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We investigate the steady-state Rényi entanglement entropies after a quench from a piecewise homogeneous
initial state in integrable models. In the quench protocol, two macroscopically different chains (leads) are joined
together at the initial time, and the subsequent dynamics is studied. We study the entropies of a finite subsystem
at the interface between the two leads. The density of Rényi entropies coincides with that of the entropies of
the generalized Gibbs ensemble that describes the interface between the chains. By combining the generalized
hydrodynamics treatment of the quench with the Bethe ansatz approach for the Rényi entropies, we provide exact
results for quenches from several initial states in the anisotropic Heisenberg chain (XXZ chain), although the
approach is applicable, in principle, to any low-entangled initial state and any integrable model. An interesting
protocol that we consider is the expansion quench, in which one of the two leads is prepared in the vacuum
of the model excitations. An intriguing feature is that for moderately large anisotropy the transport of bound
state is not allowed. Moreover, we show that there is a “critical” anisotropy, below which bound-state transport
is permitted. This is reflected in the steady-state entropies, which for large enough anisotropy do not contain
information about the bound states. Finally, we benchmark our results against time-dependent density matrix
renormalization group simulations.
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I. INTRODUCTION

In recent years, entanglement-related quantities emerged
as informative witnesses of the complexity of the quantum
many-body wave function, both at equilibrium and out of
equilibrium. Entanglement is deeply intertwined with the
computational cost to accurately describe the quantum many-
body wave function by using matrix product states [1–4]. The
Rényi entropies S (α) are popular entanglement measures for
pure states. Given a subsystem A′, they are defined as

S (α) ≡ 1

1 − α
ln Trρα

A′ , with α ∈ R (1)

where ρA′ is the reduced density matrix of A′. The limit
α → 1 in (1) defines the von Neumann entropy as S ≡
−TrρA′ ln ρA′ . The knowledge of Rényi entropies for differ-
ent values of α gives access to the distribution of the full
spectrum of ρA′ [5] (entanglement spectrum). Importantly,
the Rényi entropies can be computed by using quantum and
classical Monte Carlo methods [6], and can be measured in
experiments with cold atoms [7–10], unlike the von Neumann
entropy.

Rényi and von Neumann entropies are key to under-
standing the fundamental physics underlying thermalization
in isolated out-of-equilibrium systems, for instance, after a
quantum quench. This is the standard protocol to drive a
system out of equilibrium: A system is prepared initially in
a low-entanglement state |�0〉, and it is let to evolve with
a local Hamiltonian H , such that [H, |�0〉〈�0|] �= 0. It is
by now accepted that for generic systems local properties
of the steady-state emerging at late times can be described
by the Gibbs (thermal) ensemble, whereas for integrable
models one has to use a generalized Gibbs ensemble (GGE)

[11–39]. Quite generically, the Rényi entropies (and the von
Neumann entropy) exhibit a linear growth at short times,
which is followed by a saturation at late times. Their short-
time behavior reflects the irreversible growth of the com-
plexity of the system after the quench, whereas their steady-
state value coincides with generalized (GGE) free energies
[40–42]. These qualitative features, i.e., the linear growth and
the saturation behavior, appear to be ubiquitous [4,43–70].

A well-known quasiparticle picture allows to understand
the qualitative behavior of the entanglement spreading [43].
In this picture, the entanglement growth is the result of
the ballistic propagation of entangled pairs of quasiparticles
created after the quench. For noninteracting fermion models,
the quasiparticle picture is exact in the scaling limit, as it has
been demonstrated in Ref. [44]. Remarkably, for integrable
interacting models, by complementing the semiclassical pic-
ture with thermodynamic knowledge of the steady state, it is
possible to describe quantitatively the full-time dynamics of
the von Neuamann entropy [45,71]. Unfortunately, a general-
ization of this result to the Rényi entropies is not available yet,
although the thermodynamic Bethe ansatz (TBA) can be used
(see Refs. [40–42]) to obtain the steady-state Rényi entropies.

Recent years witnessed an enormous interest in quenches
from piecewise homogeneous initial conditions. Several tech-
niques have been used, such as conformal field theory [72–77]
(CFT), free-fermion methods [78–89], field theory meth-
ods [90–92], integrability [93–97], and numerical tech-
niques [89,98–102]. For integrable models, the recently de-
veloped generalized hydrodynamics (GHD) [103,104] allows
for an analytic treatment of these quenches [105–122]. The
standard setup that we consider is depicted in Fig. 1. This
is the prototypical situation to study quantum transport in
one-dimensional system. Two chains A and B are prepared
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FIG. 1. Rényi entropies after a quench from a piecewise homo-
geneous initial condition in integrable systems: setup considered in
this work. Two chains A and B are prepared in the states |�A〉 and
|�B〉 and are joined together at t = 0. In the space-time scaling limit
on each ray ζ dynamical properties are described by a generalized
Gibbs ensemble (GGE). Here, we focus on the Rényi entropies of
a subregion A′ of length � placed next to the interface between A

and B.

in two macroscopically different states. At t = 0 they are
connected, and the full system is let to evolve unitarily under
a many-body Hamiltonian H . In the GHD approach, in the
scaling limit of long time t and large distance x, at fixed ζ ≡
x/t (rays in Fig. 1) dynamical properties are described by a
GGE. However, as of now, only few results have been derived
for the entanglement dynamics after quenches from piecewise
homogeneous states. Notable exceptions are systems that can
be mapped to CFTs in curved space-time [75–77]. Also, for
free-fermion systems, the full-time dynamics of the entangle-
ment entropies has been derived analytically in Ref. [68]. For
interacting integrable models a conjecture for the steady-state
von Neumann entropy and for the entanglement production
rate at short times has been presented in Ref. [64].

However, extending the quasiparticle picture to describe
the Rényi entropies after quenches from piecewise homo-
geneous states remains an open problem. The aim of this
work is to provide a step forward in this direction. Here, we
focus on the steady-state Rényi entropies of a finite subregion
A′ of length � placed next to the interface between A and
B (see Fig. 1). The key idea is that in the limit �/t → 0,
the entire subsystem A′ should be described by the GGE
with ζ = 0, i.e., by the NESS (nonequilibrium steady state).
Thus, following Ref. [40], the density of Rényi entropy has
to coincide with that of the NESS Rényi entropy, which can
be calculated using the thermodynamic Bethe ansatz (TBA).
Specifically, the appropriate thermodynamic ensemble that
determines the Rényi entropies is obtained by combining the
GHD approach for the quench [103,104] with the results of
Ref. [40]. By using this method, we investigate the Rényi
entropy after quenches in the spin- 1

2 anisotropic Heisenberg
chain (XXZ chain). We consider several initial states for A

and B, such as the Néel state and the Majumdar-Ghosh state.
However, in principle, our approach is straightforwardly gen-
eralizable to any low-entangled initial state (product state) and
to any integrable model. For all these quenches, we provide
robust numerical evidence for our results by using the time-
dependent density matrix renormalization group (tDMRG)
method [123–126].

Finally, we consider the quench in which A is ini-
tially prepared in the ferromagnetic state. After mapping the
Heisenberg chain onto a system of interacting fermions con-

fined in a box, this corresponds to the trap-expansion protocol
that is routinely performed in cold-atom experiments. For this
reason, we term this quench expansion quench.

A remarkable feature of the XXZ chain is that its spec-
trum contains composite excitations, which consist of bound
states of several elementary particles (magnons). The physics
of these bound states is receiving constant attention, both
theoretically [127–132], as well as experimentally [133,134].
Interestingly, while for generic quenches, the steady-state
entropies contain information about all the types of quasi-
particles (bound and unbound states), this is not the case for
the expansion quench, at least in the limit of large anisotropy.
Here, we show that this reflects that the bound-state transport
between the two chains is not possible at large anisotropy.
This is an intriguing effect of the interactions, which renor-
malize the group velocity of the “bare” excitations of the
model. Physically, after the expansion quench, the velocities
of the bound states created in the bulk of A and B change their
sign when approaching the interface, and they are deflected
back. This suggests that the expansion quench could be used
as a filter to isolate multispin bound states. An interesting
result is that there is a “critical” anisotropy, below which
dynamical properties change abruptly, and the bound-state
transport is permitted. We explicitly check this scenario for the
expansion of the Néel state and the Majumdar-Ghosh state,
although we expect it to happen for a larger class of initial
states.

The paper is organized as follows. In Secs. II A and II B
we review the thermodynamic Bethe ansatz (TBA) approach
for homogeneous quantum quenches in integrable models,
focusing on the steady-state Rényi entropies in Sec. II C. In
Sec. III A we review the generalized hydrodynamic approach
(GHD). In Sec. III B we discuss the steady-state Rényi en-
tropies. In Sec. IV A we present the XXZ chain and the quench
protocols. In Secs. IV B and IV C we discuss the expansion
quench and its GHD solution, highlighting the absence of
bound-state transport for large anisotropy. In Sec. IV D we
report some exact results for the expansion quenches of the
Néel and the Majumdar-Ghosh state in the limit of large
anisotropy. In Sec. IV E we present theoretical predictions for
the steady-state Rényi entropies after the expansion quench.
Numerical results are presented in Sec. IV F. Finally, these
are benchmarked against tDMRG simulations in Sec. V.

II. RÉNYI ENTROPIES AFTER
A HOMOGENEOUS QUENCH

Here, we summarize the TBA approach introduced in
Ref. [40] (see also Refs. [41,42]) to calculate the steady-
state Rényi entropies after a homogeneous quench. First, in
Sec. II A we review some general aspects of the TBA ap-
proach for integrable models. In Sec. II B we discuss the TBA
treatment for quenches. Section II C is devoted to discussing
how to calculate the entropies using TBA.

A. Thermodynamic Bethe ansatz (TBA) for integrable models

The distinctive feature of integrable models is that they
possess families of well-defined and stable, i.e., having infinite
lifetime, quasiparticles. Different quasiparticles are labeled
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by their quasimomentum (rapidity) that we denote as λ. A
generic eigenstate of a Bethe ansatz solvable model is in a
one-to-one correspondence with a set of allowed quasiparticle
rapidities, which are obtained by solving a system of nonlinear
algebraic equations known as Bethe equations [135]. In the
thermodynamic limit, the rapidities form a continuum, and
it is more convenient to work with the rapidity density ρρρ

(particle densities) and the hole densities ρρρ (h), i.e., the den-
sity of unoccupied rapidities. Here, we defined ρρρ ≡ {ρn}Nn=1
and ρρρ (h) ≡ {ρ (h)

n }∞n=1, where n labels the different quasiparti-
cle families. Their total number N depends on the model
under consideration. For instance, in the XXZ chain with
� � 1, which is the model considered here, there are infinite
families of quasiparticles, i.e., N = ∞. For the XXZ chain,
the quasiparticles with n = 1 correspond to free-magnon-like
excitations, whereas the ones with n > 1 are bound states of
n down spins. For later convenience, we also define the total
densities ρ (t )

n , the densities ηn, and the filling functions ϑn as

ρ (t )
n ≡ ρn + ρ (h)

n , (2)

ηn ≡ ρ (h)
n ρ−1

n , (3)

ϑn ≡ [1 + ηn]−1. (4)

In any Bethe ansatz solvable model, the particle densities ρn

are coupled to the ηn via the thermodynamic version of the
Bethe equations, which read as [135]

2πρn(1 + ηn) = an −
∞∑

m=1

anm 
 ρm. (5)

Here, the functions an(λ) and anm(λ) are known from the
Bethe ansatz solution of the model. For the XXZ chain an and
anm are given as [135]

an = 1

π

sinh(nη)

cosh(nη) − cos(2λ)
, (6)

anm = (1 − δnm)a|n−m| + a|n−m|+2

+ · · · + an+m−2 + an+m. (7)

Here, η ≡ arccosh(�). The matrix anm encodes the scattering
between quasiparticles of different families, and with different
rapidities. In (5) the symbol 
 denotes the convolution

f 
 g ≡
∫

dμf (λ − μ)g(μ). (8)

Any set of densities ρρρ identifies a thermodynamic macrostate,
which corresponds to an exponentially diverging (with size)
number of microscopic eigenstates. Any of these eigenstates
can be chosen as a finite-size representative of the ther-
modynamic macrostate. The total number of equivalent mi-
crostates is given as eSYY , with SYY the so-called Yang-Yang
entropy [135]

SYY(ρρρ) ≡ L
∑

n

∫
dλ

{
ρ (t )

n ln ρ (t )
n

− ρ (h)
n ln ρ (h)

n − ρn ln ρn

}
, (9)

where L is the system size. The Yang-Yang entropy is exten-
sive and it is obtained by summing independently over the

quasiparticle families and their rapidity, reflecting, again, the
integrability. For systems in thermal equilibrium SYY is the
thermal entropy. For out-of-equilibrium systems, the density
of the Yang-Yang entropy of the GGE that describes the steady
state is a key ingredient to understand quantitatively the dy-
namics of the entanglement entropy after the quench [45,71].

B. TBA description of homogeneous quenches

Integrable models solvable by the Bethe ansatz possess an
extensive number of local and quasilocal conserved quantities
Q̂k , i.e., having the property that [Q̂j , Q̂k] = 0, ∀ j, k, with
Q̂2 being the Hamiltonian. This implies that, due to these con-
servation laws, in integrable models the out-of-equilibrium
dynamics after a quantum quench, and the steady state, are
strongly constrained. As a consequence, at late times the sys-
tem fails to thermalize, i.e., local properties are not described
by the Gibbs ensemble. Still, it is now accepted that local and
quasilocal properties of the steady state are described by a
generalized Gibbs ensemble (GGE). The GGE density matrix
is obtained by complementing the Gibbs density matrix with
the extra conserved quantities Q̂j , to obtain

ρGGE = 1

ZGGE
exp

(
−

∑
k

βkQ̂k

)
. (10)

Here, βk is the Lagrange multiplier associated with Q̂k and
ZGGE is a normalization constant (GGE partition function).
The βk are fixed by imposing that the GGE average of Q̂k

equals their initial state value as

Tr(ρGGEQ̂k ) = 〈�0|Q̂k|�0〉. (11)

The key idea of the TBA approach for quantum quenches
is that GGE expectation values of local and quasilocal ob-
servables are described by a carefully chosen thermodynamic
macrostate (see Sec. II A), which can be completely charac-
terized in terms of the initial state expectation values of the
conserved quantities [136] [cf. (11)].

We now illustrate how to determine this macrostate by
using the TBA. First, in the thermodynamic limit, the ex-
pectation value Q̂k over a generic thermodynamic macrostate
identified by particle and hole distributions ρn, ρ

(h)
n is obtained

by summing over the quasiparticle families and integrating
over their rapidities as [135]

Qk = L
∑

n

∫
dλ fkn(λ)ρn(λ), (12)

where we introduced the functions fkn, and L is the system
size. It is convenient to define the generalized driving gn as

gn(λ) ≡
∑

k

βkfkn. (13)

The driving gn contains the crucial information about the
initial values of the conserved charges or, equivalently, on βk .

To proceed, it is useful to consider the GGE expectation
value TrρGGEÔ of a generic local (or quasilocal) observable
Ô. In the thermodynamic limit, the trace over the model
eigenstates becomes a functional integral as

Tr →
∫

Dρ eSYY(ρ). (14)
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Here, Dρ ≡ ∏
n Dρn denotes the functional integral over

the densities ρn. The Yang-Yang entropy in (14) takes into
account that a thermodynamic macrostate corresponds to an
exponentially large number of eigenstates. Using (14), one can
write

Tr(ÔρGGE) = 1

ZGGE

∫
Dρ e−E (ρ)+SYY(ρ)〈ρ|Ô|ρ〉. (15)

Here, we defined E (ρ) as

E = L
∑

n

∫
dλ gn(λ)ρn(λ). (16)

In (15), 〈ρ|Ô|ρ〉 denotes the value of Ô over the macrostate.
Importantly, the locality and quasilocality of Q̂k implies that
E is extensive, as it is clear from (16). Due to the extensivity of
E and SYY, following the standard TBA approach [135], in the
thermodynamic limit the integral in (15) can be treated using
the saddle-point method. One has to minimize the functional
SGGE defined as

SGGE ≡ −E + SYY. (17)

After minimizing (17) with respect to ρn, one obtains a set of
generalized TBA equations for ηn [see (4)] as

ln ηn = gn +
∞∑

m=1

anm 
 ln
[
1 + η−1

m (λ)
]
, (18)

where anm is the same as in (5), and gn is defined in (13).
Finally, the GGE macrostate densities ρn are obtained by
substituting the solutions of (18) in the TBA equations (5).

C. TBA approach for Rényi entropies

Here, we discuss how to calculate the steady-state value
of the Rényi entanglement entropies after a homogeneous
quench in integrable systems [40,41]. Since local properties of
the steady state are described by a GGE, the density of Rényi
entanglement entropies has to coincide with that of the GGE
Rényi entropies S

(α)

GGE. These are defined as

S
(α)

GGE = 1

1 − α
ln Trρα

GGE, (19)

where ρGGE is defined in (10). We now discuss how to
calculate (19) using the thermodynamic Bethe ansatz. Similar
to (15), in the thermodynamic limit the GGE Rényi entropies
are written as

S
(α)
GGE = 1

1 − α

[
ln

∫
Dρ exp(−αE + SYY) + αfGGE

]
,

(20)

where fGGE ≡ − ln ZGGE, E is the same as in (16), and SYY

is the GGE thermodynamic entropy. The functional integral
in (20) can be treated using the saddle-point method. The
functional S (α)

GGE that has to be minimized depends explicitly
on the Rényi index α, and it is defined as

S (α)
GGE ≡ −αE + SYY. (21)

The saddle-point condition leads to the modified TBA equa-
tions for η(α)

n as

ln η(α)
n = αgn +

∞∑
m=1

anm 
 ln
[
1 + 1/η(α)

m (λ)
]
. (22)

The particle densities ρ (α)
n are obtained by substituting η(α)

n

in the Bethe equations (5). By combining (21) and (19),
one obtains that the density of the Rényi entropies for a
GGE is

S
(α)
GGE = 1

1 − α
[(−αE + SYY)|ρ (α)

n
+ αfGGE|ρ (1)

n
], (23)

where ρ (1)
n is the saddle-point density for α = 1 that describes

local steady-state properties.
As it is clear from (22), the macrostate describing the

Rényi entropies depends on α. This is surprising because
both the Rényi entropies and the von Neumann entropy are
calculated from the same quantum state. An interesting con-
sequence is that the region of energy spectrum of the post-
quench Hamiltonian that is relevant for describing the Rényi
entropies is different from that describing the local observ-
ables. A similar behavior happens for nonintegrable models,
where it is a consequence of the eigenstate thermalization
hypothesis [137].

At this point, it is important to stress that the method to
calculate the Rényi entropies that we outlined so far requires
as crucial ingredient the set of infinitely many Lagrange
multipliers βk entering in the driving functions gn [cf. (13)].
Fixing the βk by using the constraint (11) is a formidable
task that cannot be carried out in practice. However, this
difficulty can be overcome in two ways. One is to use the
quench action method [138,139]. The quench action provides
direct access to the thermodynamic macrostate describing
the stationary state. The driving functions gn are extracted
from the overlaps between the initial state and the eigen-
states of the post-quench Hamiltonian, without relying on
the βk . Interestingly, a subset of the thermodynamically rel-
evant overlaps is sufficient to determine the macrostate (see
[140–142]). For a large class of initial states, the overlaps
can be determined analytically [143–158]. This holds also
for systems in the continuum, such as the Lieb-Liniger gas.
For instance, in Refs. [147–149,159], the overlaps between
the Bose condensate (BEC) state and the eigenstates of the
Lieb-Liniger model have been calculated, for both attractive
and repulsive interactions. Interestingly, a crucial feature of all
the initial states for which it has been possible to calculate the
overlaps is reflection symmetry. Reflection-symmetric initial
states have nonzero overlap only with parity-invariant eigen-
states, which are identified by solutions of the Bethe equations
containing only pairs of rapidities with opposite sign, i.e., such
that {λj } = {−λj }. Interestingly, the role played by parity
invariance for the solvability of quantum quenches has been
investigated in Ref. [160] for lattice models and in Ref. [161]
for integrable field theories. Also, one should remark that
non-reflection-symmetric initial states have been found [158]
for which the quench action method can be applied. We should
mention that the knowledge of the overlaps was crucial in
Ref. [41] to obtain the steady-state Rényi entropies after the
quench from the Néel state. For some quenches, the TBA
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macrostates describing the steady state can be derived from
the expectation values of the conserved quantities over the
initial state, without knowing the overlaps [136]. For instance,
this is the case for the quench from the tilted Néel state [162]
(see, however, Ref. [144] for a recent conjecture for the over-
laps). In these cases, one can use the TBA equations (18) to
extract the driving functions gn from the macrostate densities.
The functions gn can then be used in the generalized TBA
equations (22) to derive the Rényi entropies. The validity
of this approach for homogeneous quenches has been inves-
tigated recently in Ref. [42]. Crucially, for quenches from
piecewise homogeneous initial states, the GGE macrostate
describing the local steady state is determined by solving a
continuity equation (see below), and the TBA driving func-
tions are not even defined. This implies that the approach of
Ref. [42] has to be employed.

D. Min entropy of the GGE

Before proceeding, it is interesting to consider the limit
α → ∞ of the GGE Rényi entropies, which corresponds
to min entropy of the GGE, or the so-called single-copy
entanglement entropy S (∞), which is written in terms of the
largest eigenvalues λM of the reduced density matrix as S (∞) =
− ln λM . For homogeneous quenches in the XXZ chain, the
steady-state value of the single-copy entanglement has been
derived in Ref. [40]. An interesting feature is that the ther-
modynamic macrostate that determines its steady-state value
has zero Yang-Yang entropy (see Ref. [42] for a discussion
of some general conditions for this to hold true). Moreover,
for quenches in the strong anisotropy limit of the XXZ chain
(see Sec. IV A for its definition), this macrostate is the ground
state of the chain. Notice that the ground state of the XXZ
chain does not contain bound states. This picture breaks down
at sufficiently small values of the chain anisotropy, where S (∞)

is described by a different macrostate. This new macrostate
has zero Yang-Yang entropy and the associated TBA densities
ρ (∞)

n exhibit a Fermi-sea structure [40], but it has a nontrivial
bound-state content.

We now discuss the TBA derivation of the steady-state
value of the min entropy after a homogeneous quenches.
The generalization to quenches from piecewise homogeneous
initial states is straightforward. First, it is useful to rewrite the
TBA densities η(α)

n [cf. (22)] as [41]

η(α)
n = exp(αγn). (24)

Here, the functions γn have to be determined by using the TBA
equations (22). Clearly, from (24) one has that in the limit
α → ∞, η(α)

n (vanish) diverge for (γn < 0) γn > 0. Using (24),
the TBA equations (22) for η(α)

n now read as

αγn = αgn +
∑
m

∫
dμ anm(μ − λ)

× ln{1 + exp[−αγm(μ)]}. (25)

In the limit α → ∞, the last term in (25) is nonzero only
for γm < 0, and it becomes linear in α. This allows one to
rewrite (25) as

γn = gn +
∑
m

∫
dμ anm(μ − λ)γ +

m (μ), (26)

where we defined γ +
n as

γ +
n ≡

{
γn if γn < 0,

0 if γn > 0.
(27)

Notice that, as it is clear from the definition (27), the integral
equations in (26) are nonlinear. After solving (26), the particle
densities ρ (∞)

n are obtained by using the TBA equations (5).
One obtains that ρ (∞)

n are nonzero only for λ such that γn <

0. This happens because the ρ (∞)
n cannot diverge, whereas

from (24), one has that η(∞)
n diverge for λ such that γn >

0. More quantitatively, in the limit α → ∞ the system (5)
becomes

2πρn = an −
∞∑

m=1

∫
dμ anm(μ − λ)ρm(μ)θH (−γm), (28)

where, again, ρn is nonzero only for λ such that γn < 0. The
equation for the hole density ρ (h)

n is given as

2πρ (h)
n = an −

∞∑
m=1

∫
dμ anm(μ − λ)ρm(μ)θH (−γm). (29)

Notice that (29) is the same as (28), although the support,
i.e., the values of λ for which ρn and ρ (h)

n are nonzero, is
different. In fact, the supports of particle and hole densities
are complementary. By using (9), it is straightforward to check
that this implies that the Yang-Yang entropy is zero. Finally,
by taking the limit α → ∞ in (23), one obtains that

S
(∞)
GGE = E |

ρ
(∞)
n

+ LfGGE|
ρ

(1)
n

, (30)

where ρ (1)
n is the macrostate describing (quasi)local observ-

ables in the steady state. Apart from the contribution of
the GGE grand-canonical potential fGGE, the min entropy is
determined by the driving E only. Also, for quenches that
can be treated with the quench action, one has fGGE = 0,
due to the normalization of the overlaps [140], which further
simplifies (30).

III. OBTAINING THE RÉNYI ENTROPIES IN GHD

Here, we discuss the GHD approach to calculate
the steady-state Rényi entropies in Sec. III A (see
Refs. [103,104]), focusing on the entropies in Sec. III B.

A. Generalized hydrodynamics (GHD)

Let us consider the setup that is depicted in Fig. 1. After the
quench, information spreads ballistically from the interface
between A and B. At long times, local and quasilocal quanti-
ties depend only on the ratio ζ = x/t , with t the time after the
quench and x the distance from the interface between A and
B. A remarkable result is that in the scaling limit of long times
and large distances, for each fixed ray ζ , dynamical properties
of the system are described by a GGE [103,104]. Similar to
homogeneous quenches, this GGE is identified by a thermo-
dynamic macrostate (see Sec. II B), i.e., by a set of particle and
hole densities ρζ,n and ρ

(h)

ζ,n. For ζ = 0 the macrostate identi-
fies the so-called nonequilibrium steady state (NESS). We an-
ticipate that the NESS is the relevant macrostate for describing
the steady-state Rényi entropies of a subsystem placed at the
interface between A and B. Clearly, deep in the bulk of the
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two chains, i.e., for x/t → ±∞, the steady state is the same
as that arising after the homogeneous quenches with initial
states |�A〉 and |�B〉. Let us denote as ρ±∞,n the macrostates
that describe these steady states.

The central result of the generalized hydrodynam-
ics [103,104] is that for generic ζ = x/t , the macrostate ρζ,n

satisfies a continuity equation having ρ±∞,n as boundary con-
ditions for ζ → ±∞. The continuity equation is conveniently
written in terms of the filling functions ϑζ,n [cf. (4)] as

[ζ − vζ,n(λ)]∂ζϑζ,n(λ) = 0, (31)

where vζ,n are the group velocities of the low-lying (particle-
hole) excitations around ρζ,n. Crucially, in (31) there is no
explicit scattering term between different quasiparticles. This
is a consequence of integrability. Indeed, for interacting in-
tegrable models, the full effect of interactions is taken into
account by the renormalization of the group velocity vζ,n. The
TBA calculation of vζ,n will be illustrated below. Notice that
in Eq. (31) each ray ζ can be treated separately. The general
solution of (31) can be written as [103,104]

ϑζ,n(λ) = θH (vζ,n − ζ )(ϑ+∞,n − ϑ−∞,n) + ϑ−∞,n. (32)

Here, θH is the Heaviside theta function and ϑ±∞,n are the
boundary conditions in the limits ζ → ±∞. Again, they
identify the macrostates describing the steady state after the
quenches from |�A〉 and |�B〉 (see Fig. 1), respectively.
Notice that the solution (32) is only implicit because the
velocities vζ,n have to be determined self-consistently. The
equations that determine the particle density ρζ,n are the same
as in (5). In terms of ϑζ,n they read as

2πρζ,nϑ
−1
ζ,n = an −

∞∑
m=1

anm 
 ρζ,m, (33)

where ϑζ,n are obtained from (32).
As anticipated, the crucial ingredients of the GHD are the

group velocities vζ,n. In the Bethe ansatz framework, these
are constructed as particle-hole excitations above ρζ,n. For
generic integrable interacting models, the effect of particle-
hole excitations is to renormalize (“dress”) the quasiparticle
rapidities. This is reflected in a renormalization of the quasi-
particle energies and group velocities.

In the following, we describe how to calculate this renor-
malization by using the approach described in Ref. [163]. We
denote the “dressed” single-particle energies by eζ,n, whereas
the “bare” ones are denoted by εn. In terms of eζ,n, the group
velocities vζ,n are written as [163]

vζ,n = e′
ζ,n

2πρ
(t )

ζ,n

. (34)

Here, e′
ζ,n ≡ deζ,n/dλ, and ρ (t )

n is the total density of the
thermodynamic macrostate. The functions e′

ζ,n are obtained
by solving the system of nonlinear integral equations [163]

e′
ζ,n − ε′

n + 1

2π

∑
m

∫
dμ e′

ζ,m(μ)anm(μ − λ)ϑζ,m(μ) = 0.

(35)

Here, anm is the same scattering matrix as in the TBA
equations (5), and we defined ε′

n ≡ dεn/dλ. A very efficient

strategy to solve (31) and (35) is by iteration: one starts with
an initial guess for vζ,n, using (32) to derive ϑζ,n. Thus, a new
set of velocities is determined by using (34) and (35). These
two steps are iterated until convergence is reached.

B. GHD approach for Rényi entropies

Here, we consider a finite subsystem A′ of length � at the
interface between A and B (see Fig. 1). We are interested in
the steady-state value of the Rényi entropy density S (α)/� of
A′ for generic α. For α = 1 the result has been provided in
Ref. [40]. The key idea is that for any finite �, in the limit
t → ∞, the density of Rényi entropy has to coincide with
that of the Rényi entropy of the GGE that describes the local
equilibrium state. Now, in the limit t → ∞ any finite region
around the interface between A and B is described by the
GGE with ζ = 0.

The general idea to obtain the steady-state Rényi entropies
is to combine the GHD framework (see Sec. III A) with the
TBA method for the Rényi entropies (see Sec. II C). The
densities ϑζ=0,n are obtained by solving the GHD continuity
equations (31). Then, the Rényi entropies are obtained using
the TBA method described in Sec. II. Crucially, the second
step requires knowing the driving gn [see (18) for its def-
inition] that determines η(α)

n . In contrast with homogeneous
quenches, gn is not known a priori. Here, following Ref. [42],
gn is extracted from the TBA equations (18), by substituting
the densities ϑζ=0,n obtained from (31). Finally, gn is used in
the TBA equations (22) and (5) to obtain the densities η(α)

n and
ρ (α)

n . The final expression for the Rényi entropies’ densities is
given by (23).

IV. ANALYTICAL RESULTS FOR THE XXZ CHAIN

In this section, by using the approach presented in Sec. III,
we calculate the steady-state Rényi entropies after a quench
from a piecewise homogeneous initial state in the XXZ chain.
Section IV A introduces the XXZ and the quench protocol,
in particular, the expansion quench. The GHD solution of the
expansion quench is detailed in Secs. IV B, IV C, and IV D.
Finally, in Sec. IV E we present our analytical predictions for
the entropies.

A. Model and quench protocols (expansion quench)

The spin- 1
2 XXZ chain is defined by the Hamiltonian

H =
L∑

i=1

[
1
2

(
S+

i S−
i+1 + S−

i S−
i+1

) + �Sz
i S

z
i+1

]
, (36)

where S
+,−,z
i are spin- 1

2 operators and � is the anisotropy
parameter. We consider periodic boundary conditions by iden-
tifying sites 1 and L + 1 of the chain. We restrict ourselves to
� > 1. In the generic quench protocol, at t = 0 the two chains
A and B (see Fig. 1) are prepared in two macroscopically
different states �A and �B . At t > 0, the unitary dynamics
under the XXZ Hamiltonian (36) is investigated. Here, we
also consider a special type of quench, which we term expan-
sion quench. In the expansion quench part A (see Fig. 1) is
prepared in the vacuum state of the quasiparticles, which for
the XXZ chain is the ferromagnetic state with all the spins
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pointing up, i.e.,

|F 〉 ≡ |↑↑↑ . . . 〉. (37)

After mapping the XXZ chain onto a system of interacting
fermions, the expansion quench is equivalent to a box-trap
expansion, which is routinely used in cold-atom experiments.
Here, we only consider the expansion of the Néel state |N〉
and of the Majumdar-Ghosh (or dimer) state |MG〉. The Néel
state is defined as

|N〉 ≡ 1√
2

(|↑↓↑ . . . 〉 + |↓↑↓ . . . 〉). (38)

The Majumdar-Ghosh state (dimer state) is defined as

|MG〉 ≡ 1

2
L
4

(|↑↓〉 − |↓↑〉)(|↑↓〉 − |↓↑〉) . . . . (39)

B. GHD solution of the expansion quench

It is interesting to discuss the solution of the expansion
quench in the XXZ chain by using the framework of the
generalized hydrodynamics (GHD) (see Sec. III A). Since
part A of the system is prepared in the vacuum, a major
simplification is that

ϑ+∞,n(λ) = 0, ∀ λ. (40)

This has striking consequences in the continuity equa-
tion (31). First, we restrict ourselves to the case ζ = 0, which,
as already stressed, is the relevant ray to describe the interface
between A and B and the steady-state entropies. By using
the general solution (32) of (31), Eq. (40) implies that ϑn is
written as

ϑn(λ) = θH (vn)ϑ−∞,n, (41)

where we omit the subscript ζ since we are focusing on ζ = 0.
Clearly, from (41), one has that ϑn(λ) is nonzero only for
λ such that vn(λ) > 0. An important consequence of (41)
is that ϑn(λ) = 0 for λ such that vn(λ) < 0. The physical
interpretation is that quasiparticles with these rapidities that
are originated in B do not reach the interface with A because
their group velocities change sign during the dynamics. It is
useful to express Eq. (41) in terms of the dressed energies e′

n.
By using the definition (34), and the fact that ρ (t )

n (λ) � 0, one
has

vn(λ) > 0 ⇔ e′
n(λ) > 0, (42)

which allows one to replace θH (vn) with θH (e′
n) in (41). An

important consequence is that the integral equation for the
dressed energy e′

n [cf. (35)] is decoupled from the continuity
equation (31), and it becomes

0 = ε′
n − e′

n − 1

2π

∑
m

∫
dμ e′

m(μ)anm(μ − λ)ϑ−∞,m(μ)

× θH (e′
m(μ)). (43)

Here, ε′
n is the derivative of the bare energy of the quasiparti-

cles and ϑ−∞,n is the macrostate describing local equilibrium
in the limit ζ → −∞.

C. Absence of bound-state transport after the expansion

An intriguing feature of the expansion quench in the XXZ
chain is that, for large enough �, there is no bound-state
transport between A and B (see Fig. 1). This is a genuine
effect of the interactions, which renormalize (“dress”) the
group velocities of the system quasiparticles. Due to this
dressing, the group velocities vn of the bound states with
n > 1 that are created in B change sign before reaching the
boundary with A. Formally, the reason for this behavior is that
for the XXZ chain in the large-� limit one has

e′
n < 0, ∀ λ for n > 1. (44)

In the following, we first illustrate the mechanism by which
Eq. (44) implies the absence of bound-state transport at large
�, and then we discuss its regime of validity upon lowering
�. Equation (44) implies that in the system of integral equa-
tions (43) the equation for n = 1 is decoupled from the rest,
and it is given as

ε′
1 = e′

1 + 1

2π

∫
dμ e′

1(μ)a11(μ − λ)

×ϑ−∞,1(μ)θH (e′
1(μ)). (45)

The derivative e′
n of the dressed energy density for bound

states with n > 1 is obtained by substituting the solution e′
1

of (45) in (43). This gives

e′
n = ε′

n − 1

2π

∫
dμ e′

1(μ)an1(μ − λ)

×ϑ−∞,1(μ)θH (e′
1(μ)). (46)

Equation (46) has to be used to check (44) self-consistently
(see below).

The decoupling of the equation for η1 in (45) is reflected in
a similar behavior for the particle density ρ1. From Eq. (5),
it is clear that Eqs. (44) and (41) imply that ηn → ∞ and
that ρn → 0 for n > 1. On the other hand, for n = 1, one has
that ρ1 is nonzero only for λ such that e′

1 > 0. Specifically,
from (5) the finite part of ρ1 is obtained by solving the integral
equation

ρ1(ϑ−∞,1)−1 − a1

2π
= − 1

2π

∫
dμ a11(λ − μ)

× ρ1(μ)θH (e′
1(μ)). (47)

The fact that ρn is identically zero for n > 1 implies that the
bound states with n > 1 do not affect the local equilibrium
properties at the interface between A and B. Equivalently, the
information about the bound states that are created in B does
not arrive at the interface with A.

We now discuss the validity of this result as a function of
�. The strategy is to check (44) by substituting the solution
of (45) in (46). This gives the condition

ε′
n − 1

2π

∫
dμ e′

1(μ)an1(μ − λ)ϑ−∞,1(μ)θH (e′
1(μ)) < 0.

(48)

We now show that for the expansion quench the condition (48)
is satisfied in the XXZ chain with large enough �. First, one
can verify that the leading order of the bare energy ε′

n for large
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� is given as [135]

ε′
n = 2zn−1 sin(2λ) + O(zn+1), with z ≡ e−η. (49)

Here, η ≡ arccosh(�). We now assume that e′
1 = O(1) >

0 for some rapidities λ. We also assume that ϑ−∞,1 > 0
and ϑ−∞,1 = O(1). These conditions are verified for all the
quenches considered in this work. It is also natural to expect
that they hold true for a larger class of quenches. Now,
using that in the large-� limit, an1 = O(1) and an1 > 0, one
has that the second term in (48) is O(1) and negative, whereas
the first one can be made arbitrarily small upon increasing �

[cf. (49)]. This allows us to conclude that Eq. (44) holds true
for large enough �. Upon lowering �, at a certain value �∗

n

the n-particle bound states start to be transmitted between the
two chains. These “critical” �∗

n depend on the initial state that
is released. Furthermore, we observe that, at least for the first
few values of n, �∗

n < �∗
m for n > m, i.e., larger bound states

start to be transmitted at smaller �’s. Finally, for the initial
states that we consider (Néel state and Majumdar-Ghosh state)
we notice that �∗

1 < 1.5.

D. Expansion quench in the large-� limit: Exact results

Before discussing the steady-state entropies, it is useful to
investigate the large-� expansion of the macrostate describ-
ing local and quasilocal observables. Here, we focus on the
expansion of the Néel state and the Majumdar-Ghosh state.

1. Expanding the Néel state

By using (41) and the fact that for the Néel state in the
limit � → ∞ one has that [140] ϑ−∞,1 → 1, one obtains that
ϑ1 becomes a step function. Precisely, one has

ϑ1 = θH (e′
1(λ)). (50)

Equation (49) and the fact that a11 = 2 at the leading order in
1/� imply that the dressed energy e′

1 is obtained by solving
the integral equation [cf. (43)]

e′
1 = 2 sin(2λ) − 1

π

∫
dμ e′

1(μ)θH (e′
1(μ)). (51)

Equation (51) implies that

e′
1 = 2 sin(2λ) + γ, (52)

with γ to be determined. After substituting (52) in (51) one
obtains an equation for γ as

2 sin(2λ) + γ = 2 sin(2λ)

− 1

π

∫ λ+

λ−
dμ[2 sin(2λ) + γ ], (53)

where we defined

λ− = −1

2
arcsin

(γ

2

)
, (54)

λ+ = π

2
+ 1

2
arcsin

(γ

2

)
. (55)

By performing the integral in (53), one obtains that γ is the
solution of

1

π

[√
4 − γ 2 + γ arccos

(γ

2

)]
+ γ = 0. (56)

Equation (56) cannot be solved analytically. From (56) one
obtains numerically γ ≈ −0.3989.

We now determine the particle density ρ1. First, by using
the TBA Eq. (47) together with (50), one has that ρ1 is zero
for λ /∈ [λ−, λ+]. For λ ∈ [λ−, λ+], ρ1 is obtained by solving

ρ1 − 1

π
+ 1

π

∫ λ+

λ−
dμρ1 = 0, (57)

where we used the TBA Eq. (47), and that at the leading order
in 1/� one has a1 = 2. From (57), one has that ρ1 exhibits a
Fermi-sea structure, and it is given as

ρ1 =
⎧⎨
⎩

[π + λ+ − λ−]−1 if λ ∈ [λ−, λ+],

0 otherwise.
(58)

On the other hand, the hole density ρ
(h)

1 is nonzero only for
λ /∈ [λ−, λ+], where ρ

(h)

1 = [π + λ+ − λ−]−1. The fact that
the hole and the particle density have complementary support
implies that in the limit � → ∞, the Yang-Yang entropy is
vanishing.

2. Expanding the Majumdar-Ghosh state

A similar expansion can be obtained for the expansion of
the Majumdar-Ghosh state. In contrast with the Néel state (see
Sec. IV D 1), at the leading order in 1/� one now has ϑ−∞,1 =
cos2(λ). The leading order in 1/� of the dressed energy e′

1
[cf. (45)] is now obtained by solving

e′
1 = 2 sin(2λ) − 1

π

∫
dμ e′

1(μ) cos2(μ)θH (e′
1(μ)). (59)

Equation (59) implies that

e′
1 = 2 sin(2λ) + γ ′, (60)

where γ ′ is obtained by solving

1

2π

[√
4 − γ ′2 + γ ′ arccos

(γ ′

2

)]
+ γ ′ = 0. (61)

Equation (61) gives γ ′ ≈ −0.2487. Equation (61) is the same
as (56), apart from a factor 1

2 in the first term. The TBA
equation (47) for the particle density ρ1 is

ρ1

cos2(λ)
− 1

π
+ 1

π

∫
dμρ1(μ)θH (e′

1(μ)) = 0. (62)

This implies that ρ1 = γ ′′ cos2(λ). From (62) the constant γ ′′
is obtained as

γ ′′ =
[

5

4
π − 1

2
arcsin

(γ ′

2

)]−1

, (63)

where γ ′ is the solution of (61). Finally, the result for ρ1 is
written as

ρ1 =
⎧⎨
⎩

cos2(λ)
[

7
4π − λ+ + λ−

]−1
if λ ∈ [λ′

−, λ′
+],

0 otherwise,
(64)
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where we defined

λ′
− = −1

2
arcsin

(γ ′

2

)
, (65)

λ′
+ = π

2
+ 1

2
arcsin

(γ ′

2

)
. (66)

Notice that λ′
± coincide with λ± [cf. (54) and (55)] after the

substitution γ ′ → γ . Clearly, in contrast with the Néel state
(see Sec. IV D 1), ρ1 is not a step function.

E. Rényi entropies after the expansion quench

We now calculate the steady-state entropies after the
expansion quench. We restrict ourselves to � > �∗

2 (see
Sec. IV C), which allows us to neglect the contribution of the
multispin bound states with n > 1.

As described in Sec. III B, the first step is to determine
the driving functions gn [see Eqs. (18) and (22)]. Here, gn is
obtained by first solving (43) for e′

n and then by substituting
in

gn = ln([ϑ−∞,nθH (e′
n)]−1 − 1) +

∑
m

∫
dμ anm(μ − λ)

× ln[1 − ϑ−∞,m(μ)θH (e′
m)], (67)

where we used that for the expansion quench ϑn =
θH (e′

n)ϑ−∞,n.
By using that e′

n < 0 for n > 1, one obtains that gn is
divergent for any λ for n > 1, whereas g1 diverges for λ such
that e′

1 < 0, and it is finite otherwise. To derive the Rényi
entropies, one has now to solve the TBA equations with the
modified driving αgn. As a consequence of the results outlined
above, some simplifications occur. Let us consider the integral
equations (22) for η(α)

n :

ln
(
η(α)

n

) = αgn +
∞∑

m=1

∫
dμ anm(μ − λ)

× ln
[
1 + 1/η(α)

m (μ)
]
. (68)

First, in Eq. (68), the integral in the right-hand side is nonzero
only if η(α)

m is finite. Thus, from (68), one has that ηn = αgn

are divergent for m > 1 because gn are divergent. On the other
hand, η1 is finite for λ such that g1 is finite, i.e., if e′

1(λ) > 0
[cf. (67)], and it is divergent otherwise. This implies that the
equation for η

(α)

1 is decoupled from the rest and it is given as

ln
(
η

(α)
1

) = αg1θH (e′
1) +

∫
dμ a11(μ − λ)

× ln
[
1 + 1/η

(α)
1 (μ)θH (e′

1)
]
. (69)

Here, e′
1 is obtained by solving (45). We now discuss the

macrostate densities ρ (α)
n . The TBA equations (5) become

2πρ (α)
n

(
1 + η(α)

n

) = an −
∑
m

∫
dμ anm(μ − λ)ρ (α)

m (μ).

(70)

Clearly, ρ (α)
n is zero for n > 1, reflecting the divergent behavior

of η(α)
n . Also, ρ

(α)

1 is nonzero only for λ such that η
(α)

1 is finite.
To obtain the finite part of ρ

(α)

1 one has to solve the integral

equation

2πρ
(α)
1

(
1 + η

(α)
1

) = a1 −
∫

dμ a11(μ − λ)ρ (α)
1 (μ)θH (e′

1).

(71)

It is interesting to observe that for any finite α, the support of
ρ

(α)

1 does not depend on α, but it is determined by the condition
e′

1 > 0.
It is now worth making some remarks on the treatment of

the single-copy entanglement for α → ∞. Similar to finite α,
one has to determine the TBA density η

(∞)

1 . The ansatz (24)
becomes

η
(α)
1 = exp(αγ1), (72)

where the function γ1 has to be determined. One has that in
the limit α → ∞, Eq. (26) becomes

γ1 = g1 −
∫

dμ a11(μ − λ)γ +
1 (μ), (73)

where γ +
1 is defined in (27). The particle density ρ

(∞)

1 [cf. (28)]
becomes

2πρ
(∞)
1 = a1 −

∫
dμ a11(μ − λ)ρ (∞)

1 (μ)θH (−γ1). (74)

The nonzero part of ρ
(h,∞)

1 is obtained by using (29).

F. Numerical TBA results

We now provide exact numerical results for the steady-state
entropies after the quench from a piecewise homogeneous
initial state in the XXZ chain.

1. Macrostate densities and “critical” anisotropies

Numerical results for the macrostate densities ϑ (α)
n and

ρ (α)
n are shown in Fig. 2, for the expansion quenches of the

Néel state and of the Majumdar-Ghosh state (first and second
columns, respectively), and for the quench from |N ⊗ MG〉
(third column in Fig. 2). For the expansion quenches we
restrict ourselves to � > �∗

2 (see Sec. IV C for its definition).
As it has been already discussed, this implies that only the
densities ϑ

(α)

1 and ρ
(α)

1 are nonzero. For |N ⊗ MG〉 we show
only results for n = 1, although all the densities with n > 1
are nonzero. Also, one should observe that for the expan-
sion quenches the densities are nonzero only in a subset of
[−π/2, π/2], whereas for |N ⊗ MG〉 they are nonzero in the
full interval [−π/2, π/2]. Finally, as it is clear from Fig. 2(c),
ϑ1 exhibits a quite weak dependence on α.

It is interesting to extract the “critical” anisotropies �∗
n

for the expansion quenches. Here, we focus on �∗
2. As we

discussed in Sec. IV C, for � > �∗
2 one has that e′

2 < 0, giv-
ing ϑ

(α)

2 = 0, which implies that transport of the two-particle
bound states between A and B is absent. Formally, �∗

2 is
the point at which e′

2 becomes positive. This is discussed in
Fig. 3 showing e′

2 as a function of λ, for the expansion of
the Néel state and the Majumdar-Ghosh state. For the Néel
state [Fig. 3(a)], one has that for any λ, e′

2 < 0 for � � 1.4,
whereas e′

2 > 0 for � = 1.3, which suggests that 1.3 � �∗
2 �

1.4. For the Majumdar-Ghosh state, one has much smaller
values for �∗

2. Indeed, from Fig. 3(b) it is clear that �∗
2 < 1.1.

The same analysis could be performed for the three-particle
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FIG. 2. Rényi entropies after a quench from a piecewise homo-
geneous initial state in the XXZ chain. Filling function ϑ

(α)
1 and

particle density ρ
(α)
1 [panels (a)–(c) and (d) and (e), respectively]

describing steady-state Rényi entropies. On the x axis λ is the
quasiparticle rapidity. Panels in different columns correspond to
quenches from different initial states. All the results are for � = 2.
For the expansion quenches [panels (a) and (b) and (d) and (e)], only
the n = 1 string densities are nonzero. For the quench from the state
|N ⊗ MG〉 higher strings contribute (not reported in the figure).

bound states, i.e., for n = 3. One should expect a new
“critical” anisotropy �∗

3 � �∗
2. For � < �∗

3 transport of the
two-particle and three-particle bound states is permitted. We
numerically observed that e3 � e2 for � < �∗

2, suggesting
that there is an extended region in � where only transport of
two- and three-particle bound states is allowed. It is natural to
expect that a similar scenario occurs for larger bound states,
i.e., that there are a “cascade” of transition points �∗

1 > �∗
2 >

�∗
3 > �∗

4 . . . . This would lead to the intriguing scenario in
which transport of larger and larger bound states is activated
at smaller and smaller anisotropies.
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FIG. 3. “Critical” anisotropies �∗
2 for the two-particle transport

after a piecewise homogeneous quench in the XXZ chain. The two
panels are for the expansion of the Néel and the Majumdar-Ghosh
states. The figure shows the derivative of dressed energy e′

2 [cf. (35)]
for n = 2, plotted as a function of λ. For � > �∗

2, one has that
e′

2 < 0, ∀ λ, which ensures that transport of two-particle bound
states is inhibited. Note that �∗

2 ≈ 1.4 and �∗
2 ≈ 1.15 in (a) and (b),

respectively.
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FIG. 4. Min entropy after a piecewise homogeneous quench in
the XXZ chain: quench from the state |N ⊗ MG〉, for � = 5. (a)
Shows γn versus λ for n � 3. Note that γ2 < 0 for any λ, in contrast
with γ1 and γ3. (b) Shows ρ (∞)

n for n = 1, 2. Continuous and dashed-
dotted lines denote particle and hole densities, respectively.

Finally, it is useful to consider the limit α → ∞. We focus
on the quench from |N ⊗ MG〉. Figure 4 shows the TBA
densities γn [see (24) for their definitions], ρ (∞)

n , and ρ (h,∞)

[Figs. 4(a) and 4(b)] plotted as function of λ. Results are for
� = 5. In Fig. 4(a) we only show results for γn with n � 3.
Crucially, one has that γ1 < 0 for λ > λ−, with λ− ≈ −0.75.
Similarly, γ3 is negative in a subinterval of [−π/2, π/2]. On
the other hand, one has that γ2 < 0 for any λ ∈ [−π/2, π/2].
This is reflected in the behavior of ρ (∞)

n [Fig. 4(b)].
The continuous lines in Fig. 4(b) are the particle densi-

ties ρ
(∞)

1 and ρ
(∞)

2 . The support of ρ
(∞)

2 is the full interval
[−π/2, π/2], whereas ρ

(∞)

1 is nonzero only for λ > λ−, with
λ− the same as in Fig. 4(a). The complementary part of the
curve (dashed-dotted line) in the panel is the hole density
ρ

(h,∞)

1 .

2. Rényi entropies

The densities reported in Fig. 2 are used to calculate
the steady-state entropies by using (23). Figure 5 shows the
contributions of the individual quasiparticles to the entropies,
plotted versus λ. We report results for the expansion of
the Néel state and the Majumdar-Ghosh state [in Figs. 5(a)
and 5(b)]. Data for the quench from |N ⊗ MG〉 and for n = 1
and 2 are shown in Figs. 5(c) and 5(d). Notice, however,
that for |N ⊗ MG〉, bound states with n > 1 contribute to the
Rényi entropies, although we do not report them in the figure.
Data in Figs. 5(a) and 5(b) are for the XXZ chain with � = 2,
while in Figs. 5(c) and 5(d) we consider � = 5. While the
entropy density for the expansion quenches is positive for
all values of λ [see Figs. 5(a) and 5(b)], this is not the case
for |N ⊗ MG〉. The same behavior, i.e., that the density of
Rényi entropies is not positive, was observed in homogeneous
quenches, and it is the main obstacle when applying the
quasiparticle picture to describe the full-time dynamics of the
entropies [40,41]. The GHD prediction for the steady-state
entropies is obtained by integrating the results in Fig. 5 and
by summing over the quasiparticle families. The results are
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FIG. 5. Steady-state Rényi entropies after the quench from a piecewise homogenous initial state in the XXZ chain: quasiparticle
contributions. The entropy density S

(α)
GGE/L is plotted versus λ, for several values of α. Panels (a) and (b) are for the expansion quench of

the Néel state and the Majumdar-Ghosh state, respectively. Data are for � = 2. The entropy density is positive for all λ. Panels (c) and (d)
show results for the quench from |N ⊗ MG〉 for � = 5. Only results for n = 1 and 2 are shown.

reported in Fig. 6 as a function of �, and for different initial
states. For all the quenches one has that S (α) < S (α′ ), for α′ < α,
as expected. For the expansion of the Néel state, all the Rényi
entropies vanish in the large-� limit. This reflects that the
Néel state is the ground state of the XXZ chain in that limit,
similar to the homogeneous case [41]. For the expansion of
the Majumdar-Ghosh state, the entropies exhibit a quite weak
dependence on �. Results for the quench from |N ⊗ MG〉
are reported in Fig. 6(c). The entropy densities exhibit a
decreasing trend upon increasing �, although they do not
vanish in the limit � → ∞.

V. DMRG RESULTS FOR THE XXZ CHAIN

We now turn to compare the TBA results presented
in Sec. IV against tDMRG simulations [164]. We restrict
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FIG. 6. Steady-state Rényi entropies after a quench from a piece-
wise homogeneous initial state in the XXZ chain: GHD results
for different initial states and Rényi index α. The entropy density
S

(α)
GGE/L is plotted against �. In (a) and (b), the triangles correspond

to the min entropy (α → ∞).

ourselves to the expansion quenches of the Néel and the
Majumdar-Ghosh states, as they are easier to simulate with
tDMRG. We employ the framework of the matrix product
states (MPS). All the considered initial states admit a simple
MPS representation with rather small bond dimension χ . The
initial states are time evolved by using a standard second-order
Trotter-Suzuki decomposition of the evolution operator e−iH t .
The Trotter time discretization step is δt = 0.05. At each step
of the evolution the state loses its MPS form, which has to
be restored by performing a singular value decomposition
(SVD). To prevent the rapid growth of χ , a truncated SVD
is performed with maximum allowed bond dimension χmax.
In our simulations we employed χmax = 80. Importantly, here
we are interested in calculating the Rényi entropies of a
subsystem embedded in the chain (see Fig. 1). In the standard
MPS framework, the computational cost for calculating the
entropy is ∝χ6 (see Ref. [165] for the details), in contrast with
the cost for calculating the half-chain entropy, which is only
∝χ3.

Our tDMRG data are reported in Fig. 7 for both the Néel
state and of the Majumdar-Ghosh state. The figure shows
the entropy density S (α)/� versus time. All the results are for
the XXZ chain with L = 40. Different curves correspond to
different values of �. For clarity, we only show results for
odd �. Figures 7(a)–7(d) show data for the Néel state and for
α = 2 and different values of �. Figures 7(e)–7(h) show the
results for the Majumdar-Ghosh state. Specifically, Figs. 7(e)
and 7(f) plot S (2)/� for � = 2 and � = 4, whereas Figs. 7(g)
and 7(h) are for S (3)/� for the same values of �. For the
Néel state, the entropy density decreases upon increasing �,
as expected in the scaling limit (see Fig. 6). Interestingly,
sizable oscillations with time are observed, whose amplitude
increases with increasing �. This is similar to the homoge-
neous quench from the Néel state [41]. On the other hand,
for the Majumdar-Ghosh state, although oscillations with time
are present, they decay quite rapidly with increasing �, and
their amplitude does not increase upon increasing �. The
comparison between the Bethe ansatz results for the Rényi
entropies is presented in Fig. 8. Panels (a)–(d) show S (α)/� for
α = 2, 3. In all the panels the different symbols are tDMRG
data for different values of � ∈ [2, 10] and � � 10. On the x

axis we show 1/�. The raw tDMRG data are reported in Fig. 7.
The results presented in Fig. 5 are obtained by averaging
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FIG. 7. Steady-state Rényi entropy after the expansion quench of the Néel and the Majumdar-Ghosh states [panels (a)–(d) and (e)–(h),
respectively] in the XXZ chain: tDMRG results. The entropy density S (α)/� is plotted versus the time after the quench. For the expansion
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for S (2)/�, whereas (e) and (f) are for S (3)/�. In all panels different symbols are used for different values of the subsystem size �. Only odd
values of � are reported. Notice the large oscillations upon increasing � in (a)–(d).

the tDMRG results for t > 10, to mitigate the effect of the
oscillations with time. The star symbols are the TBA results
in the scaling limit (see Fig. 6). Clearly, due to the finite �,
corrections are visible. To recover the scaling limit results, we
perform a finite-size scaling analysis. The dashed-dotted lines
in Fig. 5 are fits to

S (α) =
[
s (α)
∞ + a

�
+ b

�2

]
�, (75)

where s (α)
∞ is the TBA prediction and a, b are fitting parame-

ters. In all the panels, the fits confirm that in the scaling limit
the steady-state Rényi entropies are described by the TBA
results.

VI. CONCLUSIONS

We investigated the steady-state Rényi entropies after a
quench from a piecewise homogeneous initial state in inter-
acting integrable models. Our results were obtained by com-
bining the TBA approach for the Rényi entropies developed in
Ref. [40] and the GHD treatment of the quench. We provided
explicit results for quenches in the anisotropic Heisenberg
XXZ chain from several initial states. We benchmarked our
results against tDMRG simulations, finding always satisfac-
tory agreement. We also investigated the steady-state en-
tropies after the expansion quench, in which one of the two
chains is prepared in the vacuum of the model excitations.
Interestingly, we observed that for large enough anisotropy,
the transport of multispin bound states is not allowed. This is
reflected in the steady-state entropies, which do not contain

FIG. 8. Steady-state Rényi entropies after a quench from a piecewise homogeneous initial state in the XXZ chain: comparison between
theory and tDMRG simulations. Panels (a) and (b) are for the expansion of the Néel state for α = 2 and 3, respectively. In all panels S (α)/� is
plotted versus 1/�, with � the subsystem size. The star symbols are the TBA predictions in the scaling limit. The dashed-dotted lines are fits
to S (α)/� = s (α)

∞ + a/� + b/�2, with a, b fitting parameters and s (α)
∞ fixed by the TBA result. Panels (c) and (d): same as in (a) and (b) for the

expansion of the Majumdar-Ghosh state. Data are now for � = 5. Notice in (c) and (d) the weak dependence on �.
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information about the bound states. On the other hand, we
showed that there is a “critical” anisotropy below which
bound-state transport is allowed.

We now discuss some open problems and possible di-
rections for future work. First, it is important to extend the
quasiparticle picture to describe the full-time dynamics of
the Rényi entropies after the quench. To this purpose, two
main issues appear. First, similar to the von Neumann entropy,
describing the full-time dynamics of the Rényi entropies
requires determining the trajectories of the quasiparticles as
function of time, which implies that rays with ζ �= 0 have to
be considered. This analysis has been performed in Ref. [166]
for the von Neumann entropy. A more severe obstacle is that
the TBA macrostate that describes the steady-state entropies
is not the same as that describing (quasi)local observables and
the von Neumann entropy, similar to what happens for ho-
mogeneous quenches [41]. This does not provide the correct
framework for describing the entropy dynamics because the
excitations that are responsible of the entanglement growth
are the ones constructed around the steady state. To apply the
quasiparticle description to the Rényi entropies, one would

first need to express the entropy densities as function of the
TBA macrostate that describes the steady state. This, however,
is still an open and difficult problem.

It would be also important to extend our analysis to differ-
ent initial states, such as the tilted Néel state and the tilted
ferromagnet. For the latter case, it would be interesting to
investigate the effect of the tilting on the bound-state trans-
port between the two chains. Another interesting direction is
to consider piecewise homogeneous quenches in continuum
systems such as the Lieb-Liniger model, or in the Hubbard
chain in the limit of strong interactions [158].
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