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Anomalies in a slightly doped insulator with strong particle-hole asymmetry
and a narrow gap: The case of SmB6
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SmB6, known to be a Kondo insulator, has received intense scrutiny in recent years due to its paradoxical
experimental signatures: While some quantities show an insulating behavior, others point to a metallic state.
This has led to the conjecture that SmB6 hosts nontrivial excitations within its bulk gap, and has spawned several
theories to that effect. In principle, there exists an alternative possibility: The system is a metal but unusually
with both metal- and insulatorlike properties. Inspired by this possibility, I consider a minimal model of a
Kondo insulator—a flat band hybridized with a parabolic band—that is slightly electron doped, i.e., the chemical
potential is in the conduction band but close to the band edge. I show that, at the phenomenological level, the dc
conductivity, ac conductivity, specific heat, and quantum oscillations within this model exhibit unusual behaviors
that are, surprisingly, qualitatively consistent with those observed experimentally in SmB6. The rapid change of
band curvature around the chemical potential arising from the strong particle-hole asymmetry and the narrow
gap in the model, a feature not usually encountered in the textbook cases of metals or insulators, is at the heart
of the unusual behaviors.
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I. INTRODUCTION

In spite of being studied for over half a century [1,2],
several anomalous observations in the material SmB6, known
to be a Kondo insulator, have eluded a satisfactory understand-
ing. The situation is paradoxical: Whereas some observables
behave as if the system is an insulator, others are consistent
with it being a metal. A band gap is clearly visible in photoe-
mission spectroscopy [3,4] which manifests as an activated
behavior in the dc resistivity—there is a steep increase in
the resistivity with decreasing temperature. Nevertheless, at
extremely low temperatures, the resistivity develops a plateau,
signaling the onset of a metallic channel of conduction [5,6].
Additionally, measurements of optical conductivity [7], spe-
cific heat [8–10], and quantum oscillations [11,12], among
others, seem to point to the existence of a nonzero density
of states within the gap.

The recent prediction of topological surface states in the
bulk gap provided a possible way to end the deadlock [13].
At temperatures less than the gap, the surface states provide
a conduction channel, which could explain the appearance
of the plateau in the resistivity. The success, however, was
limited as it failed to explain other observations: Careful
analysis of the data for the optical conductivity, specific heat,
and quantum oscillations reveal that they can arise only from
states that are three dimensional (3D) and of bulk origin.
Additionally, these observables show features not typical of
conventional metals which need to be accounted for as well:
The optical conductivity decreases with frequency at high
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temperatures but increases with frequency at low temperatures
[7]; the specific heat is strikingly large, comparable to that of
a heavy fermion system [8,9]; and quantum oscillations show
a temperature dependence that does not follow the Lifshitz-
Kosevich theory valid for metals [12].

In light of such findings, a consensus is slowly building
up where the gap is thought to contain nontrivial excitations
that are of a bulk origin, in addition to the surface states.
Several theories have been presented recently along this line
of thinking [14–17]. Regardless of the details, the starting
point of all these theories is that the system, to begin with,
is an insulator. In principle, however, there exists another
possibility that has not received comparable attention: One
can ask whether the system is instead a metal, where the
conductivity somehow shows an insulatorlike behavior with
temperature. Of course, such a model will also have to explain
the departures from the standard metallic behavior in the
quantities mentioned above.

The goal of this paper is to explore whether the latter
possibility is a reasonable one. To that effect I consider a
minimal phenomenological model of a Kondo insulator—a
parabolic band hybridized with a flat band—but assume that
the chemical potential, instead of lying inside the gap as in
a conventional Kondo insulator, lies inside the conduction
band (valence band), close to the edge. I explore the phe-
nomenology that results from such a model by calculating
four quantities: dc conductivity, ac conductivity, specific heat,
and quantum oscillations. Surprisingly, all of them feature
anomalous behaviors that are qualitatively consistent with
those observed in SmB6. Their origin lies in the rapid change
of band curvature around the chemical potential on the scale
of temperature, a feature that is usually not encountered in
textbook examples of metals or insulators.
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FIG. 1. Bands resulting from hybridization of a flat band with a
parabolic band by a parameter ζ [cf. Eq. (1)] (unhybridized bands are
shown in dashes). The chemical potential is marked by μ. Unlike in
a Kondo insulator where it lies inside the gap, here it is assumed to
lie in the conduction band close to the band edge. The rapid change
of band curvature around μ results in unusual features in the physical
quantities as described in the text.

II. MODEL

Consider a model where a parabolic band hybridizes with
a flat band due to a parameter ζ . The Hamiltonian reads
(h̄ = kB = 1)

Hk =
(

k2

2m − � ζ

ζ 0

)
. (1)

Hybridization leads to an avoided crossing which opens a gap.
Here, � � ζ > 0 determines the bandwidth of the valence
band, and the gap is equal to ζ 2/� � ζ—see Fig. 1. When
the chemical potential μ lies inside the gap, the system is
an insulator. Such a model provides a minimal description
of a Kondo insulator. In the following, however, I consider
a situation where μ is pushed slightly into the conduction
band such that μ − Ec � ζ , where Ec is the edge of the
conduction band (μ in the valence band is also discussed for
completeness). Such a choice for the model is inspired, in part,
by a posteriori justification through the quantities calculated,
and, in part, by experiment: The photoemission spectroscopy
presented in Ref. [18] does find the chemical potential to be
in the conduction band instead of the gap. Since this paper
focuses on the bulk bands, the momentum dependence in the
hybridization term, important for topological properties of the
surface states in the gap [13], is ignored. Also, the effects of
electronic interactions are not considered explicitly within this
phenomenological model. It is assumed that the quasiparticles
in this model are already renormalized due to interactions
(see, however, Ref. [19]). Nevertheless, interactions can give
rise to further nontrivial effects that are not captured by
this simple model. This requires a microscopic model and is
outside the scope of this paper.

III. PHYSICAL QUANTITIES

Using the simple model above, I now calculate
different physical quantities and demonstrate their anomalous
behaviors.

FIG. 2. Dependence of resistivity ρ = 1/σ on temperature T ac-
cording to Eq. (2) for ζ/� = 0.050 and μ/ζ = 0.055 (ρ0: resistivity
at T = 0 for the unhybridized parabolic band). A steep increase with
decreasing T is observed that ends in a plateau at T = 0 (shown in
inset).

A. dc conductivity

Within a constant relaxation time approximation, the
Drude-Boltzmann conductivity can be calculated as

σ =
∑

i

2e2τ

(2π )3

∫
v2

i

(
− ∂ f0

∂εi

)
dk, (2)

where e is the electronic charge, τ is the scattering time,
vi = ∂εi

∂k , f0 is the Fermi function, and the summation over
i runs over the two bands. Figure 2 presents the resistivity
ρ = 1/σ as a function of temperature for the model in (1).
With a decrease in temperature in the regime T � ζ , the
resistivity increases sharply as in an insulator, but finally
levels out into a plateau. The insulatorlike behavior, in spite
of the system being metallic, is not entirely unexpected. Since
μ is very close to the edge of the band, the system is at
the borderline between a metal and an insulator, and a truly
metallic behavior is not expected. However, the mechanism
by which this behavior arises here is distinct from that in
conventional insulators. In the latter, an increase in resistivity
with decreasing temperature stems from a decrease in the
number of carriers available. Here, with decreasing T , the
region which contributes to the conductivity shrinks to
the vicinity of the band edge. The density of states near the
edge is high, i.e., there is no shortage of carriers; instead, the
velocity of the carriers goes to zero, leading to the increase in
resistivity. However, when T � μ − Ec, one enters a metallic
regime which results in the plateau. In this picture, the temper-
ature at which the plateau appears, Tp, and the corresponding
resistivity, ρp, are related and arise from the scale μ − Ec,
but do not directly depend on ζ . Note that the same behavior
would arise if μ lies in the valence band.

It is instructive to compare with standard textbook results
in terms of the Drude formula for conductivity, σ = ne2τ/m,
where n is the charge density and m is the band mass [20]. In
standard metals, n is large and does not change with T which
enters mainly through τ . In insulators (semiconductors), it
is the opposite: The dominant effect of T enters through n.
In semimetals, both n and τ contribute to the T dependence
[21]. The situation here does not belong to any of these
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FIG. 3. ac conductivity σ (arbitrary units) vs frequency ω at
different temperatures according to Eq. (3). Temperature ranges from
0.2ζ to 0.01ζ decreasing downwards in steps of 0.021ζ . Here, ζ τ =
2.5 with other parameters the same as in Fig. 2.

categories. Here, the main T dependence can be thought to
arise effectively from m changing with T .

A steep increase in resistivity that evolves into a plateau is
a hallmark feature of SmB6, reported in several experiments
[5,6]. While the increase is attributed to conventional insulat-
ing behavior due to the gap (with μ inside it), the plateau has
been credited to midgap impurity states in the past, but more
recently to topological surface states in the gap. The model
presented here provides an alternative. Note, however, this
does not necessarily imply that the surface states do not play a
role. Close to the edge of the band where μ is assumed to lie,
the surface bands merge with the bulk bands. It is possible that
both channels contribute to conductivity, and because the bulk
contribution is extremely small, the surface contribution could
be comparable. This might explain why a recent experiment
finds the plateau to be correlated with surface states [6]. The
main message here is that a steep increase in the resistivity
with decreasing temperature does not automatically imply that
the system is an insulator, i.e., the chemical potential lies in
the gap.

B. ac conductivity

The ac conductivity comprises two parts: an interband part
and an intraband part. At zero temperature, momentum and
energy conservation imply that the interband component of
conductivity appears only for frequency ω � 2ζ . Motivated
by experiment (see below), I consider the regime ω, T < 2ζ ,
where only the intraband component contributes. The real part
of the ac conductivity is then given by

σ (ω) =
∑

i

e2π

∫
dξ

(
f (ζ ) − f (ζ + ω)

ω

)

× 1

(2π )3

∫
v2

i Ai(k, ξ )Ai(k, ξ + ω)dk, (3)

where Ai(ε) = 1/τ

(ε−εki )2+(1/2τ )2 is the spectral function. Figure 3
presents σ vs ω at different values of T . At large T , σ

decreases monotonically with the frequency ω, exhibiting a
Drude-like response typical of a metal. This is expected since
the effect of hybridization is negligible at T � ζ . However,
at smaller values of T , the dependence changes unusually
into an increasing function. The effect of disorder is to allow

FIG. 4. Specific heat C (arbitrary units) vs temperature T accord-
ing to Eq. (4). The dashed curve shows the same for the unhybridized
parabolic band. Parameters are the same as in Fig. 2.

transitions within a width ∼1/τ around the Fermi level μ.
In a standard metal, the band curvature does not change on
the scale of 1/τ , therefore the effect is only to produce a
reduction in the conductivity. In the present case, however, at
low T , regions of the band that are less flat become accessible
due to the rapid change of band curvature on the scale of
1/τ , increasing the velocity of the carriers. This effect now
competes with the effect of disorder, leading to an increase
in the conductivity with frequency. Such a behavior spans
almost the entire range of frequencies, except at extremely
low frequencies where an upturn appears—here the increase
in carrier velocity is not strong enough to overcome the effect
of disorder. This switching from an overall decreasing to an
increasing function of frequency is more pronounced when μ

is in the conduction band as opposed to the valence band (not
shown in the figure).

An experimental study of the low-energy ac conductivity
within the hybridization gap of SmB6 was reported in Ref. [7].
There, it was shown that surface states could not account
for the origin of the ac conductivity, and raised doubts over
whether midgap impurity states could explain it either. Re-
markably, the behavior shown in Fig. 3 agrees with Fig. 2 in
Ref. [7] showing the evolution of σ vs ω as T is varied: At
low T , σ was found to increase with ω instead of decreasing.
This lends further support to the simple and intuitive picture
presented here.

C. Specific heat

The specific heat is calculated as

C =
∑

i

2

(2π )3

∫
εi

(
∂ f0

∂T

)
dk. (4)

Figure 4 presents the variation of C with T . At T � ζ the
behavior is similar to that of a standard metal, C ∝ T , and
hybridization has no effect. On the other hand, at small
temperatures, T � μ − Ec � ζ , the system is again metallic,
i.e., C ∝ T , albeit with a slope that is considerably steeper,
reflecting the higher density of states. Connecting these two
behaviors results in a curve that is nonmonotonic. This is the
region where the Sommerfeld expansion valid for conven-
tional metals breaks down since the band curvature changes
on a scale comparable with temperature.
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It has been known for a long time experimentally [9],
and supported by recent experiments as well [10], that SmB6

exhibits a strikingly large value of specific heat which is
orders of magnitude larger than conventional metals. How
this is possible in spite of being an insulator has escaped
a satisfactory explanation. The picture presented here leads
naturally to a large value of specific heat at T < ζ—see Fig. 4,
where the specific heat for the present model is compared with
that of the unhybridized parabolic electrons. However, it must
be noted that the T -dependent curve does not match entirely
with what is observed in experiments (although nonmono-
tonicities are observed in experiments as well). This is not
surprising since only the electronic part of the specific heat
has been calculated here. Contributions from other degrees of
freedom, such as phonons and spin, left out in this calculation,
have been shown to be important in fitting experimental
curves [9,10]. Including such contributions will require a
microscopic calculation outside the scope of this paper.

D. Quantum oscillations

In metals, a changing magnetic field causes the Landau
levels to cross the Fermi level periodically. This gives rise to
oscillations in physical observables, called quantum oscilla-
tions. The salient features of these oscillations are as follows:
Oscillations are periodic in inverse field; their frequency is
proportional to the area of the orbit on the Fermi surface in
k space perpendicular to the field; and temperature does not
affect the frequency but damps the amplitude in a universal
way given by Lifshitz-Kosevich theory [22].

Since the system considered here is a metal, quantum
oscillations are expected to appear. However, the rapid change
of band curvature, as in other quantities considered before,
leads to striking departures from the conventional behavior
described above. Oscillations arising in the band structure in
Fig. 1 have been studied extensively in the last few years
[23–28]—I summarize the results pertinent to the present
case.

That this system is unusual is already obvious by noting
that even when the chemical potential is in the gap, unlike that
in Fig. 1—i.e., the system is an insulator—oscillations still
appear, contradicting conventional understanding. This was
first shown in Ref. [23]; thereafter, in Ref. [26] it was shown
that these unconventional oscillations arise from the sudden
change of band slope due to hybridization. This happens at
the momentum where the bands were degenerate prior to
hybridization; the corresponding energy posthybridization is
ε = −ζ (see Fig. 1). Thus, oscillations arise from ε = −ζ

inside the band. When μ is pushed into one of the bands, the
following happens: (i) As long as μ is inside [−ζ , ζ ], there
are then two sources of oscillations, one from ε = −ζ , the
unconventional one, and one from ε = μ, the conventional
one. However, the two contributions are not of equal strength.
Very close to the band edge, the conventional oscillation is
weak, being proportional to 1/m, and the dominant one is
still the unconventional one [27]. As a result, the oscillations
do not have a frequency proportional to the area at μ, as
expected in a conventional metal, but rather to the area at
ε = −ζ , which is the same as the area at the intersection point
prior to hybridization. The upshot is that the frequency of

FIG. 5. Temperature dependence of the amplitude of quantum
oscillations for ζ/� = 0.05: Circles represent μ in the conduction
band but close to the edge (μ/ζ = 0.6) and squares represent μ

in the gap (μ = 0). The upturn in the former is clearly visible.
All amplitudes are divided by the amplitude at μ = 0 and T = 0.
The calculations were done for a lattice model that mimics the
Hamiltonian in Eq. (1). For details on the computational method, see
Ref. [26] (Supplemental Material therein).

oscillations will appear as if no hybridization has taken place
and oscillations are due to the unhybridized parabolic band
[23,26,27]. (ii) As detailed in Ref. [23], instead of following
the universal temperature dependence valid for metals given
by the Lifshitz-Kosevich formula, the dependence in the in-
sulating case follows a different behavior. When μ is in the
gap, the dependence is nonmonotonic which changes once μ

enters the band. However, as long as μ is close to the edge,
it does not follow the metallic behavior; instead, there is a
sharp upturn. This is demonstrated in Fig. 5. (iii) The above
two features hold for de Haas–van Alphen (dHvA) oscillations
(oscillations in magnetization). Shubnikov–de Haas (Sdh)
oscillations (oscillations in resistivity) can arise only from
μ and not inside the band. At the band edge, therefore, it is
expected to be much weaker than dHvA oscillations [27].

On the experimental side, quantum oscillations in mag-
netization in SmB6 have been observed, but their origin has
not been settled. While Ref. [11] attributes them to two-
dimensional (2D) surface states, Ref. [12] has interpreted
them to be of 3D bulk origin. In the latter case, (i) the
oscillation frequency has been found to match those of LaB6

which is a conventional metal without any hybridization. (ii)
Additionally, a sharp upturn in amplitude at low temperatures
is observed, deviating from the conventional metallic behav-
ior. (iii) And, unlike magnetization, no oscillations have been
observed in the resistivity. These three features are consistent
with the corresponding ones listed above.

IV. CONCLUDING REMARKS

A simultaneous presence of metal- and insulatorlike prop-
erties in SmB6 has spurred a fierce ongoing debate. Based
on paradoxical experimental observations, competing theories
and interpretations have appeared. Nevertheless, most of these
theories are inspired by a common line of thinking: The gap
is exotic with nontrivial excitations. This paper provides an
alternative picture that is simpler and intuitive. Until recently,
the conventional wisdom on SmB6 has been that the latter is
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a renormalized band insulator—“renormalized silicon.” The
theory presented here is more along this traditional approach.
It emphasizes that, at least as far as the anomalies in the four
quantities considered here are concerned (and possibly other
ones), they could be explained by a simpler mechanism within
this traditional approach. Note, however, the theory does not
contest recent predictions of topological surface states or the
importance of interactions, which could manifest in other
ways.

Additionally, from a pedagogical perspective, the model
considered presents an instructive example where textbook
results on metals and insulators break down due to certain
features in the band.

It is hoped that the alternative viewpoint espoused above
will inspire further work. A much more quantitative theory

with a realistic band diagram of SmB6 is necessary to make
a quantitative comparison to experimental data. For such a
comparison, a complete set of experiments on the calculated
quantities needs to be done on the same (batch of) samples.
And, finally, a microscopic theory justifying the phenomeno-
logical calculations above is required.
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