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High-frequency breakdown of the integer quantum Hall effect in GaAs/AlGaAs heterojunctions
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The integer quantum Hall effect is a well-studied phenomenon at frequencies below about 100 Hz. The
plateaus in high-frequency Hall conductivity were experimentally proven to retain up to 33 GHz, but the
behavior at higher frequencies has remained largely unexplored. Using continuous-wave terahertz spectroscopy,
the complex Hall conductivity of GaAs/AlGaAs heterojunctions was studied in the range of 69–1100 GHz.
Above 100 GHz, the quantum plateaus are strongly smeared out and replaced by weak quantum oscillations in the
real part of the conductivity. The amplitude of the oscillations decreases with increasing frequency. Near 1 THz,
the Hall conductivity does not reveal any features related to the filling of Landau levels. Similar oscillations are
observed in the imaginary part as well; this effect has no analogy at zero frequency. This experimental picture is
in disagreement with existing theoretical considerations of the high-frequency quantum Hall effect.
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I. INTRODUCTION

The discovery of the integer quantum Hall effect (IQHE)
[1] has attracted much interest in the scientific community.
The vast majority of experimental and theoretical investiga-
tions have been devoted to the study of the QHE at fre-
quencies below 100 Hz, and in this range the phenomenon
of Hall quantization has been studied very extensively. In
experiments on QHE it is more convenient to apply an alter-
nating current, rather than a direct current. At several hertz
σxy (ω) is indistinguishable from the dc Hall conductivity.
Measurable frequency dependence can be detected when ω

is increased up to the microwave range. In this range standard
contact techniques become inapplicable, and high-frequency
Hall conductivity is being studied using the interaction of
electromagnetic waves with a two-dimensional electron gas
(2DEG). Kuchar et al. [2] used a crossed-waveguide setup to
observe Hall quantization at 33 GHz. Galchenkov et al. [3]
used a circular waveguide to study the evolution of the Hall
plateaus in the 24–70-GHz range. A review of experiments
on the longitudinal conductivity σxx (ω) below 20 GHz can be
found in Ref. [4].

Further frequency increases can be achieved in quasioptical
spectrometers, which are suitable for measurements in the
range of 100–1000 GHz. In the case of a thin conducting
film, the Hall conductivity is directly related to the Faraday
rotation angle [5]. Recent experimental works [6–9] on the
observation of the quantized Faraday rotation in novel mate-
rials have inspired a development of theories for a nonlinear
Hall response [10,11]. A linear high-frequency Hall response
is far from being completely understood for systems with
parabolic electron bands (AlGaAs, Si, Ge). Experimentally,
the Hall effect in the terahertz (THz) range was observed
in GaAs/AlGaAs heterojunctions [12,13] and in Ge quantum
wells [14]. The high-frequency data in Refs. [12–14] do not
demonstrate quantum plateaus that would be comparable with

corresponding dc data. In Ref. [13] the experiment was con-
ducted at two frequencies (2.52 and 3.14 THz) using an op-
tically pumped molecular gas laser. In Refs. [12,14] the Hall
conductivity was measured using time-domain spectroscopy
(TDS). In principle, TDS allows the Hall conductivity to be
obtained at fixed frequencies, but the authors present the data
averaged over a wide spectral range. Due to this averaging,
information about the frequency dependence of the Hall con-
ductivity was lost. Thus, the question of how the static QHE
transforms into a dynamic one remains unresolved.

In order to study the evolution of the quantum Hall plateaus
with respect to frequency, a series of experiments was con-
ducted on molecular-beam-epitaxy-grown GaAs/AlGaAs het-
erojunctions, one of the most suitable systems to investigate
the dc QHE. The results of the crossed-waveguide method
were reproduced [2,3], and a QHE plateau was observed
at 69 GHz. Above 100 GHz the plateaus were replaced
by oscillations that disappeared completely as the frequency
approached 1 THz.

II. SAMPLES AND EXPERIMENTAL TECHNIQUE

The experimental data presented in this paper were ob-
tained on two GaAs/AlGaAs heterojunctions, grown by
molecular beam epitaxy [see Fig. 1(a)]. Characteristic pa-
rameters of the samples, obtained in dc and spectroscopic
experiments at 1.9 K, are given in Table I. Sample 1 had a
reduced silicon δ doping level in comparison with sample 2,
which led to a lower electron density and a shorter relaxation
time. Insulating GaAs, used as a substrate, was transparent to
the radiation in the full range of the spectrometer. The sub-
strate was characterized by a dielectric constant ε = 12 with
a negligible frequency dependence. Indium electrical contacts
[15,16], placed in the corners and the center of the sides, were
prepared on each sample by baking at 400 ◦C in a reducing
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FIG. 1. (a) Detailed structure of GaAs/AlGaAs heterojunctions.
The aluminum fraction in AlxGa1−xAs is x = 31.35%. Samples 1
and 2 differ by the amount of silicon in the doping layer (Table I). (b)
Transmission spectroscopy of a two-dimensional electron gas. The
linearly polarized incident wave becomes elliptically polarized upon
passing through the electron gas in a magnetic field. Using a polarizer
(not shown), transmission amplitudes of the linear components were
measured along initial (t‖) and perpendicular (t⊥) directions. A sec-
ond reference beam, schematically shown by the red dashed line, was
used to determine the phase shift �l produced by the sample. The
knowledge of two complex transmission coefficients, t‖ = |t‖|eık�l‖

and t⊥ = |t⊥|eık�l⊥ , is sufficient to calculate the high-frequency
complex Hall conductivity without additional model assumptions.

atmosphere (Ar + 4% H). All spectroscopic experiments were
accompanied by simultaneous measurements of resistances
Rxx and Rxy using lock-in techniques; typical values of the
applied current were I ≈ 1 μA. The application of the rel-
atively high current without nonlinear effects was possible
because of large dimensions of the samples in comparison
with standard Hall bars (see Table I). During the experiments
the sample was placed into a superconducting magnet with
optical windows made of 50-μm Mylar films. The sample
volume was filled with liquid helium and pumped down to
maintain the temperature of the sample at 1.9 K.

Heterostructures including mixed AlxGa1−xAs layers
[Fig. 1(a)] are known to demonstrate a strong effect of per-
sistent photoconductivity [17]. For samples cooled in the dark
the subsequent illumination with visible light leads to an

TABLE I. Parameters of GaAs/AlGaAs heterostructures at T =
1.9 K. Here, n2D is the two-dimensional density, μ is the mobility,
τ is the relaxation time, m is the cyclotron mass, and size indicates
the dimensions of the substrate. The superscripts dc and THz denote
the quantities independently obtained in dc and spectroscopic exper-
iments, respectively.

Sample 1 Sample 2

ndc
2D (cm−2) (2.3 ± 0.2) × 1011 (3.6 ± 0.3) × 1011

nTHz
2D (cm−2) (2.4 ± 0.2) × 1011 (3.9 ± 0.8) × 1011

μdc [cm2/(V s)] (1.0 ± 0.1) × 105 (3.2 ± 0.5) × 105

μTHz [cm2/(V s)] (1.1 ± 0.1) × 105 (2.5 ± 0.5) × 105

τ (ps) 4.5 ± 0.5 10 ± 2
m/m0 0.070 ± 0.001 0.070 ± 0.002
Size (mm3) 10 × 10 × 0.660 5 × 5 × 0.367

increase in the electron density [18]. The photoinduced charge
carriers persist in the sample even after the switching off of the
light, and they may create an additional conductive channel
parallel to the 2D electrons. In experiments on illuminated
samples 1 and 2 the longitudinal dc resistance Rxx acquired
nonzero values at integer filling factors, and the shape of Hall
plateaus became distorted after illumination. In order to avoid
the persistent photoconductivity effects the optical windows
were covered by black paper that blocked visible light. All
data presented in this work were obtained on samples in the
dark.

The high-frequency Hall conductivity of the two-
dimensional electron gas was measured in the range of
69–1100 GHz using a two-beam Mach-Zehnder interferom-
eter. Backward wave oscillators (BWOs) produced a continu-
ous monochromatic wave that was guided in free space using
dielectric lenses, metallic mirrors, and freestanding wire-grid
polarizers. A quasiparallel incident beam was focused on a
sample by a lens with a diameter of 50 mm and a focal
distance of 140 mm. The transmitted wave passed through a
similar lens to restore a quasiparallel beam. The intensity of
the transmitted beam was measured by a 4.2 K helium-cooled
Si bolometer.

Upon passing through the sample, the linearly polarized
wave became elliptically polarized [see Fig. 1(b)]. First, a
linear component with the same polarization as in the incident
wave was filtered by a wire-grid polarizer. The intensity of
this component with the sample in the beam divided by
the intensity without the sample gave the absolute value of
the complex parallel transmission |t‖|2. The phase shift �l‖
was measured using a reference beam to obtain the complex
parallel coefficient as t‖ = |t‖|eık�l‖ , where k = ω/c is the
wave vector. The polarizer was then rotated by 90◦, and
the procedure was repeated to obtain a complex crossed-
transmission coefficient t⊥ = |t⊥|eık�l⊥ .

In order to obtain the Hall conductivity as a function of
the magnetic field, the transmission coefficients were mea-
sured at fixed frequencies (Fig. 2). The frequency generated
by the BWO was controlled by an accelerating voltage and
could be set to any value within a certain range. Acting
as a Fabry-Pérot resonator, the dielectric substrate produced
regular oscillations in the transmission spectra (see the top
inset in Fig. 3). The frequencies fz at which the transmission
was maximal were determined by the relation

√
εka = πz,

where z is an integer. In the framework of a matrix formalism
[19], the substrate is described by a transfer matrix M that
connects electromagnetic (EM) fields at the opposite surfaces.
At frequencies fz, the transfer matrix of a nonabsorbing di-
electric slab degenerates into an identity matrix: M = (−1)zI .
At these frequencies the substrate virtually “disappears,” as it
simply duplicates the EM field at its surfaces. In transmission
coefficients the substrate causes only a phase shift that is equal
to the thickness and a sign change if z is odd. For sample
1 (ε = 12, a = 0.66 mm), the frequencies fz were multiples
of 67 GHz. Measuring at one of the transmission maxima
allows a higher signal to be obtained, all else being equal. For
this reason, most of the measurements at fixed frequencies f

presented in this work were carried out at f ≈ fz.
The lowest frequency at which the quasioptical method

produces reliable results is determined by the sample
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FIG. 2. Field dependence of the transmission coefficients for sample 1 (Table I) at 332 GHz. Cyclotron resonance is observed at ±0.83 T
as (a) a dip in the parallel amplitude and (b) a peak in the crossed amplitude. The sign change of the external magnetic field does not affect the
parallel transmission [t‖(B ) = t‖(−B )], while the complex crossed coefficient changes sign [t⊥(B ) = −t⊥(−B )]. (c) As a result, the parallel
phase shift generated by the sample is an even function of magnetic field, and (d) the values of the crossed phase shift differ by half a
wavelength. (e) shows |t⊥| near a wide plateau in dc Hall conductance.

dimensions. The size of the focal spot can be estimated as
f λ/D, where f = 140 mm is the focal distance, D = 50 mm
is the diameter of the lens, and λ is the radiation wavelength.
The measured transmission coefficient starts to be affected by
diffraction corrections when the focal spot is comparable to
the sample dimensions. Therefore, in the case of the larger
sample 1 (see Table I) the spectroscopic measurements could
be extended down to frequencies below 100 GHz.

III. DATA PROCESSING

Knowing the two complex coefficients t‖ and t⊥, the com-
plex Hall conductivity can be calculated at frequency ω as in
Ref. [20]:

σxy = 2
√

εe−ıkat⊥
Z0

(
t2
‖ + t2

⊥
)
(
√

ε cos β − ı sin β )
, (1)

FIG. 3. Symmetrized transmission coefficients for sample 1 at
frequencies of 134 GHz (red), 401 GHz (green), and 730 GHz (blue)
as a function of external magnetic field. The parallel transmission in
the zero field is shown as a function of frequency in the inset. The
black solid lines represent classical Drude fits.

where a is the substrate thickness, ε is the dielectric constant
of the substrate, β = √

εka, and Z0 ≈ 377 � is the impedance
of free space. Equation (1) can be simplified in the case when
ω is close to one of the transmission maxima and the magnetic
field B is much higher than the cyclotron resonance (CR)
[20,21] field Bc. The vicinity of a maximum corresponds to
the value of β = πz, where z is an integer. If the condition
B � Bc is satisfied, then the crossed signal is small, and
the absorption in 2DEG is negligible: |t⊥| � |t‖| 	 1 [see
Figs. 2(a) and 2(b)]. In this case, Eq. (1) can be simplified to

|σxy | = 2

Z0
|t⊥|.

Therefore, far from the cyclotron resonance, the plot of the
directly measured quantity |t⊥(B )| represents the absolute
value of the Hall conductivity |σxy |, measured in units of
2/Z0. Figure 2(e) shows the curve |t⊥(B )|, measured at
332 GHz, together with the dc Hall conductance. The y scales
in Fig. 2(e) are intentionally mismatched in order to avoid
overlapping data and to clearly demonstrate the absence of
any quantum plateaus in the high-frequency Hall conductivity.

Since the absence of quantization might be a trivial con-
sequence of heating of 2DEG by the radiation [9], every
spectroscopic experiment was accompanied by simultaneous
transport measurements. In the vicinity of QHE plateaus the
effect of THz radiation on dc Hall conductance did not exceed
0.3%. The black solid line in Fig. 2(e) shows the dc Hall con-
ductance that was measured simultaneously with the crossed
transmission, shown by blue circles. Thus, the experiment
demonstrates that the disappearance of the quantum plateaus
in high-frequency Hall conductivity is of nontemperature
origin. In previous experiments on HgTe quantum wells [9]
we checked possible effects of heating by THz radiation. In
typical experimental conditions the temperature change was
∼0.05 K, which supports the arguments above.

The linear polarization of electromagnetic radiation is
strictly defined only in the case of an infinite plane wave.
In the ideal case, the complex coefficient t‖(B ) is an even
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function of the magnetic field, and t⊥(B ) is an odd function. In
the real experimental setup, the beam is restricted by the size
of the optical elements and by the superconducting magnet.
These factors, along with the imperfections of the polarizers,
led to a depolarization of the optical beam, seen as a deviation
from the perfect symmetry in the experimental data (Fig. 2).
To reduce these external contributions, a symmetric part of the
experimental complex coefficient t‖ was taken to be [t‖(B ) +
t‖(−B )]/2, and an antisymmetric part of t⊥ was taken to
be [t⊥(B ) − t⊥(−B )]/2. These corrected transmission coeffi-
cients were used in Eq. (1) to calculate the Hall conductivity.
Figure 3 shows an example of (anti)symmetrized transmission
data together with the classical Drude fitting curves. The
fitting procedure allowed for the effective cyclotron mass m,
the relaxation time τ , and the electron density nTHz

2D to be
obtained in a 2DEG. Qualitatively, the mass determined the
position of the cyclotron resonance, while the combination of
the density and the relaxation time determined its amplitude
and width. The quantity μTHz = eτ/m was compared with
the mobility μdc, obtained from the dc measurements of Rxx .
The electron density was another parameter obtained in dc
and THz experiments independently. Both the density and the
mobility were found to be in good agreement, as can be seen
from Table I.

IV. HIGH-FREQUENCY HALL CONDUCTIVITY

A. Real part of σx y(ω)

In order to trace the evolution of the quantum plateaus with
increasing frequency, the real part of the Hall conductivity
in sample 1 is plotted as a function of the inverse magnetic
field in Fig. 4. The dc conductance, shown by the black curve,
demonstrates wide plateaus at even filling factors ν = nh/eB.
In a separate experiment, the dc measurement was extended
up to 14 T. The plateau at ν = 1 was also resolved. The overall
behavior of the high-frequency data is well described by the
classical Drude theory [22], shown by thin black curves.
At frequencies below 250 GHz, the cyclotron resonance is
located in low magnetic fields; thus, the fitting curves in Fig. 4
are close to a straight line, Re σxy ∝ B−1 ∝ ν. At 69 GHz (red
circles) a plateau at ν = 2 can be detected in the experimental
conductivity. The width of this plateau is 30% of that in
the dc data. There is no interval with constant Re σxy (B ) at
134 GHz (green circles), and even the slope ∂σxy/∂ν does not
tend to zero at ν = 2. At 134 GHz, the filling of the second
Landau level is revealed as a slight quantum deviation from
the classical curve Re σDrude(B ). At higher frequencies, the
amplitude of the quantum deviation decreases. At 401 GHz
(magenta circles) no signs of the initial plateau can be detected
visually on the plot. The position of the quantum feature
in Re σxy (B ) can be determined by tracking the minimum
slope that shifts to lower magnetic fields with increasing
frequency. The plateaus at higher filling factors are smeared
out at 69 GHz, and they disappear in a similar way.

In comparison with sample 1, sample 2 had a higher
electron mobility and electron density (see Table I). The
evolution of the real part of σxy for sample 2 is shown in
Fig. 5(a). Similar to sample 1, the cyclotron resonance in
high-frequency Hall conductivity can be approximated by

FIG. 4. Evolution of the Hall conductivity with increasing fre-
quency for sample 1 (Table I). The dc conductivity, shown by the
black solid line, exhibits plateaus near the even filling factors ν =
nh/eB. High-frequency curves are shifted by 1 for clarity. At 69 GHz
(red) the real part of σxy has a narrow plateau only around ν = 2.
Further increasing of the frequency leads to the smearing of the
plateau and to the suppression of quantum deviations from classical
Drude behavior (shown by thin black curves).

classical Drude fits. Quantum oscillations, corresponding to
the filling of Landau levels, can be detected in the high-
field region as well. The difference between the experimental
conductivity and the classical Drude fit is plotted in Fig. 5(b).
The large discrepancy at B ≈ Bc is due to the large value of
optical conductivity (approaching 100 e2/h) along with the
steep slope ∂σxy/∂ν. A maximal amplitude of the quantum
deviations in sample 2 is achieved at filling factors of ν > 10,
while the oscillations attenuate with increasing filling factor ν

in sample 1 [see Fig. 5(c)].
Although no flat plateaus can be detected in the high-

frequency σxy , the amplitude of the quantum deviations at
236 GHz [Fig. 5(b)] above ν = 10 is comparable with the
amplitude of quantum deviations in the dc conductance. The
phase of the ac deviations is shifted with respect to the dc data.
This effect is better seen in Fig. 5(b) when comparing dc and
236-GHz curves around ν = 12. A similar phase shift can be
observed in sample 1 around ν = 3 [see Fig. 5(c)]. The shift
of oscillations in the difference (σxy − σDrude) corresponds to
a shift of positions of the minimal slope Re(∂σxy/∂ν) towards
higher values of ν and towards smaller magnetic fields. A
similar effect was reported previously [3,12] and attributed
to the difference in the Landau level broadening and in the
localization length between adjacent Landau levels.

According to the relation �c ∝ B ∝ 1/νc, the cyclotron
resonance shifts to lower ν as the radiation frequency in-
creases. Figures 5(b) and 5(c) demonstrate that the quantum
oscillations become attenuated to the right of the CR (ν >

νc), where the radiation frequency exceeds the cyclotron gap
(ω > �c).
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FIG. 5. (a) The Hall conductivity for sample 2 (Table I) at
different frequencies as a function of the inverse magnetic field and
the Landau filling factor ν = nh/eB. The positions of the cyclotron
resonance are denoted by “CR.” The solid gray lines are classical
Drude fits. (b) and (c) The difference between the experimental data
and the classical fits for samples 2 and 1, respectively. For clarity,
the data sets are shifted by 2e2/h in (a) and (b) and by e2/h in (c).
All panels are matched by ν, and the magnetic field is indicated for
sample 2 in (a) and (b).

B. Imaginary part of σx y(ω)

While the Hall conductivity is a real number in the static
case, it becomes a complex number with a nonzero imag-
inary part at finite frequencies. Figures 6(a), 6(c) and 6(e)
show the experimentally obtained σxy (ν) (symbols) at 134
and 202 GHz together with the Drude fits (solid curves)
for sample 1. Figures 6(b), 6(d) and 6(f) show σxy on a
complex plane as a parametric plot with the filling factor

ν as a parameter. The sweep of the magnetic field from 7
to 0 T corresponds to the change of ν from 1.32 to ∞.
In this representation, classical theory produces a circlelike
curve, depicted in Fig. 6(b) by black solid lines. For higher
frequencies the curve is getting closer to a perfect circle
that is centered on the imaginary axis and passes through
the origin of the coordinates. The resonance behavior of
experimental conductivity is well described by the classical
Drude theory [see Figs. 6(a) and 6(b)]. However, when only a
few Landau levels are occupied, σxy demonstrates substantial
deviations from the classical curve [see Figs. 6(c)–6(f)]. Due
to experimental limitations, the complex argument of σxy (ν)
was determined up to an unknown constant value, which can
be estimated by comparing with the Drude fit. In Fig. 6 this
value was chosen to match the theoretical and experimental
curves near ν = 10, where the quantum deviations are faded
out. In this case, the imaginary part of the quantum corrections
appears to be positive nearly everywhere, and the imaginary
part of σxy tends to preserve its original sign. As discussed
above, in the real part of σxy , the deviations can be regarded
as remnants of the dc Hall plateaus. Figures 6(c) and 6(e)
show the real part of the difference (σxy − σDrude), depicted by
green symbols on the same scale as the imaginary part. These
plots demonstrate that the quantum oscillations have similar
amplitudes in the real and imaginary parts and that the phases
are shifted by ≈π/2. The broken periodicity below ν = 2 is
likely due to the presence of the quantum plateau at ν = 1,
which is the only odd plateau resolved in this sample (Fig. 4).

V. DISCUSSION

The most striking feature of the QHE at zero frequency
is the exact quantization of the Hall resistance Rxy , which is
a macroscopic property of a whole sample, directly obtained
in dc experiments. This fact alone does not prove that σxy is
also exactly quantized [23] because local inhomogeneities of
the two-dimensional gas are always present in a real sample.
Unlike the contact techniques, the spectroscopic experiments
test σxy directly. Experiments at 30 GHz [23] demonstrated
that the plateaus of nonzero width are also present in σxy .
As shown above, the plateaus in σxy disappear at higher fre-
quencies. For the samples in this study the critical frequency
lies near 100 GHz. Above this frequency the two-dimensional
electron gas loses its QHE features, and the Hall conductivity
follows the classical Drude model.

Although the IQHE has been extensively studied theoreti-
cally, only a few works have addressed the Hall conductivity
in a high-frequency regime [24]. When calculating the Hall
conductivity in a linear approximation, a common approach
is to apply linear perturbation theory (Kubo formalism) to
a model system. The theoretical models of IQHE consider
noninteracting fermions in a strong magnetic field, placed in
a model potential, which simulates the presence of impurities
and constraints in a sample. Depending on the chosen poten-
tial, the analysis of such models can be conducted analytically
or numerically.

In Refs. [24,25] the high-frequency Hall conductivity was
calculated using a numerical method of exact diagonaliza-
tion. In order to model the disorder, the authors treated ran-
domly distributed Gaussian scatterers. As calculated within
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FIG. 6. The complex Hall conductivity σxy in sample 1 (Table I) at 134 and 202 GHz. (a) Real and imaginary parts of σxy are shown as
a function of the Landau filing factor ν = nh/eB. The overall resonance behavior is well described by the Drude model (black solid lines).
(b) shows σxy on a complex plane as a parametric plot with the filling factor as a parameter. In the low-ν limit in (c)–(f), where QHE is
observed in dc, the imaginary part of σxy demonstrates substantial periodic deviations from the classical curve in (c) and (e). These deviations
are comparable to the deviations in the real part, shown by green symbols on the same scale. In (d) and (f) the integer values of ν are indicated
by red symbols.

this model, σxy (ω) was found to retain the Hall plateaus
in the THz range. In Ref. [12], these model results were
used to justify the procedure of averaging σxy (ω, ν) over
a range of frequencies from 0.5 to 1.2 THz. The resulting
averaged σ̃xy (ν) had a plateaulike feature of vanishing width
in comparison with a wide plateau in dc. This experimental
fact, reported in Ref. [12], indicates that the plateaus actually
smeared out below 1.2 THz. The procedure of averaging
should be reconsidered since it only masks the disappearance
of the Hall plateaus for increasing frequencies.

In earlier works, the high-frequency Hall conductivity was
treated analytically in two opposite limits: for scatterers with δ

potential [26] and for a slowly varying potential of impurities
[27]. In Ref. [26], the Hall conductivity was obtained within
the δ-impurity model [28] as a function of electron density n.
At finite frequencies, the dependence Re σxy (n) is predicted
to have a single-dip or double-dip structure instead of a flat
plateau at dc. A monotonic dependence Re σxy (n) is achieved
only if both negative and positive δ impurities are present in
the calculation and the Landau level broadening exceeds the
cyclotron energy. The last condition was likely not fulfilled in
this study’s samples, while the experimental high-frequency
Re σxy (B ) was monotonic in the vicinity of the dc plateaus.
Unfortunately, the imaginary part of σxy was not treated
in Ref. [26], and no explicit estimation was given for the
critical frequency f0 at which the plateaus were destroyed.

However, the consideration can be extended. In particular,
the critical frequency f0 can be shown to be close to the
half-width �/(4πh̄) of the corresponding broadened Landau
level [29]. If the level broadening is assumed to be caused
by the scattering on short-range ionized impurities, then the
width can be estimated as [30]

� = h̄

√
2�c

πτ
. (2)

Since the cyclotron frequency �c = eB/m increases with
magnetic field, the plateaus at small filling factors are ex-
pected to be retained at higher radiation frequencies. Using
the parameters in Table I for sample 1, the critical frequency
is obtained as f0 = 47

√
B GHz. For the plateaus at ν = 2 and

ν = 4, the estimated critical frequencies are 102 and 72 GHz,
respectively. In agreement with this estimation, the plateau at
ν = 2 at 69 GHz was experimentally observed. The plateau
at ν = 4 was not resolved, as the corresponding critical fre-
quency of 72 GHz is close to the radiation frequency. The
plateaus at ν > 4 are already absent at f � 69 GHz since
they occur in Rxy at even lower magnetic fields. Due to the
longer relaxation time in sample 2 (Table I), the estimated
Landau level width was smaller, and the critical frequency
was lower than in sample 1. For this reason, no plateaus in
high-frequency conductivity could be observed in sample 2.

045305-6



HIGH-FREQUENCY BREAKDOWN OF THE INTEGER … PHYSICAL REVIEW B 99, 045305 (2019)

If Eq. (2) is applied to the case of HgTe films [31]
and to graphene [6], critical frequencies of 1 and ≈3 THz
are obtained, respectively. These higher values are formally
achieved due to the smaller effective masses and the shorter
relaxation times in the CdHgTe wells and in graphene. The
direct application of Eq. (2) to the systems with a strongly
nonparabolic dispersion is questionable. However, it is possi-
ble that the observation of the quantized Faraday rotation in
these materials at higher frequencies is indeed connected to
the larger width of the Landau levels.

In Ref. [27] the Hall conductivity was calculated using
the drift approximation [32,33]. In the limit of very high
frequencies, σxy (ν) tended to the classical straight line with
a small quantum correction:

σxy (ν) = νe2/h + δσxy (ν).

As calculated within this model, the term δσxy has zero
imaginary part, while the experimental δσxy has both real
and imaginary parts of a similar amplitude. The calculation of
intermediate frequencies resulted in σxy with a nonzero imag-
inary part. However, in this case the dependence of Re σxy (ν)
was not monotonic. Thus, the shape of the smeared quantum
plateaus is not described by this approach even qualitatively.
The critical frequency calculated in the drift approximation
was connected to the level broadening, similar to the case of
the δ potential treated above.

None of the existing theoretical models provides a satis-
factory description for the shape of the plateaus in the high-
frequency Hall conductivity. The numerical method of exact
diagonalization predicts the persistence of the plateaus in the
THz range. Within this model, a decrease in disorder leads to

a decreasing width � of Landau levels and to a more distinct
quantization in σxy . In contrast, the analytical methods pre-
dict the destruction of the plateaus at frequencies f > �/h.
Within these models, a stronger disorder allows the quantum
plateaus to occur at higher frequencies. The experimental data
presented in this work and in Refs. [6,13,23,31] support the
result of the analytical methods. An ultimate understanding
requires further systematic experimental studies on samples
with significantly different electron mobilities and cyclotron
masses.

VI. CONCLUSIONS

The dynamic quantum Hall effect was studied using
continuous-wave THz spectroscopy in the frequency range of
69–1100 GHz. A clear frequency dependence of the quantum
deviations from the classical Drude model was observed. The
extinction of the QHE plateaus took place near 100 GHz.
Only small quantum corrections were observed above this fre-
quency. Some theoretical models describe this phenomenon
qualitatively, while other models predict the persistence of the
plateaus in the high-frequency range. The results of this work
will stimulate efforts towards a complete understanding of the
IQHE.
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