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Berry curvature and Hall viscosities in an anisotropic Dirac semimetal
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We investigate parity-odd nondissipative transport in an anisotropic Dirac semimetal in two spatial dimen-
sions. The analysis is relevant for interacting electronic systems with merging Dirac points at charge neutrality.
For such systems the dispersion relation is relativistic in one direction and nonrelativistic in the other. We give a
proposal of how to calculate the Berry curvature for this system and use it to derive more than one odd viscosities,
in contrast to rotationally invariant systems. We observe that in such a model the odd part of viscosity tensor is
parametrized by two independent transport coefficients and one that is identically zero.
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I. INTRODUCTION

Since the discovery of quantum Hall states, the topological
response of these systems continues to be one of the emerging
fields of research [1–6]. In particular, there has been a revived
interest in understanding the interplay between geometry and
quantum Hall states with fractional and integer fillings [7–12].
A key quantity that encodes the topological response to the
geometry deformations is Hall viscosity [1,13] (see [14,15]
for a review); a nondissipative part of the viscosity tensor that
is odd under time reversal and hence nonvanishing when such
a symmetry is absent.

When rotational symmetry is broken, the odd part of
the two-dimensional viscosity tensor can have three nonzero
components, in contrast to the usual single viscosity in a
rotationally symmetric system. Despite extensive studies on
both isotropic two-dimensional (2D) electron gas and Dirac
materials [1–6,16,17], systems without rotational symmetry
have received surprisingly little attention. This follows either
from the scarcity of physically realizable examples or from
the difficulty in the explicit calculation of the Hall viscosity
tensor. Although some progress has been made in setups in
which the anisotropy is introduced via the mass tensor or
interaction tensor [18,19] in a 2D electron gas, the anisotropic
case in 2D Dirac semimetals has not been explored so far.

The objective of this paper is to fill this gap by studying the
Hall viscosity tensor in a new class of 2D anisotropic Dirac
semimetals [20–22]. Such semimetals are known to exhibit
a special phase, namely a critical semi-Dirac phase, which
is characterized by electronic bands touching in a discrete
set of nodes about which the bands disperse linearly in one
direction and quadratically along the orthogonal direction.
The low-energy Hamiltonian describing such materials is

H = d(p) · σ, (1)

where σ’s are Pauli matrices. d(p) = ( p2
x

2m0
− δ0, py, 0) with

m0 being a mass and δ0 the gap parameter. This type of Hamil-
tonian has been argued to emerge in TiO2/VO2 heterostruc-
tures [23], (BEDT-TTF)2I3 organic salts under pressure [24],
and photonic metamaterials [25]. However, the only exper-
imental realization for such a dispersion has thus far been

observed in optical lattices [26]. Because of the possibility to
realize the semi-Dirac phases in real materials, it is natural to
ask how this anisotropy can be leveraged to understand the
values and universal properties of the Hall viscosity in such
systems, a question that has received no attention to date.

The main difficulty in addressing the above problem comes
from the following issue: How does a semi-Dirac material
with electrons that have relativistic motion in one direction
and nonrelativistic motion along the perpendicular direction
couple to the underlying geometry? Given the nonrelativistic
structure of the Hamiltonian [Eq. (1)], there is no straight-
forward answer to this question. To solve this problem, we
propose a different path based on a generalized relativistic
model that exhibits three distinct phases, including the critical
semi-Dirac phase as a function of an anisotropic parameter.
Writing this Hamiltonian on a torus in the presence of a
magnetic field, we find the Landau levels and corresponding
wave functions. We then derive the formula for Berry curva-
ture with the help of these wave functions. We furthermore
show how anisotropy leads to two independent Hall viscosity
coefficients in this particular system. This is in contrast to
the three independent components allowed by the symmetry
arguments of [13]. Finally, we analyze the scaling of those
coefficients as a function of the applied magnetic field and
obtain a power-law behavior at the critical semi-Dirac phase.
These constitute the central results of this paper.

II. MODEL AND PHASES

We propose a low-energy Hamiltonian for an anisotropic
2D Dirac semi-metal:

H = γ 0(p · γ + b · γγ 5 + m0). (2)

Here γ μ = (τ x,−iτ yσ), γ 5 = τ z are 4 × 4 Dirac matrices,
satisfying {γ μ, γ ν} = 2ημν14, where η = (1,−1,−1,−1); τ

and σ ’s are the Pauli matrices in spin and pseudo-spin space,
respectively, p = (px, py, 0); m0 denotes mass gap and b =
(b, 0, 0) is the anisotropic parameter of the Hamiltonian.

2469-9950/2019/99(4)/045141(5) 045141-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.045141&domain=pdf&date_stamp=2019-01-25
https://doi.org/10.1103/PhysRevB.99.045141


PEÑA-BENITEZ, SAHA, AND SURÓWKA PHYSICAL REVIEW B 99, 045141 (2019)

FIG. 1. Evolution of energy dispersion of a two-dimensional
anisotropic Dirac semimetal [Eq. (2)] for different values of param-
eter b/m0. For b = 0 the spectrum is gapped, whereas for m0 = 0
we see two gapless Dirac nodes. In both limiting cases the bands
are doubly degenerate as presented with cross-shaded colors. For
b/m0 = 1, the two Dirac nodes merge, leading to a semi-Dirac point
as discussed in the main text.

The energy spectrum of Eq. (2) is given by

E (px, py) = r

√
p2

x + p2
y + b2 + m2

0 + 2s
√

b2
(
m2

0 + p2
x

)
, (3)

where r, s = ±. Note that r = ±1, s = −1 correspond to
lowest conduction and highest valence band, respectively. The
competition between mass gap m0 and anisotropy b leads to
three distinct phases (cf. Fig. 1). For b > m0, the spectrum is
gapless, with two-Dirac nodes at ( ±

√
b2 − m2

0 , 0, 0), while
b < m0 corresponds to a gapped insulating phase. On the
other hand, for b = m0, we obtain a critical phase where two
Dirac nodes merge and lead to a semi-Dirac phase. Thus, the
variation of b/m0 changes the Fermi surface topology, leading
to a Lifshitz transition. Note that redefining b2 = m2

0 + 2δ

and assuming a large gap δ0 ≡ δ/m0 � 1 and px/m0 � 1,
the highest valence and lowest conduction bands behave
as E ≈ ±

√
p2

y + ( 1
2m0

p2
x − δ0)2 + O(px )5 , which agrees with

the spectrum of the Hamiltonian in Eq. (1). In the Supplemen-
tal Material [27] we discuss in more detail the equivalence
of both Hamiltonians (1) and (2) after including a magnetic
field.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

FIG. 2. Positive energy Landau levels (n). The zeroth Landau
level is nondegenerate irrespective of the values of b for finite m0.
The black dots for b = 0 correspond to the Landau energies εn ∼√

n + M2, while black dots for b/m0 � 1 correspond to εn ∼ √
n,

showing agreement between numerical and analytical results.

III. LANDAU LEVELS AND WAVE FUNCTIONS
ON A TORUS

Let us now focus on finding out the Landau spectrum and
corresponding wave functions of Eq. (2) on a torus. The metric
of the torus is given by

ds2 = V

τ2
(dx2 + 2τ1dx dy + |τ |2dy2), (4)

where τ = τ1 + iτ2 is the modular parameter and V is the
volume of the torus. With this, the Landau Hamiltonian in
the presence of a constant perpendicular magnetic field B =
εi j∂iA j [28] is obtained to be

HL = γ 0(
iea
iγ a + m0 + biea

iγ aγ 5), (5)

where a, i, j ∈ (1, 2), 
i = pi − eAi, and ea
i’s are the frame

vectors satisfying gi j = ea
iδabeb

j . With this construction, the
kinematical momenta 
i satisfy [
i,
 j] = iεi j l

−2
B , where

lB = h̄/(eB) is the magnetic length. For simplicity, we set
h̄ = e = 1 for the rest of this study.

To diagonalize Eq. (5), we introduce ladder operators a, a†,
satisfying [a, a†] = 1. This leads to

HL = ω[(aσ+ + a†σ−)τz + (d̄σ+ + dσ−)τ0 + Mσxτ0], (6)

where a bar denotes complex conjugation, σ± =
σx ± σy, ω = √

2l−1
B , a = i(V τ2)−1/2(
y − τ
x )/ω,

d = −i(V τ2)−1/2τb/ω, and M = m0/ω.
For nonzero b and m0, Eq. (6) cannot be exactly diago-

nalized. Thus, we choose an algebraic semianalytic method
to diagonalize Eq. (6) and obtain the Hall viscosities. To do
so, let us introduce new shifted ladder operators ad = a + d ,
a

†
d = a† + d̄ . This leads to a set of basis states |n, α, d, τ 〉,

satisfying

a
†
dad |n, α, d, τ 〉 = n|n, α, d, τ 〉. (7)

The index α = 1, . . . , N labels the magnetic degeneracy,
which for notational simplicity we ignore in the rest of the
paper. For a detailed discussion on the existence of these
eigenvectors and how to impose the proper boundary condi-
tions on the torus, see Ref. [8,29]. Having these bases, we
proceed to expand each Landau level eigenstate as follows:

|ψ〉 =
∑

n

cn|n, d, τ 〉, (8)

where cn is a set of four-component constant fermions, de-
pending only on the values of τ,V . At this point, the problem
of diagonalizing Eq. (6) is translated into the eigenvalues
problem of the infinite matrix

Hnmcm = εncn where Hnm = 〈n, d, τ |HL|m, d, τ 〉. (9)

In general cn’s have to be obtained numerically by truncating
the series at some large enough values of n. However, there
are two limiting cases in which the diagonalization process
of Eq. (6) can be done analytically; the first and simplest
case corresponds to m0 = 0 (see Fig. 1). In this case, the
Hamiltonian decouples into two 2-band subsystems which do
not interact with each other. The eigenenergies turn out to be
εn = ±ω

√
n for each subsystem. Then the wave functions for
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the zeroth Landau level of the two subsystems aref

ψ1
0 = (1, 0, 0, 0)|0, d, τ 〉,

ψ2
0 = (0, 0, 1, 0)|0,−d, τ 〉. (10)

For transparency, the higher excited wave functions are pre-
sented in the Supplemental Material.

In contrast, the second analytically solvable case, b = 0,
is slightly more involved because there is no decoupling.
After a careful calculation, the eigenenergies are found to be
εn = ±ω

√
n + M2. The zero mode here turns out to be non-

degenerate and the states with n > 0 are doubly degenerate.
The zeroth Landau level wave function is

ψ0 = 1√
2

(1, 0,±1, 0)|0, 0, τ 〉. (11)

As before, the degenerate excited wave functions can be
obtained easily, and they are presented in the Supplemental
Material for simplicity. These limiting behaviors of Eq. (6) are
expected to be reflected in the Hall viscosities (discussed in
the next section) for both b � m0 and b � m0, in which a sin-
gle viscosity exists and can be computed analytically. Finally,
we computed for arbitrary values of the ratio b/m0 the spectra
and we show in Fig. 2 some of the lowest Landau levels.

IV. BERRY CURVATURE

According to the adiabatic response theorem by Feynman
and Hellmann, the expectation value of the variation of the
Hamiltonian, with respect to some set of parameters xi, is
given by 〈

∂H

∂x j

〉
= ∂E

∂x j
− �i j ẋ j . (12)

The first term is a result of the energy change of the ground
state deformation. The second term is the adiabatic Berry
curvature

�i j = i

[
∂

∂xi

〈
ψ

∣∣∣∣ ∂ψ

∂x j

〉
− ∂

∂x j

〈
∂ψ

∂xi

∣∣∣∣ψ
〉]

, (13)

which is nonzero if the phase of the state ψ changes along
a closed path in the space of deformations. Plugging the
eigenstates (8) into Eq. (13), the total Berry curvature can be
readily obtained by

� = id (c†
n · dcn) + d (c†

n · cm) ∧ Anm + c†
n · cmFnm. (14)

Here repeated indices denote Einstein’s notation and the exte-
rior derivative d acts on the space expanded by the parameters
τ,V . The detailed derivation is shown in the Supplemental
Material. The explicit forms of A and F evaluated at nonde-
formed torus τ = i are

Amn = −1

4
(
√

m(m − 1) δm,n−2d τ̄

+
√

(m + 1)(m + 2) δm,n+2dτ ), (15)

Fmn = − i

4

(
m + 1

2

)
δm,ndτ ∧ d τ̄ . (16)

For m0 = 0, the first and second terms in Eq. (14) identically
vanish since cn are independent of V, τ . The only surviving

contribution produces the value for the Berry curvature at
τ = i [27]:

�pq = − i

4

(
n + 1

2
δn,0

)
dτ ∧ d τ̄ δpq, (17)

where p, q = 1, 2 label the degenerate subspaces associated
with each subsystem as pointed out before. Evidently, � is
diagonal in the subsystem subspace. Thus, we recover the
Berry curvature for isotropic Dirac systems using Eq. (14)
[30,31].

Similarly, for b = 0 and for the zeroth Landau level, cn ∼
δn,0, leading to � = − i

8
dτ∧d τ̄

τ 2
2

. For higher Landau levels,
the calculation of Berry curvature is subtle due to twofold
degenerate Landau levels (not to be confused with magnetic
degeneracy) as discussed in the preceding sections. These
subtleties, however, do not change the message we want to
convey, because the degeneracy is not present around the
critical point. For simplicity, we focus mainly on the zeroth
Landau level in our analysis.

For nonzero b and m0, cn �= δn,0, thus we may have nonzero
contribution from the first and second terms of Eq. (14), which
in turn may lead to more than one Hall coefficient, as will
be evident shortly. We would like to mention that Eq. (14)
is a generic formula and can be applied to any system where
rotational symmetry is broken. Thus, this is one of the main
results of this study.

V. ANISOTROPY AND HALL VISCOSITY

Armed with the derivation of Berry curvature, we now re-
late different component of � to the viscosity components and
show how anisotropy in a Dirac system leads to more than one
Hall viscosity coefficient. The odd transport coefficients are
the most readily visible at the level of constitutive relations.
One can expand the average stress tensor in time derivatives
of the strain,

Ti j = −
∑

kl

λi jkl ukl −
∑

kl

ηi jkl
∂ukl

∂t
+ · · · , (18)

where the strain is expressed in terms of a deformation vector
ukl = ∂kul + ∂l uk . The first term in that expansion λi jkl cor-
responds to a generalized Hooke’s elasticity tensor and the
second term ηi jkl corresponds to the viscosity tensor. Note that
ηi jkl is symmetric under exchange of i with j and k with l
[32]. In general, η can be divided into η = ηS + ηA, where ηS

is symmetric with respect to interchanging first pair (i j) with
(kl ) whereas ηA is antisymmetric under exchange of (i j) with
(kl ). Since the antisymmetric part is odd under time reversal,
ηA �= 0 only when time reversal symmetry is broken. As the
antisymmetric part of the viscosity tensor is nondissipative, it
may survive at zero temperature. From now on we only focus
on the antisymmetric nondissipative part and remove the label
A for brevity and clarity.

For generic two-dimensional (2D) systems without time
reversal, ηi jkl has in principle three independent components
ηxxxy, ηxyyy, and ηxxyy. However, for rotationally invariant
systems, the number of independent quantities decreases, and
ηi jkl is solely determined by a single viscosity, denoted as
ηH since ηH = ηxxxy = ηxyxx and ηxxyy = 0. This single object
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FIG. 3. Subtracted viscosity coefficients (�η = η − ηiso) as a
function of the ratio b/m0.

turns out to be an universal quantity ηH = s̄ρ/2, where s̄ is
the orbital angular momentum and ρ is the average number
density.

Since the odd viscosity tensor is a multicomponent tensor
for a generic 2D system, we relate different components of
Berry curvature to the viscosity coefficients. Together with
Eqs. (12) and (18), and evaluating the strain rate on the
nondeformed torus τ = i,V = 1, we obtain

2πNl2
Bηxxxy = �τ1τ2 − �τ1V,

2πNl2
Bηxyyy = �τ1τ2 + �τ1V, (19)

2πNl2
Bηyyxx = �τ2V ,

where each component of � can be extracted from Eq. (14)
(see Supplemental Material). In the isotropic case, �τ2V and
�τ1V turn out to be identically zero. Thus ηxxxy = −ηyyxy is the
only parameter that determines the response to the geometry
of the QH states. However, due to the anisotropic nature of
the Dirac system, each term in Eqs. (19) contributes to the
viscosities except for �τ2V , which turns out to be zero (see
Fig. 3).

Figure 3 illustrates the different components of the viscos-
ity tensor after subtracting the isotropic value (�η = η − ηiso)
as a function of the ratio b/m0. It is evident that the different
components of η start to deviate from the universal isotropic
value as we increase b for fixed m0 and become maximum near
the ideal semi-Dirac phase (b/m0 = 1). Thus, the anisotropy
b �= 0 leads to more than single viscosity coefficients, in
contrast to the isotropic case (b = 0). If we further increase
b/m0, both nonzero components of η start to decrease and
merge again toward the isotropic value. This is attributed
to the fact that, in the large b � m0 limit, we obtain two
well-separated Dirac nodes, in conjunction with the earlier
discussion. Consequently, the wave function behaves approx-
imately as in Eqs. (10), which in turn gives the isotropic value
of Hall viscosity.

We next aim to find the dependence of viscosity coeffi-
cients on the magnetic field B near the semi-Dirac phase. It is
known for typical isotropic 2D system, η ∼ B [1], irrespective

FIG. 4. Scaling of the subtracted viscosity tensor as a function of
the magnetic length. Dots correspond to the numerical data whereas
solid lines represent the fitting.

of the relativistic or nonrelativistic nature of the electrons. In
contrast, we find a different scaling behavior of the subtracted
viscosity near the semi-Dirac point. Figure 4 illustrates the
maximum of �η for several values of m0 lB. In the given range
of analyzed data, we can fit the power-law scaling as seen in
Fig. 4. We observe that �η goes to zero for large magnetic
fields. This confirms an intuitive picture that, for large enough
energy scale, the system behaves isotropically.

VI. CONCLUSION

We have introduced a framework for studying the nondis-
sipative transport in anisotropic Dirac semimetals, where the
anisotropy is present due to a preferred direction. This dis-
tinguishes this model from the previous cases studied in the
literature, where isotropy is broken by a tensor [18,19]. We
have introduced a relativistic model with an anisotropic vector
that reproduces the spectrum of the nonrelativistic semi-Dirac
system Eq. (1) at low energies for certain values of parame-
ters. We have derived a universal formula for a Berry curvature
in this model that succinctly captures the anisotropy for the
semi-Dirac phase. Using the formula, we have numerically
investigated how the anisotropy leads to the departure from
one Hall viscosity coefficient for the zeroth Landau level. We
have shown that, at the critical semi-Dirac point, the odd stress
tensor has two nonequal entries. In addition to that, we have
shown that the third entry is identically zero for this model.

The general formalism developed here is a step forward
in the understanding of odd transport in anisotropic systems.
In the realm of quantum Hall effect, the anisotropic effects
are of great interests, and only recently appropriate methods
have started to be developed. A first step in this direction
was given by the authors of Ref. [18] for 2D electron gasses,
using general effective field theory techniques. They classified
and explored possible universalities in systems where the
rotational invariance is broken by a symmetric tensor. In
our situation the rotational invariance is broken by a vector.
Moreover, recent progress in two-dimensional hydrodynamics
motivates studies of Hall transport in electronic systems. To
date odd transport has been only studied in isotropic models
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[33,34]. Thus the studies presented here can be useful to
generalize the existing isotropic, parity-odd hydrodynamic
solutions to anisotropic systems. This would supplement ex-
isting analysis that takes into account dissipative viscosities
[35]. In order to facilitate the experimental analysis it will
be useful to study finite momentum corrections to anisotropic
conductivities [36]. If relations between Hall viscosities and
conductivities generalize to anisotropic systems, measure-
ments of conductivities are potentially the most feasible ones
to reveal aspects of odd viscosities in anisotropic materials.

In three spatial dimensions, some models for Weyl
semimetals show a similar anisotropic semi-Dirac behavior.
In fact, the Hall viscosity for an anisotropic toy model for
a strongly coupled Weyl semimetal was computed in [37],
showing a puzzling relation between the Hall viscosity tensor

and the mixed gauge-gravitational anomaly. Above all, our
results pave the way for a detailed analysis of the Hall
transport in anisotropic Dirac systems, including the special
semi-Dirac phase, and subsequently for understanding their
hydrodynamic regime.
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