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Kinetic energy of fermionic systems
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The kinetic energy of a system made from normal 3He liquid is estimated and shows that progress has been
made in resolving a long-standing disagreement with most experimental values of this quantity. In general, in
the investigation of systems formed from strongly correlated fermions, the disagreement between experimental
and “exact” theoretical values of the kinetic energy is a matter of concern. For these systems, difficulties are
not only due to the Fermi-Dirac statistics they must obey, but also are due to the configurations that are used
in estimations of quantities that do not commute with the Hamiltonian. We are able to improve the sampling of
configurations and to avoid most of the bias from variational theories. Bias analysis and unbiased estimates of
quantities that do not commute with the system Hamiltonian are also easily made.
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I. INTRODUCTION

Fermions, one of the building blocks of matter, are of
immense interest in a variety of scientific fields, ranging from
many-body studies and optical traps with few atoms to particle
physics. In condensed matter, ultracold gases can generate
“artificial” solids that can be used as quantum simulators
as imagined by Feynman [1]. The possibility of tuning
the interparticle potential of fermionic gases via Feshbach
resonance is of capital importance in the study of converting
atoms into dimers and Cooper pairs [2]. The interplay between
experimental results and quantum Monte Carlo methods
[3–13] shows how important these methods are as a tool to
clarify properties of strongly correlated many-body systems.

Kinetic energy is a fundamental property of quantum
many-body systems. It is the relative importance of this
property compared to the interactions in the system that deter-
mines its overall behavior. The balance between kinetic and
potential energies can promote the formation of exotic phases
in ultracold dipolar quantum gases [14]. From the theoretical
point of view, what determines the most suitable treatment for
a system emerges from a comparison between an interacting
Hamiltonian and a free one.

Repulsive strongly interacting fermionic gases and the
question of ferromagnetic instabilities [15–18] are relevant
for a Stoner-like phase transition with a magnetic behav-
ior arising from the interaction between itinerant fermions.
The kinetic energy at the ferromagnetic transition obtained
in experiment [18] and theory [17] does not even show
qualitative agreement. The ubiquitous systems formed from
helium atoms used as the workbench for many-body theories
also have a quantitative disagreement regarding the kinetic
energy of experimental and theoretical values of 3He [19,20].
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We may note that these measurements, using deep inelastic
neutron scattering, are challenging experiments because the
absorption cross section for thermal neutrons is about three
orders of magnitude higher than for inelastic scattering.

Quantum Monte Carlo (QMC) methods at temperature
T = 0 are, in principle, able to give “exact” results, subjected
only to statistical uncertainties for quantities that commute
with the system Hamiltonian. For quantities without this
property, approximations need to be considered. For systems
made from Fermi particles, the situation is even more delicate
because of the antisymmetrical character of the Fermi-Dirac
statistics that need to be satisfied by these systems. This is the
origin of the so-called sign problem that prevents convergence
of the calculations. In general, it belongs to the computational
complexity class of nondeterministic polynomial hard [21]
problems. Difficulties that QMC methods have with the sign
problem are not exclusive in the upper bound estimations of
the total energy; they can almost certainly reinforce discrepan-
cies between experimental and theoretical values of properties
associated with operators that do not commute with the system
Hamiltonian.

In this paper, we show how to mitigate difficulties associ-
ated with the sign problem, how to improve the sampling of
the configuration space, and how to avoid approximations in
the estimation of noncommuting quantities with the Hamil-
tonian by extending the variational path-integral [(VPI), also
known as the path-integral ground-state] method [22,23] to
strongly correlated many-fermion systems. To demonstrate
the strength and simplicity of our approach, we use one of
the most studied and simplest strongly correlated fermionic
systems, liquid 3He in which there are still controversies
about the kinetic-energy value. Additionally, at least for these
systems, we also show that in exact QMC methods, contrary
to common belief, it is not always true that estimations of
quantities associated with operators that do not commute with
the Hamiltonian are consistently benefited when the accuracy
of a trial state is increased.
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II. METHODS

The VPI method in its original formulation is well estab-
lished for the investigation of a variety of bosonic systems
[24–29] at zero temperature. This method projects the ground
state from trial functions �T using the density-matrix ρ(β ) =
exp(−βH ), where H is the system Hamiltonian. The state
|�(β )〉 = ρ(β ) |�T 〉 converges exponentially to the ground-
state |�0〉 as β increases. An exact value of any property
can be estimated by constructing a string with convolution of
simple forms of the density operators with trial states at its
extremities. A property associated with any operator O can
be estimated by its application at the middle of the string for
large enough values of β able to assure a converged value of
this quantity,

O(2β ) ∝ 〈�(β )|O|�(β )〉= 〈�T |ρ(β )OLρ(β )|�T 〉, (1)

where OL(Ri ) = Oρ(Ri, Ri+1, τ )/ρ(Ri, Ri+1, τ ) is a local
value estimator for a particular value τ (usually τ � β),
Ri is a configuration of the system, and ρ(Ri, Ri+1, τ ) =
〈Ri | ρ(τ ) |Ri+1〉 is a matrix element of ρ(τ ) in the coordinate
representation.

To be more specific, ground-state properties are estimated
by constructing estimators and applying them to the state
|�(β )〉 = ρ(β ) |�T 〉. The matrix element ρ(R,R′, β ) prop-
agates the trial function �T (R′) to �(R, β ) = 〈R| �(β )〉 in
a “time” β [22]. It is written as the exponential of the ac-
tion integrated over all paths. The integration can be made
by factorizing ρ(β ) into the product of M projectors ρ(τ ),
τ = β/M , and using the convolution property,

ρ(R,R′, β ) =
∫

dR1 · · · dRM−1ρ(R,R1, τ )

× ρ(R1, R2, τ ) · · · ρ(RM−1, R
′, τ ). (2)

The intermediary configurations or beads Rn, n =
1, . . . , M − 1, can be seen as the set of atomic coordinates at
time t = nτ . The beads stand for a sort of discretization of
the path from R to R′ in a time β. Therefore the integration of
Eq. (2) converges to the integration over all paths if τ is small
enough. Any error introduced by this approximation can, in
general, be made smaller than the statistical uncertainties of
the Monte Carlo method.

In the usual path-integral Monte Carlo calculations we find
closed polymers. Whereas in the VPI method, the polymers
are opened and a trial function is attached to their ends. We
call these polymers strings. Configurations Ri of ρ(R,R′, β )
at the middle of long enough strings allow one to estimate any
quantity without further approximation, even if its expected
values are associated with operators that do not commute with
the Hamiltonian.

If a given property is associated with an operator O, an
estimate of this quantity can be written as

O ∝ 〈�(β )|O |�(β )〉 = 〈�T | ρ(β )Oρ(β ) |�T 〉 . (3)

The last expression can also be written as

O =
∫

dR1 · · · dR2M+1P (R1, . . . , R2M+1)OL, (4)

in terms of the probability distribution function P of a given
path,

P (R1, . . . , R2M+1) ∝ �T (R1)ρ(R1, R2, τ ) · · ·
× ρ(R2M,R2M+1, τ )�T (R2M+1). (5)

In Eq. (4), OL(Ri, Ri+1) = Oρ(Ri, Ri+1, τ )/ρ(Ri, Ri+1, τ )
is the local value of operator O in the coordinate represen-
tation.

For the estimation of the total and kinetic energies, it is still
possible to use the so-called thermodynamic estimators. They
are constructed by taking derivatives of ρ(β ) regarding β and
mass m, respectively.

III. FERMIONIC SYSTEMS

More importantly, the application of the VPI method to
strongly correlated Fermi systems is not difficult if antisym-
metrical trial functions �T (R) are used at the end of the string.
The matrix element ρ(R,R′, β ) does not explicitly need to be
antisymmetrical under the permutation of any pair of particles
of configuration R. It is enough to incorporate the minus
sign arising from odd permutations of ρ(R,R′, β ) into �T (R)
since

ρ(R,R′, β )�T (R′) = (−1)npρ(R,PR′, β )�T (R′)

= ρ(R,PR′, β )�T (PR′), (6)

where P is a permutation operator that changes the coordi-
nates of np particles in a given configuration. We observe
that, after integration in R′, all permutations will have the
same result and therefore, in contrast to other Monte Carlo
calculations, these permutations do not need to be explicitly
considered. The above proof allows us to treat the sign prob-
lem in a much less stringent manner than other Monte Carlo
methods. It is enough to reject samples where the product of
�T (Re )�T (R′

e ) at the extremities of the string changes sign.
This is a fixed-node approximation that has more degrees
of freedom than the restriction �T (R) > 0 imposed when
one applies an importance function transformation to sample
�0(R)�T (R) in iterative Monte Carlo methods. In each of
these iterations, configurations best known in the literature
as walkers evolve in time, and the fixed-node restrictions
are imposed in the sampling of each and every iteration. In
the VPI method, this would be equivalent to performing the
fixed-node approximation in the sampling of all internal beads
instead of considering it only at the extremities of the string.
We believe that the extra degrees of freedom allowed by this
implementation of the fixed-node approximation improves the
exploration of the configuration space especially in regions
where the nodal structure of �T (R) is not identical to that of
the ground state.

To project the ground state from a trial function �T , we
carried out calculations using two distinct approximations
to ρ(R,R′, τ ) in Eq. (2). We have experimented with the
primitive approximation [22], which is a second order in τ

and a fourth-order approximation in τ , from Refs. [30,31].
The choice of either of these approximations did not affect
our results.

045145-2



KINETIC ENERGY OF FERMIONIC SYSTEMS PHYSICAL REVIEW B 99, 045145 (2019)

IV. TRIAL WAVE FUNCTIONS AT THE EXTREMITIES

We chose two distinct trial wave functions to project out
the ground state. The simplest function we have used at the
extremities was the Jastrow-Slater (JS) wave function,

�T (R) =
∏
i,j

e−(1/2)u(rij )det↑(eikl ·rm )det↓(eikl ·rn ), (7)

where u(r ) = (b/r )5. The nodal structure of this wave func-
tion was improved by adding backflow (BF) correlations in
the Slater determinant [32,33]. These correlations are in-
troduced by a change in the particle coordinates r. → r. +∑

j 
=· η(r·j )(r. − rj ) of the Slater determinant, where

η(r ) = λBe−[(r−sB )/wB ]2 + λ′
B

r3
, (8)

and λB, sB, wB , and λ′
B are parameters. Three-body (T)

correlations [32,33] were also introduced in the symmetric
part of �T (R),

exp

⎡
⎣−1

2

∑
i<j

ũ(|ri − rj |) − λT

4

∑
l

G(l) · G(l)

⎤
⎦, (9)

where G(l) = ∑
i 
=l ξ (rij )rij , ξ (r ) = exp[−(r − sT )/(wT )]2,

and sT , wT are parameters. The pseudopotential ũ(r ) =
u(r ) − λT ξ 2(r )r2 cancels two-body factors arising G(l) ·
G(l). We refer to this improved wave function as JS + BF + T.

V. RESULTS AND DISCUSSIONS

We applied the VPI method to study a system of 54

atoms of 3He at the equilibrium density of 0.0163 Å
−3

in a
cubic cell with periodic boundary conditions described by the
Hamiltonian,

H = 1

2m

N∑
i=1

∇2
i +

N∑
i<j

v(rij ), (10)

where m is the 3He mass and v(r ) is a very accurate pairwise
potential [34].

We experimented our fixed-node approximation with dis-
tinct trial wave functions that have different degrees of over-
lapping with the ground state. The simplest one is known as
the JS wave function. It describes a fermion fluid by means of
a symmetrical two-body correlation factor multiplied by one
determinant of plane waves for the spin-up atoms and another
for the spin-down atoms. These atoms fill the Fermi sphere
representing the unpolarized state of an ideal gas. A more
elaborate function, JS + BF + T, included explicit T corre-
lations and an improved description of the nodal structure of
the ideal gas by introducing the so-called BF correlations.

The purpose of using two different trial functions at the
ends of the string (JS-JS or JS + BF + T-JS + BF + T) is
twofold. First, we demonstrate that the reasoning leading to
Eq. (6) is not affected by any numerical artifact. Second, we
show that an improved trial function accelerates convergence
to the exact ground state especially if it has a more accurate
nodal structure. We have evaluated the total energy H (2β )
as a function of β with the results displayed in Fig. 1.
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FIG. 1. Total energy H (2β ) as a function of β. The points at
β = 0 correspond to variational energies. Squares represent the cal-
culations with the JS trial function, and circles stand for calculations
using the JS + BF + T function.

As β increases, the energy decreases, almost exponentially,
creating a sequence of upper bound values to the ground-state
energy until a converged value is reached. It is clear that
the converged value obtained using a state projected from the
more elaborate wave function is considerably lower than the
one projected from the JS wave function. This last function
has a poorer nodal structure; which is considerably improved
by BF correlations as is well known. Of course, the true
ground-state energy itself would only be achieved if the nodal
structure of �T (R) is identical to the exact one.

A constant straight line was fitted starting at β � 1.5 ×
10−2 K−1 to converged values of the energy (Fig. 1) associ-
ated with the string containing the JS + BF + T function
at its ends. From this fit, the total energy was estimated
as −2.41 ± 0.01 K/atom, a very good upper bound to the
experimental datum −2.47 ± 0.01 K/atom [35]. From now
on, all results we report are exclusively obtained with this
wave function.

For converged values of the kinetic energy as a function
of β, a constant straight line was fitted. The ground-state
kinetic energy obtained is 10.16 ± 0.05 K/atom. In Fig. 2,
we plotted this value together with experimental data from
the literature for liquid 3He at equilibrium density. Most of the
experimental data lie in a range from 8 to 11 K/atom, which is
in excellent agreement with our estimates. We excluded from
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FIG. 2. Comparison of our results for the kinetic energy of 3He
at the equilibrium density and experimental data from the literature.
The symbols were horizontally displaced for the sake of clarity.
The full square stands for our calculation; this symbol size is larger
than the statistical uncertainty. The experimental data are plotted
with empty symbols: square [39], circle [40], triangle [41], and
rhombus [42].
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TABLE I. Fitted values of the kinetic and potential energies in
units of K/atom to converged values of these quantities obtained
with the local and thermodynamic (T ) estimators. Configurations are
projected from the JS + BF + T wave function. The result in the last
line was obtained using values from both estimators.

Estimator Kinetic energy Potential energy

Local 10.19 ± 0.07 −12.75 ± 0.01
T 10.14 ± 0.07 −12.75 ± 0.01
Local + T 10.16 ± 0.05 −12.75 ± 0.01

Fig. 2 a datum from Ref. [20] because its value and error
bars lie between previous theoretical results and those of other
experiments, which allows agreement with both sets of values.
Former computed values of the kinetic energy are in the range
of 12 to 13 K/atom [33,36–38].

For the sake of completeness, we report in Table I the
estimates of kinetic energy of liquid 3He calculated using
the local and the thermodynamics estimators. The adopted
value of the kinetic energy 10.16 ± 0.05 K/atom is obtained
considering both estimators.

A possible source of disagreement between our result and
those from the literature can be attributed to the fact that
they need to rely on an approximation that might introduce
bias into the final answers. This approximation consists in
computing the desired value through the extrapolated estima-
tor Oextr ≈ 2Omix − Ovar, where Ovar is the usual variational
estimate of the expected value of O and Omix is the commonly
mixed estimate of iterative Monte Carlo projector methods.
The estimator of Omix is a special case of our local estimator
for a large enough β,

Omix = 〈�T |O |�0〉
〈�T | �0〉 = 〈�T |O |�(2β )〉

〈�T | �(2β )〉 . (11)

If O is the system Hamiltonian, the above estimator gives, at
any intermediate configuration Ri of a long enough string, the
exact value of the ground-state energy. This is also true for
any quantity that commutes with the system Hamiltonian.

For the purposes of comparison with values from the liter-
ature, it is useful and straightforward to use the extrapolation
technique in the context of the VPI method. The extrapola-
tion approximation performed with Oextr is correct up to the
second order in the difference between the trial state and the
ground state. We obtained an extrapolated kinetic energy of
11.27 ± 0.01 K/atom. This value is not in agreement with our
exact estimate nor with extrapolated values from the literature.
Nevertheless, our exact result is closer to this last value than
those from the literature. This fact might suggest that our
method samples the configuration space in a more efficient
manner than other approaches. Moreover, since we note that
extrapolations give more consistent results when used with
bosonic systems [43], this also might reinforce a view that we
have a more accurate treatment of the fermionic sign problem.
On that point, we also note that extrapolations are somehow
more problematic in fermionic systems. This approximation
is used to cancel the first-order contributions in the difference
between the trial state and the ground state. To this aim, a
linear combination of the mixed and variational estimates is
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FIG. 3. Variational (©), mixed (�), and extrapolated (�) esti-
mates for the kinetic energy obtained from the improved trial state
|�(β )〉 as a function of β. The full lines are fourth-order polynomial
fits of the results.

performed. However, in fermionic systems, restrictions on the
integration of the mixed estimate are imposed due to the sign
problem, whereas those same restrictions are not made for the
variational estimate since in this case one samples the square
of the trial wave function. Thus, the cancellation intended is
not complete.

Related to these questions, we have investigated if extrap-
olated approximations are benefited by improvements of the
trial function �T (R). We calculated mixed 〈�(β )|O |�0〉 and
variational 〈�(β )|O |�(β )〉 estimates for increasing values
of β. The results for the kinetic energy are shown in Fig. 3
where it becomes clear that extrapolations converge to the
exact result only when |�(β )〉 tends to the system ground
state.

As another property that does not commute with the system
Hamiltonian, we have estimated the total radial distribution
function and its spin-resolved components for atoms with

0

0.2

0.4

0.6

0.8

1

1.2

2 3 4 5 6 7

↑↓

↑↑

0.95

1

5 6 7

0.45

0.5

5 6 7

g
(r

)

r (Å)

FIG. 4. Exact (solid line) and extrapolated (dashed line) radial
distribution functions and their spin-resolved components, parallel
(↑↑), and antiparallel (↑↓) as a function of the radial distance
between pairs for liquid 3He at equilibrium density. The insets show
the details of the results near the first minimum.
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parallel and antiparallel spins,

g(r ) = 1

Vol

〈∑
i<j

δ(r − rij )

〉
, (12)

where Vol is the volume of the simulation cell. The results
can be seen in Fig. 4. As expected, the antiparallel spin curve
has a more pronounced peak because of the Pauli exclusion
principle. In the same figure, for comparison, we present
extrapolated estimates that show differences from our results.

VI. CONCLUSIONS

The VPI approach we have presented to investigate
strongly correlated Fermi systems is robust and reliable. It
allows a more efficient exploration of the configuration space

and improved results can be obtained. Any quantity associated
with operators that do or do not commute with the Hamil-
tonian can be readily obtained by unbiased estimators. The
potentiality of this method was demonstrated by calculations
of the ground-state kinetic energy of liquid 3He leading finally
to results that are in agreement with most of its experimental
values.
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