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Band flips and bound-state transitions in leaky-mode photonic lattices
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We present analytical and numerical results on the formation and properties of the leaky stop band in
one-dimensional photonic lattices. At the second stop band, one band edge mode suffers radiation loss generating
guided-mode resonance whereas the other band edge mode becomes a non-leaky bound-state in the continuum.
We show that the frequency location of the leaky band edge, and correspondingly the bound-state edge, is
determined by superposition of Bragg processes generated by the first two Fourier harmonics of the spatial
dielectric constant modulation. At the closed-band state, we discover an analytic condition for the exceptional
point where frequency is fully degenerate.
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Periodic subwavelength metastructures, including one-
dimensional (1D) and two-dimensional (2D) metagratings in
photonic-crystal slab geometry, are governed by principles
that depend strongly on the scale of the operational wave-
length λ relative to the period �. In the deep subwavelength
regime � � λ, classic effective-medium theory [1] becomes
accurate and the materials are effectively homogenized, en-
abling facile phase control, antireflection properties, and
polarization manipulation. In the subwavelength resonance
regime with the period moderately smaller than the wave-
length � < λ, on the other hand, effective-medium theory
fails and the metastructures exhibit intricate resonance effects
on account of coupling of incident light to quasiguided lateral
Bloch modes [2]. The attendant resonance regime enables a
variety of novel device concepts exemplified by wideband
reflectors [3], narrow-bandpass filters [4], and polarizers [5].
Most of the important properties are associated with the
second (leaky) stop band because it admits light injection into
the lattice via broadside illumination. Moreover, at the second
stop band, only two propagating external (zero order) waves
exist, and thus energy transfer between them is particularly
efficient.

In this paper, we address fundamental properties of the
second band gaps of photonic lattices in the resonance regime.
The band structure admits a leaky edge and a nonleaky edge
for each supported resonant Bloch mode if the lattice is sym-
metric. The leaky modes generate various spectral responses
via guided-mode resonances (GMRs) and the nonleaky edge
becomes a bound-state in the continuum (BIC), or embedded
eigenvalue, currently of great scientific interest [6–18]. We
show that it is possible to control the width of the leaky band
gap by lattice design. In particular, as a modal band closes,
there results a degenerate state; this state is remarkable as
it is possible to transition to it by parametric and material
choice as shown here. We demonstrate that the transition
to, and across, the degenerate point executes a band flip. To
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understand the physical mechanisms inducing the band clo-
sure and the band flip, we investigate the band gap formation
relative to lattice harmonic content and device parameters
by employing a semianalytical model and finite-difference
time-domain (FDTD) simulations [19,20]. The semianalytical
dispersion model is particularly powerful as it provides direct
physical insight into leaky band dynamics, including band
closure and the degenerate state associated with exceptional
points in dispersion.

As noted in Fig. 1(a), we analyze a single 1D periodic
layer of thickness d enclosed by a substrate with dielectric
constant εs and a cover region of εc. The periodic layer acts as
a waveguide as well as a phase-matching element because its
average dielectric constant εavg = εl + ρ(εh − εl ) = 4.00 is
larger than εs = 2.25 and εc = 1.00, where εh and εl represent
the high and low dielectric constants, respectively, and where
ρ is the fill factor of the high dielectric constant part. We use
a parameter �ε = εh − εl to represent the level of dielectric
constant modulation, keeping εavg constant to highlight the
effect of changes in �ε clearly. In this 1D case, photonic
band gaps open up for media with εh and εl when 0 < ρ <

1 and �ε > 0. As shown schematically in Fig. 1(b), leaky
modes in blue circles generate GMR effects in the reflection
spectra by coupling with the incident wave, whereas BICs
in red circles cannot produce a resonance because they are
symmetry protected. The location of the BIC (leaky mode)
transfers from the upper (lower) to the lower (upper) band
edge due to the band flip effect as ρ and/or �ε increase. In
general, if the lattice supports numerous leaky modes, each
mode will undergo similar transitions, as each mode possesses
a band gap [21]. In this study, we limit our attention to the
fundamental TE mode, as this simplest case brings out the
key properties of the band dynamics.

Figure 2(a) shows the evolution of the second stop band un-
der variation of �ε for ρ = 0.48. As the value of �ε increases
from zero, the band gap opens and its size increases. However,
the gap size decreases and becomes zero as �ε is further
increased. On additional increase in �ε the band gap reopens
and its size grows again. These dynamics are associated with
band flip as seen by the spatial profiles of the band edge
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FIG. 1. (a) Schematic of a 1D photonic lattice with a normally
incident TE-polarized plane wave. (b) Conceptual illustration of the
band flip and bound-state transition. Here, kz is the wave vector along
the z direction and K = 2π/� is the magnitude of the grating vector.
Guided modes are described by complex normalized frequency �.

modes plotted in the insets of Fig. 2(a). When �ε is 0.4 and
0.55, the upper (lower) band edge modes have asymmetric
(symmetric) spatial electric field (Ey) distributions. When �ε

is 0.62 and 0.75, on the other hand, the upper (lower) modes
have symmetric (asymmetric) field distributions. The field
computations also show that symmetric band edge modes are
radiative out of the grating layer whereas asymmetric modes

are well localized in the grating layer. The band transitions
associated with the symmetry-protected BIC states are seen
clearly in Fig. 2(b) depicting Q factors as a function of kz.
When �ε is 0.4 and 0.55, the BIC state resides in the upper
band and the Q factor increases without bound at the center
of the first Brillouin zone. Meanwhile, the Q factor in the
lower band does not exceed 1500 in the computed region
|kz/K| � 0.006. On the contrary, Fig. 2(b) shows that high-Q
BIC states exist in the lower band when �ε is 0.62 and 0.75.

We now show that the band flip and interband transition
presented in Fig. 2 are induced by superposition of Bragg
processes denoted by BRq,n, where q indicates the Bragg
order and n denotes the Fourier harmonic of the dielectric
constant modulation. As an approximation, we keep only the
strongest Bragg processes, which are BR2,1 operating as a
second-order Bragg reflection off the first Fourier harmonic
and BR1,2 defining a first-order Bragg reflection by the second
harmonic. Central to our study is investigating photonic band
structures analytically by solving the 1D wave equation given
by [23](

∂2

∂x2
+ ∂2

∂z2

)
Ey (x, z) + ε(x, z)k2

0Ey (x, z) = 0, (1)

where k0 denotes the free-space wave number. Equation (1)
can be solved numerically by expanding the periodic dielectric
function ε(x, z) in a Fourier series and by expanding the elec-
tric field Ey as plane waves [24]. For the 1D symmetric lattice,

FIG. 2. Band flip and bound-state transitions in a 1D leaky-mode photonic lattice. (a) FDTD simulated dispersion relations near the second
stop band for four different values of �ε. Insets with blue and red colors illustrate spatial electric field (Ey) distributions of band edge modes
at the y = 0 plane. Vertical dotted lines represent the mirror planes in the computational cells. The band gap closes when �ε = 0.62. Before
and after the band gap closure, spatial field profiles of the band edge modes are reversed. (b) Calculated radiative Q factors of the upper and
lower bands. Bound states with asymmetric modal profiles are located in different bands before and after the band gap closure. In the FDTD
simulations, we use structural parameters d = 0.50�, ρ = 0.48, εc = 1.00, εs = 2.25, and εavg = 4.00. Details on the FDTD simulations are
provided in the Supplemental Material [22].
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FIG. 3. Computed stop bands for a 1D leaky-mode lat-
tice relative to Fourier harmonic content. The dielectric func-
tions vary for these examples. (a) ε = ε0 + ε1 cos(Kz), (b) ε =
ε0 + ε2 cos(2Kz), and (c) ε = ε0 + ε3 cos(3Kz). In (d) ε = ε0 +
ε1 cos(Kz) + ε2 cos(2Kz) is used. Parameters for the FDTD simula-
tions and KH model are d = 0.50�, ρ = 0.35, εc = 1.00, εs = 2.25,
�ε = 1.00, and εavg = 4.00.

the dielectric function can be expanded in an even cosine func-
tion series ε(z) = ∑∞

0 εn cos(nKz), where the Fourier coeffi-
cients are given by ε0 = εavg and εn�1 = (2�ε/nπ ) sin(nπρ).
For clear insight into the leaky-mode band dynamics, we use
a simple semianalytical approach proposed by Kazarinov and
Henry (KH); this model is then verified by rigorous FDTD
computations. The KH model solves the wave equation by
retaining only the zeroth, first, and second Fourier harmon-
ics [25]. The spatial electric field distribution is approxi-
mated as Ey (x, z) = [A exp(+iKz) + B exp(−iKz)]ϕ(x) +
Erad, where ϕ(x) characterizes the mode profile of the unmod-
ulated waveguide and Erad represents the radiating diffracted
wave. Near the second stop band, the dispersion relation can
be written as

�(kz) = �0 − (
ih1 ±

√
k2
z + (h2 + ih1)2

)/
(Kh0), (2)

where �0 is the Bragg frequency under vanishing index
modulation, and the coupling coefficients are given by

h0 = �

∫ ∞

−∞
ε0(x)ϕ(x)ϕ∗(x)dx, (3)

h1 = i
K3�4ε2

1

8

∫ 0

−d

∫ 0

−d

G(x, x ′)ϕ(x ′)ϕ∗(x)dx ′dx, (4)

h2 = K�2ε2

4

∫ 0

−d

ϕ(x)ϕ∗(x)dx, (5)

where G(x, x ′) denotes the Green’s function for the diffracted
field [26,27]; see Supplemental Material [22] for details.

To check the validity of the stop band formation by the
Bragg processes, we calculate the band structures of pertinent
1D lattices by FDTD simulations. In Fig. 3(a), the stop
band denoted ��1 is formed by BR2,1 with ε(z) = ε0 +
ε1 cos(Kz). Dispersion curves (blue lines) obtained from the
full nonapproximated lattice are also plotted for comparison.
Clearly, the FDTD results with the fundamental harmonic
only are quite different from those with the full lattice.
Figure 3(b) shows stop band ��2 formed by BR1,2. The
full-lattice band structure is close to the approximate structure,
denoting the importance of this partial scattering process.
Figure 3(c) shows that the third-order harmonic cannot con-

tribute to the second stop band by itself. Figure 3(d) illustrates
that the band ��12 simulated with the first and second
harmonics simultaneously agrees well with the band ��

simulated with the full nonapproximated lattice. Moreover,
there is excellent agreement with the dispersion curves cal-
culated with the KH model. Hence, we conclude that the
Bragg-reflection superposition model proposed here is valid
to describe the second stop band of weakly to moderately
modulated photonic lattices.

Equation (2) indicates that the leaky stop band with two
band edges �a =�0+h2/(Kh0) and �s =�0−(h2+i2h1)/
(Kh0) opens at kz =0. At the band edge with frequency �a ,
which is obtained when the electric field distribution is an
asymmetric (sine) function (A = −B), there is no radiation
loss because �a is purely real. At the �s band edge obtained
when the field distribution is a symmetric (cosine) func-
tion (A = B), the radiative loss is maximal with Im(�s ) =
−2Re(h1)/(Kh0). Hence, the band edge modes with the
frequencies �a and �s are associated with the BIC and GMR,
respectively.

Since the coupling coefficients h1 and h2 are due to the
first and second Fourier harmonics, respectively, superposi-
tion between the scattering processes BR2,1 and BR1,2 can
be understood from the two coupling coefficients. For the
symmetric lattice shown in Fig. 1(a), h2 is positive (neg-
ative) when the fill factor ρ is smaller (greater) than 0.5;
this happens because the second Fourier harmonic coefficient
ε2 = (�ε/π ) sin(2πρ) changes its sign once from + to −
when ρ = 0.5. But Im(h1) is always positive irrespective of ρ.
Since the size of the band gap is given by Re(|�a − �s |) =
2|h2 − Im(h1)|/(Kh0), when ρ > 0.5 with h2 < 0, the size
of the gap results from the constructive interference of BR2,1

and BR1,2. When ρ < 0.5, on the other hand, the gap size
is determined by the destructive interference of BR2,1 and
BR1,2 and thus the gap size can reach a zero value. Fill-
factor-dependent interplay between BR2,1 and BR1,2 can be
also understood from FDTD simulated spatial electric field
distributions of band edge modes at ��1 and ��2; see
Fig. S3 in the Supplemental Material [22].

When both ρ and �ε are small, the nonleaky asymmetric
BIC locates at the upper band edge because the first-order
reflection BR1,2 dominates the second-order reflection BR2,1.
But when ρ increases and approaches 0.5, there is a chance
for BR2,1 to overwhelm BR1,2 because the strength of BR1,2

gets weaker and becomes zero as ε2 approaches zero. For
a given value of ρ(<0.5), as �ε increases from zero there
should exist a critical value of index modulation �εBF where
the band gap closes and the bound-state transition takes place.
Before (after) the band gap closure, BICs should appear at
upper (lower) band edges. As the value of ρ gets closer to 0.5,
a smaller value of index modulation �ε will be required for
BR2,1 and BR1,2 to balance each other because the coupling
coefficients h1 and h2 are proportional to ε2

1 = [2�ε/π ×
sin(πρ)]2 and ε2 = �ε/π × sin(2πρ), respectively. Table I
shows simulated �εBF for five different fill factors. It is seen
that �εBF increases from 0.31 to 1.55 when ρ decreases from
0.49 to 0.45. The dependence of �εBF on ρ shown in Table I
coincides with the prediction of the destructive interaction
between BR1,2 and BR2,1.

Band transitions of symmetry-protected BICs at kz = 0
can be found in 1D leaky-mode photonic lattices which have
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TABLE I. �εBF as a function of ρ. As ρ decreases from 0.5, the
modulation strength �εBF increases. In the FDTD simulations, �ε

was increased in discrete steps of 0.01, and �εBF is defined as the
first value where the band flip is observed.

ρ 0.49 0.48 0.47 0.46 0.45
�εBF 0.31 0.62 0.93 1.24 1.55

180◦ rotational symmetry around the x axis (Cx
2 ) and time

reversal symmetry (T ). In the transition process with the
variation of �ε shown in Fig. 2, the topological charge carried
by the symmetry-protected BIC is maintained because Cx

2 T

symmetry is preserved and there is no creation or annihilation
of BIC since our lattice has no up-down mirror symmetry
[7,28].

When a leaky band closes as shown in Fig. 2(a) with
�ε = 0.62, there exists a finite range of Bloch wave vectors
�kz where ∂�Re/∂kz = 0. Leaky band flattening with band
gap closure is related to the exceptional point where the real
part �Re and imaginary part �Im of frequency are fully de-
generated simultaneously [29,30]. When the band gap closes
with h2 = Im(h1), the dispersion relation in Eq. (2) can be
rewritten as

�(kz) = �0 − (
ih1 ±

√
k2
z − Re(h1)2

)/
(Kh0). (6)

Equation (6) clearly shows that frequency is fully degenerate
at kex = ±Re(h1). Near the exceptional point, comparing with
linear dependency, the square-root dependence of the leaky
dispersion relations is expected to induce a large change in
frequency with a small variation of kz. Hence, exceptional
points in 1D leaky bands have been proposed to increase the
sensitivity of GMR devices [30].

Out-of-plane radiation at the leaky edge and a bound state
at the opposing edge are primary aspects of the leaky-mode

photonic lattices under study herein. Band flips and bound-
state transitions have been formulated above. We also inves-
tigated nonleaky stop bands in conventional periodic stack
lattices with infinite thickness. Figure S1 in the Supplemental
Material [22] shows that the dispersion curves cross as straight
lines and ∂�Re/∂kz �= 0 at kz = 0 when the nonleaky stop
band closes. However, we verified band flip at the nonleaky
band edges in terms of electric-field distributions.

In summary, we investigated band flips and bound-state
transitions in 1D photonic lattices. Our analysis shows that the
second band gap is primarily controlled by first-order Bragg
diffraction by the second Fourier harmonic lattice component.
However, near a fill factor of 0.5, second-order Bragg diffrac-
tion by the fundamental Fourier harmonic becomes competi-
tive with the primary process. It is the destructive interference
of these major two processes that closes the gap and induces
a band flip whereby the leaky edge and the bound-state edge
transition across the band gap. Thus, these fundamental Bragg
processes control the band dynamics. Consequently, the band
does not close at the fill factor being identically 0.5, as is
often assumed. As the grating modulation strength increases,
the transition point is increasingly pulled away from this
value. An exceptional point is identified at the closed gap
on account of the powerful semianalytical dispersion model
applied. Our study is limited to the simplest possible 1D lattice
without up-down mirror symmetry. Therefore, topological
charge carried by the bound state is conserved during the
transition process. Whereas our work elucidates fundamental
aspects of the band dynamics of leaky-mode photonic lattices,
the basic methodology presented can be applied in other
device architectures including photonic-crystal slabs and
metamaterials.
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tional support was provided by the Texas Instruments Distin-
guished University Chair in Nanoelectronics endowment.

[1] S. M. Rytov, Sov. Phys. JETP 2, 466 (1956).
[2] Y. H. Ko and R. Magnusson, Optica 5, 289 (2018).
[3] P. Moitra, B. A. Slovick, W. Li, I. Kravchencko, D. P. Briggs, S.

Krishnamurthy, and J. Valentine, ACS Photon. 2, 692 (2015).
[4] M. Niraula, J. W. Yoon, and R. Magnusson, Opt. Lett. 40, 5062

(2015).
[5] Y. Ding and R. Magnusson, Opt. Express 12, 5661 (2004).
[6] J. Gomis-Bresco, D. Artigas, and L. Torner, Nat. Photon. 11,

232 (2017).
[7] C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M.
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