-flight
results of Ref. [26].

APPENDIX B: EVALUATION OF LADP EMISSION RATES

Analogous to the LO-phonon calculation of Ref. [27], the
rates of Eq. (9) for LADP emission can be written

�LA
n′k′nk = 2π

h̄

∑
q

|MLA(q)|2|G(z)(qz)|2∣∣G(y)
n′k′,nk (qy )

∣∣2

× δqx,k′−kδ(En′k′ − Enk + h̄cLAq ), (B1)

with

∣∣G(y)
n′k′,nk (qy )

∣∣2 = F
(y)
n′n

⎛⎝√
1

2
l2
�

[
q2

y +
(

ωc

�

)2

(k′ − k)2

]⎞⎠
and

F
(y)
n′n (Q) = n<!

n>!
e−Q2

Q2|n′−n|[L|n′−n|
n<

(Q2)
]2

. (B2)

We consider here a triangular quantum well in the z direction,
for which the structure factor reads

|G(z)(qz)|2 = F (z)(aqz); F (z)(Q) = 1

(1 + Q2)3
. (B3)

To evaluate Eq. (B1), we take the continuum limit and switch
to polar coordinates: qx = |q| cos θ ; qy = |q| sin θ cos φ; qz =
|q| sin θ sin φ. Writing

q0 = (Enk − En′k′ )/h̄cLA (B4)

and

cos θ0 = (k′ − k)/q0, θ0 ∈ [π/2, π ], (B5)

we reduce Eq. (B1) to

�LA
n′k′nk = 1

2πh̄2cLAL

∫ 2π

0
dφ q0|L3/2MLA(q0, θ0, φ)|2

×F (z)(aq0 sin θ0 sin φ)
∣∣G(y)

n′k′nk (q0 sin θ0 cos φ)
∣∣2

×�(Enk − En′k′ − h̄cLA|k′ − k|)
×�(En′k′ − n′h̄�).

The first unit-step function � here arises from conservation of
energy and momentum [see Eq. (13)], and the second avoids
E′ coming in lower than the band bottom.

APPENDIX C: ESTIMATION OF
DIFFUSION PARAMETERS

The linearization of Eq. (17) means that for n = n′ = 0
we have cos θ0 = −cLA/v0, which is constant in this approx-
imation, and also that the (k − k′)2 in the argument of G

(y)
n′k′nk

becomes (E − E′)2/(h̄v0)2. Thus we see that the expression
for the rate depends only on the difference ε = E − E′.

Introducing the energy scale Ez = h̄cLA/a, the diffusion
parameter in this approximation becomes

DE ≈ M2
LA

4πh̄3a2cLAv0
E3

z ID, (C1)

with the integral

ID ≡ 1

π

∫ ∞

0
dε̃

∫ π/2

−π/2
dφ ε̃4 exp

[
−1

2
r2
V ε̃2

]
×F (z)(ε̃ sin θ0 cos φ) exp

[
−1

2
r2
Aε̃2 sin θ0 sin2 φ

]
.

Here ε̃ ≡ (E − E′)/Ez is the dimensionless energy loss, and
we have defined the ratios

rV = ωccLAl�

�v0a
and rA = l�

a
. (C2)
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To obtain an approximate analytic form for this integral we
first note that, for typical parameters, rV ∼ 1/50 compared
with rA ∼ 1/2. We thus drop the initial exponential factor.
We then approximate the integral over φ with a saddle-point
approximation about φ = π/2. This gives

ID ≈
√

2

π

1

rA

1

sin5 θ0

∫ ∞

0
du u3F (z)(u). (C3)

For the triangular well, this last integral can be performed
analytically and we obtain

ID ≈ 1

2
√

2πrA sin5 θ0

. (C4)

Finally, since for typical injection energies cLA/v0 � 1, we
can approximate sin θ0 ≈ 1 + O(c2

LA/v2
0 ), such that we obtain

Eq. (28). A similar calculation for the energy-drift-velocity
yields Eq. (27).

APPENDIX D: LAPZ AND TAPZ INTERACTIONS

The two additional acoustic phonon scattering mechanisms
in GaAs are electron scattering due to the piezoelectric field
by longitudinal phonons (LAPZ interaction) and transverse
phonons (TAPZ interaction). These can be incorporated in our
calculations with additional interaction terms in the Hamil-
tonian similar in structure to the acoustic phonon terms in
Eq. (5) with matrix elements [35]

|MLAPZ(q)|2 = 32π2 h̄ e2 h2
14

ε2
r d cLA L3

(3 qx qy qz)2

q7
(D1)

and

|MTAPZ(q)|2 = 32π2 h̄ e2 h2
14

ε2
r d cTA L3

×
∣∣∣∣∣q2

x q2
y + q2

y q2
z + q2

z q2
x

q5
− (3 qx qy qz)2

q7

∣∣∣∣∣.
For parameter values we take cTA = 3340 ms−1, εr = 12.9,
and h14 = 1.41×109 V m−1.

Figure 7 shows the rate densities for these interactions
in comparison with those for the LADP interaction for B =
12 T. For the interchannel scattering (determinant for the
LA+LO knee in the effective rate), the LAPZ and TAPZ
rates are clearly much smaller than the LADP rate. For the
intrachannel case, the situation is a bit more complicated. The
LAPZ interaction is clearly negligible compared with LADP.
For most of the range of energy loss ε, the same is true for the
TAPZ interaction. However, for ε → 0, the TAPZ rate density
tends to a constant value, whereas the LADP density falls
to zero. That this excess of the TAPZ rate density at small
energy changes is generally unimportant can be appreciated
by considering the cumulant integrals such as in Eq. (26).

0 1 2 3

10
7

10
8

10
9

LADP
LAPZ
TAPZ

0 1 2 3 4

10
7

10
8

10
9

(a) (b)

Γ∼ ∼0
0
[(
m

eV
s)

−
1
]

Γ
1
0
[(
m

eV
s)

−
1
]

ε [meV]ε [meV]

FIG. 7. Phonon emission rate densities �̃n′n(E − ε, E) as a func-
tion of energy loss ε for the three acoustic phonon interactions:
LADP (solid black lines), LAPZ (blue dashed), and TAPZ (violet
dashed-dot). Left: transitions within the outermost LL n = 0 → n′ =
0. Right: first inward transition n = 0 → n′ = 1. The magnetic field
was B = 12 T, and the starting energy was E = 100 meV.

Since the integrand for the kth cumulant involves a factor
εk+1 [see Eq. (C3)], the magnitude of the rate at ε → 0
does not contribute to any cumulant, and hence the behavior
of the entire energy distribution. The influence of the two
piezoelectric interactions on the results presented here can be
appraised from Fig. 8, which shows the survival probabilities
P0,1 calculated both with and without them. For B = 12 T,
the piezoelectric terms make no appreciable difference.

At lower field (B = 6 T) the strength of the two piezoelec-
tric interactions relative to the LADP interaction increases.
The overall effect of this is again small, except for the region
where we have significant population of the m = 1 level. Here
the piezoelectric processes lead to a small increase in this
population.
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FIG. 8. Survival probabilities (a) P0 and (b) P1 as a function of
injection energy E0 for two magnetic field strengths, B = 6, 12 T.
Solid symbols show results with LO + LADP interactions only.
Open symbols show results with LO + all three acoustic phonon
interactions.
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