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In this work, we adapt the formalism of the dynamical vertex approximation (D�A), a diagrammatic
approach including many-body correlations beyond the dynamical mean-field theory, to the case of attractive
on-site interactions. We start by exploiting the ladder approximation of the D�A scheme, in order to derive
the corresponding equations for the nonlocal self-energy and vertex functions of the attractive Hubbard
model. Second, we prove the validity of our derivation by showing that the results obtained in the particle-
hole symmetric case fully preserve the exact mapping between the attractive and the repulsive models. It
will be shown how this property can be related to the structure of the ladders, which makes our derivation
applicable for any approximation scheme based on ladder diagrams. Finally, we apply our D�A algorithm
to the attractive Hubbard model in three dimensions, for different fillings and interaction values. Specifically,
we focus on the parameters region in the proximity of the second-order transition to the superconducting and
charge-density wave phases, respectively, and calculate (i) their phase-diagrams, (ii) their critical behavior, as
well as (iii) the effects of the strong nonlocal correlations on the single-particle properties.
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I. INTRODUCTION

The theoretical description of strongly correlated fermionic
systems represents one of the main challenges in condensed-
matter physics. This field has been defined by the study of
the two-dimensional Hubbard model as the prototype simple
model to understand high-temperature superconductivity in
copper oxides and it has flourished thanks to the discovery of a
variety of materials with strongly correlated valence electrons
displaying remarkable functional properties. The importance
of the physics emerging in these systems and the complexity
of actual correlated materials have motivated the quest for
reproducing, in a much more controlled way, the fundamental
microscopic mechanisms at work. This is possible, e.g., by
trapping systems of cold atoms in optical lattices induced
through laser interference [1].

Among the plethora of interesting phenomena associated
with strong correlations, some of the most difficult prob-
lems arise when the electrons are confined in low spatial
dimensions (as in anisotropic layered transition-metal oxides)
or in the proximity of phase transitions of different kinds.
In these regimes, one finds that the electron correlations
appear simultaneously in space and time coordinates or, in
a more mathematical language, the self-energy depends both
on momentum and on frequency and those dependencies are
intertwined.

Indeed, the effort to develop theoretical methods able to
treat strong correlations has produced, among the others, a
rigorous nonperturbative theoretical treatment of quantum lo-
cal correlations, through the popular and successful dynamical
mean-field theory (DMFT) [2], where the self-energy is mo-
mentum independent, but it has a rich frequency dependence.
DMFT, however, becomes exact [2] only for lattices with large
coordination number (or, equivalently, in the limit of high

dimensions) which obviously limits severely its application to
low-dimensional systems and close to phase transitions where
the electronic self-energy is expected to be strongly modified
by nonlocal fluctuations.

The efforts to introduce nonlocal effects starting from
DMFT has led to cluster extensions [3] or diagrammatic
expansions [4] of the method. The latter ones use the lo-
cal two-particle vertex functions [5,6] of DMFT [or, more
precisely, of its auxiliary Anderson impurity model (AIM)]
as a building block for new diagrammatic expansions. For
instance, the dual fermion (DF) [7] and the dynamical vertex
approximation (D�A) [8] schemes use the full two-particle
local vertex function F and the two-particle irreducible local
vertex functions, respectively, to include nonlocal correlation
effects on top of DMFT, through ladder or parquet diagram-
matic resummations.

These approaches have been so far applied essentially only
to the cases of repulsive (and, often, local or short range)
electronic interactions. On the other hand, since the dynamical
mean-field theory has been also successfully used for studying
systems with attractive interactions [9–17] and the Feynman
diagrammatics represent a highly flexible tool, no conceptual
obstacle should prevent the applicability of the diagrammatic
approaches beyond DMFT to systems with attractive interac-
tions, which have so far been considered only in Ref. [18],
where DB has been applied to an extended attractive Hubbard
model [19].

We also discuss here the relation between the D�A and the
purely numerical lattice quantum Monte Carlo (QMC) [20],
that for the attractive model can be regarded as numerically
exact, but it can only be implemented in finite lattices which
require a finite-size scaling to estimate the thermodynamic
limit. The situation is somewhat complementary in D�A, at
least in the ladder version used in this work. The approach
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introduces approximations, but it is free from finite-size
limitations. Furthermore, in the ladder-D�A we have clear
information about which are the fluctuations (bosonic modes)
that enter in the self-energy through the Schwinger-Dyson
equation with the possibility of performing a fluctuations
diagnostic [21].

The extension of diagrammatic approaches to the attractive
Hubbard model is directly relevant to describe systems of
cold atoms in optical lattices where the interaction is tuned to
attractive values exploiting Feshbach resonances [22,23] and
the coupling is tuned from weak to strong giving rise to the
BCS-BEC crossover [24–30]. In this framework, significant
corrections with respect to static mean-field descriptions are
expected in particular at intermediate interaction values and
for low-dimensional systems. Moreover, the approach can be
used to study mass-imbalanced [31] or spin-imbalanced [32]
mixtures beyond DMFT. While an attractive Hubbard model
is hardly applicable to concrete materials, its understanding
can improve our fundamental knowledge of the properties of
the superconducting phases in the regime of intermediate cou-
pling where simple analytical approaches cannot be applied.
Finally, a wider application of the diagrammatic extensions of
DMFT to treat different physical situations from those con-
sidered hitherto (mostly systems with predominance of spin
and charge fluctuations) will define, much more precisely,
the strengths and the limitations of these methods—a very
important issue in the context of nonperturbative schemes, for
which the number of possible benchmarks is severely limited
by the complexity of the physical systems to describe.

In this paper, we show how one of the diagrammatic exten-
sions of DMFT, the dynamical vertex approximation (D�A),
can be applied to treat systems with on-site attractive inter-
actions. In particular, we will consider its more commonly
used implementation (which exploits a ladder approximation
and Moriya corrections of the physical propagators). In this
framework, we will show explicitly how the corresponding
D�A equations can be generalized to treat the case of the
attractive Hubbard model. The validity of our procedure will
be proved, by demonstrating through analytical and numerical
calculations that, for the particle-hole symmetric case, the
exact properties related to the mapping between the repul-
sive and the attractive local (Hubbard) interaction is fully
preserved by the ladder D�A schemes: The resulting D�A
self-energy �(k, iν) is invariant under the sign change of the
interaction U ↔ −U .

We will also discuss how this result is related to the general
properties of the ladder resummation of diagrams, which
makes it applicable to all diagrammatic schemes built on such
resummations, such as—in the context of the diagrammatic
extensions of DMFT—to DF [7], DMFT + FLEX [33], GW +
DMFT [34], TRILEX [35], or the 1PI [36] approach.

Finally, the ladder D�A equations derived in this paper
will be applied to the attractive Hubbard model on a cubic
lattice for different hole-doping levels and interactions, to
analyze the progressive differentiation between the transitions
to the s-wave superconducting and the charge density wave
(CDW) phases, degenerate only at half filling. In particular,
(i) we will compute the corresponding phase diagram, for the
most challenging condition of intermediate coupling, by de-
termining the reduction of the ordering temperatures induced

by nonlocal superconducting and charge correlations; (ii) we
will then investigate the critical properties of the two distinct
transitions, as described by the D�A; (iii) we will, eventually,
analyze the effects of the underlying spatial and temporal
fluctuations on the single-particle properties.

Our formalism can be also applied to the two-dimensional
model, where superconductivity appears through a more
elusive Berezinskii-Kosterlitz-Thouless transition, whose de-
scription requires a proper inclusion of phase fluctuations of
the order parameter. This would require a further extension
of our algorithm which goes beyond the aim of this paper.
However, we expect the present algorithm to give sufficiently
accurate results far above the superconducting/superfluid crit-
ical temperature, i.e., in a parameter region where many-body
pairing has been recently observed experimentally [37].

The paper is organized as follows: In Sec. II, we focus on
the formal aspects of our work, introducing the general ideas
behind the ladder-D�A method extending the formalism in
order to treat models with contact attractive interactions. Part
of the corresponding analytical derivations including the proof
of the particle-hole symmetry consistency of our scheme is
reported in the Appendix.

In Sec. III, we present the results obtained applying the ex-
tended ladder-D�A algorithm to the three-dimensional (3D)
attractive Hubbard model away from half filling. In partic-
ular, focusing on the region of parameters close to second-
order phase transitions to (SC) and CDW states, respectively,
we analyze the effect of nonlocal spatial fluctuations in (i)
reducing the ordering temperatures (Tc), (ii) modifying the
critical behavior at the phase transitions, and (iii) reducing
the coherent motion of electrons. Finally a brief summary is
provided in Sec. IV.

II. D�A FOR THE ATTRACTIVE CASE

In this section, we present the derivation of the equations
for the electronic self-energy and susceptibilities for a single-
orbital model with contact attractive interaction within D�A.
The model reads

H = −t
∑
〈ij〉σ

c
†
iσ cjσ + U

∑
i

n̂i↑n̂i↓ − μ
∑
iσ

n̂iσ , (1)

where c
†
iσ (ciσ ) creates (annihilates) an electron with spin

σ on site i, n̂iσ =c
†
iσ ciσ , t denotes the hopping amplitude

between nearest neighbors, μ is the chemical potential, and
U is the on-site interaction, which takes negative values in the
case of the attractive Hubbard model (AHM). Following the
convention of previous D�A publications, we use D = 2

√
6t

as the energy unit [38].
While D�A equations, at different approximation levels,

have been derived for the case of the repulsive (U > 0)
Hubbard model, in the course of several dedicated studies
[4,8,39–42], no explicit derivation has been presented so
far for U < 0. We notice that, in general terms, a formally
simple change of sign of the interaction does not reflect in
a straightforward generalization of the theoretical treatment.
More in detail, extending a particular approximation scheme
may require special care if the original approximation was
strongly based on the physics of the model (for example
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FIG. 1. Schwinger-Dyson equation for the self-energy. Arrowed
lines refer to single-particle fermionic propagators, while thick dots
refer to the bare contact interaction.

assuming that some kind of correlations are more important
than others).

In the specific case of the dynamical vertex approximation,
it is rather clear that the generalization to the attractive case
of the formalism of the full D�A scheme, based on an
exact solution of the parquet equations, would be completely
straightforward. In fact, the parquet scheme treats all channels
on equal footing, and thus, the D�A formalism can be used
essentially unaltered for repulsive and attractive interaction:
In this scheme, one will always need to extract the local fully
two-particle irreducible (2PI) vertex from the corresponding
DMFT calculations (either for the attractive or the repulsive
model), and use it as input for the solver of the parquet
equations on the chosen lattice.

The generalization procedure is less straightforward, in-
stead, in the case of interest for this work, i.e., for the ladder
D�A approximation. In fact, the ladder D�A is based on the
identification of one (or more) dominant scattering channel(s),
to which the nonlocal treatment of D�A will be specialized. In
this situation, the extension of the equation will clearly require
a change in the selection of the nonlocal scattering channels,
in order to have consistent results for the two models, as we
shall discuss in detail in the following.

In order to test the consistency of the ladder D�A theories
for the attractive and repulsive Hubbard model we will exploit
the unitary transformation which maps the two models one
onto the other, also known as Shiba transformation [43]. Ver-
ifying whether the mapping is preserved for the ladder D�A
equations of the two cases, we will provide a solid testbed for
the actual equivalence of the corresponding derivations.

A. Ladder-D�A equations for the AHM

To understand the derivation of the ladder D�A equations
for the AHM, it is useful to have in mind the corresponding
derivation for the repulsive model. As the latter has been
already reported in several studies [8,39,41,44] and in a recent
review [4], to which we refer the reader for details, here
we will only recapitulate the essential steps, focusing on the
specific modifications necessary due to the presence of an
attraction.

The D�A relates the electronic self-energy � to the full
scattering amplitude F exploiting the exact Schwinger-Dyson
equation (see the schematic representation in Fig. 1),

�(k)− Un

2
=−U

V2

∑
k′,q

F↑↓(k, k′, q )G(k′)G(k′+q )G(k+q ),

(2)

where G = G↑ = G↓ is the spin-independent single-particle
Green’s function, V ≡ V/T , k = (k, ν), q = (q, ω) where ν

and ω are the fermionic and bosonic Matsubara frequencies
respectively. We recall that the single-particle Green’s func-
tion G(k, ν) and the full scattering amplitude F are related to
the connected part of the two-particle Green’s function G(2)

c

through [45]

G
(2)
c σσ ′ (k, k′, q ) = −GkGk+q F k,k′,q

σσ ′ Gk′Gk′+q . (3)

Within the D�A, local approximations [8,40] are made for
F . We recall that the latter can be viewed as the sum of all
1PI two-particle diagrams, but the terms of this sum can be
further classified as two-particle irreducible (2PI) or reducible
contributions, as shown by the following relation:

F = � + �pp + �ph + �ph, (4)

which is one of the parquet equations [46]. Here, � is the
(fully) 2PI vertex, while �r with r = pp, ph, ph are the
contributions corresponding to two-particle scattering pro-
cesses reducible in the particle-particle, particle-hole, and
transverse particle-hole channels respectively (for the sake of
conciseness, all spin/momenta/frequency indices are omitted
here).

Alternatively, if one focuses on the two-particle reducibil-
ity in a given channel (r), the diagrammatic sum defining
F can be classified via the corresponding Bethe-Salpeter
equation:

F = �r + �r , (5)

where �r = � + ∑
r ′ 
=r �r ′ represents, thus, the sum of all

2PI diagrams in the specific channel r . In this framework,
the D�A is defined by a fully local, but not perturbative,
approximation of the 2PI vertex functions.

More specifically, in the case of the full/parquet D�A
[8,47,48], � is approximated to a local quantity (which can
be then computed from the solution of the auxiliary AIM of
DMFT), and the (nonlocal) �r are calculated through the par-
quet equations of the lattice problem. However, the numerical
solution of these equations is extremely challenging and there-
fore further approximations are often adopted at this stage.
For instance, in the ladder-D�A [8,41] the assumption of
locality is extended to the �r for every channel. This amounts
to a decoupling between the three different channels, whose
two-particle reducible diagrams, i.e., the �r , are computed
through Bethe-Salpeter equations [Eq. (5)], where the �r ∼
�loc

r is extracted from the associated AIM [49] and the ladder
resummation is performed using the (momentum dependent)
DMFT Green’s function Gk = [iν − ξk − �(ν)]−1. We em-
phasize that in the case of ladder D�A, the nonlocal contri-
butions to F are computed through ladder resummations in
selected channels. It is useful, thus, to introduce the auxiliary
quantities Fr ≡ �loc

r + �r , which we will refer to, generically,
as “ladders,” in the corresponding channel. In practice, for
U > 0, one chooses to introduce the corresponding nonlocal
corrections in all channels of the particle-hole sector, i.e.,
magnetic and charge. This choice includes, in fact, the pre-
dominant magnetic fluctuations [21], while the inclusion of
the charge channel ensures the validity of specific crossing
symmetric relations. Such a choice corresponds, evidently,
to keep the first two terms on the right-hand side of Eq. (4)
as fully local, which leads after some analytic manipulations

045137-3



LORENZO DEL RE, MASSIMO CAPONE, AND ALESSANDRO TOSCHI PHYSICAL REVIEW B 99, 045137 (2019)

TABLE I. Schematic visualization of the different approxima-
tions at the level of the two-particle vertices made within the ladder
D�A for the attractive (U < 0) and the repulsive (U > 0) cases.
The subscript of �r refers to all three scattering channels r =
ph, ph, pp.

U < 0 U > 0

Local �, �r

�ph �pp

Nonlocal F , �ph

�pp �ph

exploiting Eq. (5), to the following approximate expression
for F↑↓:

F↑↓ ∼ 1
2 [Fd − 3Fm − 2F loc

↑↓ ], (6)

where Fd/m = Fph ↑↑ ± Fph↑↓ and F loc
↑↓ is the 1PI vertex

function calculated from the AIM.
In an analogous way, by applying the same procedure to

the attractive case (U < 0), one must choose the channels
for which the nonlocal ladder treatment beyond DMFT is re-
quired. Clearly, in this case, the particle-particle sector needs
to be treated in D�A, because it describes pairing fluctuations
which are certainly relevant for U < 0. This consideration
also applies to particle-hole charge fluctuations, so that the
natural ladder approximation of Eq. (4) will read

F ∼ �loc + �pp + �ph + �loc
ph

, (7)

whereas, in addition to the fully 2PI vertex, also the particle-
hole transverse channel is treated at the local (DMFT) level,
since it explicitly describes the (plausibly suppressed) mag-
netic fluctuations. Then, using the relation �loc + �loc

ph
+

�loc
pp = �loc

ph , we can rewrite Eq. (7) in the following way:

F↑↓ ∼ 1
2

[
2
(
Fpp ↑↓ − F loc

pp ↑↓
) + Fd − Fm

]
, (8)

where F loc
pp ↑↓ is the 1PI vertex function calculated from the

AIM in the pp notation. This last quantity is exact and
contains the diagrams belonging to every channel at the
local level, and in this case the subscript pp refers only
to a frequency notation, i.e., F loc(ν, ν ′, ω) = F loc

pp (ν, ν ′, ω
+ ν + ν ′).

We summarize the different approximations made in the
ladder D�A for the repulsive and the attractive interactions
in Table I. While the choice of these approximations are
dictated by our physical intuition, there are relevant subtleties
to be considered to preserve the mapping of the system under
the transformation U ↔ −U at half filling. The problem
to be faced is that the fundamental building blocks of the
(D�A) ladder resummation, i.e., the 2PI vertices �r [Eq. (5)],
do not map onto each other when U ↔ −U . Hence, the
mapping properties of a given ladder approximation for the
half-filled system must be proven explicitly in this context (see
Sec. II B).

As a last step, our ladder D�A expressions for F will
be inserted in the Schwinger-Dyson equation (2) to obtain

FIG. 2. Bethe-Salpeter equations for the particle-hole and
particle-particle channels.

the corresponding self-energy, which—for the two different
cases—reads

�(k) = |U |
2

n − |U |
2 β2V

∑
ν ′q

Gk+q χ
ν ′ q
0

[ − F
k k′q
d + 3Fk k′q

m

+ 2F νν ′ω
↑↓

]
, U > 0, (9)

�(k) = −|U |
2

n − |U |
2 β2V

∑
ν ′q

Gq−k χ
ν ′ q
0 pp 2

[
Fk k′q

pp − F ν ν ′ω
pp

]

− |U |
2 β2V

∑
ν ′q

Gk+q χ
ν ′ q
0

[
F

k k′q
d − Fk k′q

m

]
, U < 0,

(10)

where F νν ′ω
↑↓ ≡ F loc νν ′ω

↑↓ , F νν ′ω
pp ≡ F loc νν ′ω

pp ↑↓ , F
k k′q
pp ≡

F
k k′q
pp ↑↓, χ

ν q

0 ≡ − 1
V

∑
k GkGk+q, χ

ν q

0 pp ≡ − 1
V

∑
k GkGq−k .

We notice that the ladders appearing in Eqs. (9) and (10)
depend only on the exchanged momentum q because of
the assumption of locality of �r and of the form of the
Bethe-Salpeter equations, shown schematically in Fig. 2.
Moreover, the Green’s function is calculated using DMFT.
Nevertheless, we shall continue to use the four-component
notation, in order to make a better connection between ladders
and exact quantities, as will be clear in the next subsection.
The first equation obviously corresponds to the typical
expression exploited in previous ladder D�A works, while
the second expression, derived here, should represent its
counterpart to be used for U < 0 (the additional inclusion of
Moriya corrections [39,41] will be addressed in the following;
see Sec. III A).

The correspondence between the attractive and repulsive
models is not immediately visible in the final expressions for
the D�A self-energies Eqs. (9) and (10), and, thus, it has to
be demonstrated explicitly. In the next subsection we shall
present a heuristic argument based on the structure of Eqs. (9)
and (10), while the analytical demonstration is presented in
the Appendix.
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B. Attractive-repulsive mapping for ladder approximations

We consider the partial particle-hole transformation [43]
acting only on down fermions:

cR↓ → (−1)Rc
†
R↓, (11)

which yields a perfect mapping between the repulsive and the
attractive Hubbard model (U → −U ) at half filling. Specif-
ically, this transformation maps the spin into the pseudospin
operators, and vice versa,

U ←→ −U,

(−1)RŜx (R) ←→ Ŝx
p(R),

(−1)RŜy (R) ←→ Ŝy
p(R),

(−1)RŜz(R) ←→ (−1)RŜz
p(R), (12)

where Ŝα (R) ≡ ψ
†
R τ (α) ψR and Ŝα

p (R) ≡ φ
†
R τ (α) φR are re-

spectively the spin and pseudospin operators, with ψR ≡
(cR↑, cR↓), φR ≡ (cR↑, c

†
R↓), and τ (α) are the Pauli matri-

ces with α = x, y, z. As a consequence, the components of
the staggered magnetization along the xy plane are mapped
onto the superconducting (SC) order parameter, that is two
dimensional, and the staggered magnetization along the z

axis is mapped onto the charge density wave (CDW) order
parameter.

The exact mapping (U → −U ) of the half-filled case
implies as a direct consequence—particularly relevant for
our purposes—that �(k) does not depend on the sign of
the interactions. At the same time, the validity of such a
basic requirement should be preserved by any approximation
aiming to provide a consistent description of the repulsive and
the attractive sector. This should obviously apply also to the
case of the ladder D�A.

For the exact case, briefly discussed in the Appendix, the
mapping of the self-energy, expressed via the Schwinger-
Dyson equation of motion, is directly guaranteed by the
following property of the exact-1PI vertex function:

F k,k′,q
(U ),↑↓ = −F k,−q−k′−�,q

(−U ),↑↓ , (13)

where � = (�, 0), with

� ≡ (π, π, . . . , π︸ ︷︷ ︸
d

).

On the other hand, in our ladder D�A approximation, we
express F↑↓ as a function of nonlocal ladders relative to
different scattering channels in an independent way (for U >

0 and U < 0).
We observe that in both the right-hand sides of Eqs. (9)

and (10), four convolutions involving a momentum-dependent
ladder Fr appear. This corresponds to the inclusion of nonlo-
cal fluctuations in the spin and pseudospin sectors, and can be
regarded, loosely speaking, as the nonlocal degrees of freedom
treated by the ladder schemes.

In fact, in the repulsive case, the nonlocal ladders are built
for the three spin components of magnetic channel as well
as for one component of the pseudospin sector (i.e., in the
charge sector). For U < 0, instead, the situation is perfectly
mirrored: the ladders are built for the three components of
the pseudospin fluctuations (i.e., in the pp and in the charge

sector), and for one of spin component. As this is consistent
with the mapping of the spin/pseudospin operators through the
Shiba transformation, it should also guarantee, in principle,
the perfect equivalence between the corresponding ladder
approximations for U > 0 and and U < 0.

One should consider, nonetheless, that the Fr appearing
in the approximated expressions for �(k) are complicated
functions of the frequencies and momenta, and, that, in gen-
eral, it is not true that F

k k′q
m →F

k k′q
d under the transformation

U → −U . The explicit proof of the equivalence of the ladder
approximations (with mirrored nonlocal fluctuating channels)
is provided in the Appendix, whose main result is recalled
below. This is given by the following relation fulfilled by
ladders:

F
k,k′,q
(U ), ↑↓ = −F

k,−q−k′−�,q

(−U ), ↑↓ , (14)

that is the same as Eq. (13). This guarantees that ladders
map as the exact full vertex under the partial particle-hole
transformation defined in Eq. (11). Thus, since the particle-
hole symmetry requirements are fulfilled at the two-particle
level [accordingly to Eq. (14)] these properties remained
preserved through the Schwinger-Dyson equation of motion
also for the self-energy. As similar considerations will hold for
a generic ladder based approximation, our derivation might be
useful to develop consistent extensions of other ladder-based
methods (e.g., DF, DMFT+ FLEX, 1PI) for treating systems
with contact attractive interactions.

The fulfillment of the Shiba mapping has been also numeri-
cally verified by comparing the D�A self-energy at half filling
for the half-filled attractive and repulsive models.

In both cases, the DMFT vertex and self-energy, computed
with an exact diagonalization solver (with five sites), have
been used for computing the input quantities of the ladder
D�A. In all the calculations we used a frequency grid for local
vertices of 40–60 Matsubara frequencies for the subsequent
D�A calculation, and a momentum grid for the internal
bubble of 40–80 momenta.

C. SU(2) spin/pseudospin symmetries in the ladder D�A

After demonstrating the validity of the mapping at the
level of our ladder D�A scheme, a comment is due about
the treatment of the internal symmetries of the problem,
with particular reference, here, to the SU(2) symmetry of the
spin and the pseudospin variables. This represents, in fact, a
somewhat subtle issue to be considered for approximations
based on the selection of channels (as we do in ladder D�A
and/or DF), which, however, has been never discussed explic-
itly in the context of the diagrammatic extensions of DMFT.
Our comparison between ladder approximations for U > 0
and U < 0 represents, thus, an ideal playground to fill this
gap.

As it is known, the particle-hole symmetric single-band
Hubbard Hamiltonian displays a SU(2) symmetry both for the
spin and the pseudospin variables. Thus, it is quite evident
that the choice of considering nonlocal ladders for all (four)
channels of the particle-hole sectors, made in standard ladder
D�A approximations for the repulsive case, corresponds to a
violation of the SU(2) symmetry for the pseudospin variables:
This is due to the different (nonlocal vs local) treatment of the
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charge- and the particle-particle channel, although they would
correspond to “equivalent” fluctuations of the pseudospin
variables.

For analogous reasons, we observe a violation of the SU(2)
spin symmetry in the attractive case. In fact, our ladder
D�A approximation for the AHM has been designed to be
physically equivalent to the corresponding one for U > 0.
This violation appears in the selection of a single component
for which the spin fluctuations are considered nonlocal.

It is important to emphasize that the effect of such viola-
tions on the final results of a ladder D�A calculation are typ-
ically marginal or completely negligible, because they always
affect by construction the secondary/suppressed fluctuating
channels. In other words, if the violation is large, this means
that the corresponding ladder approximation is not suited for
the physical problem under consideration.

Nonetheless, one might wonder how to completely circum-
vent this problem in future, further improved ladder calcula-
tion schemes. Hence, in order to avoid any kind of artificial
asymmetry, the nonlocal treatment should be extended to all
six ladders appearing in the expression of scattering amplitude
F↑↓, i.e., in Eq. (7).

This would be possible at the level of a fully nonlocal
ladder treatment, where, however, one should continue to
neglect the mutual influence between the six nonlocal chan-
nels, in order to still avoid the complexity of parquet-based
algorithms.

III. NUMERICAL RESULTS: 3D MODEL
OUT OF HALF FILLING

In this section, we apply the ladder D�A equation (10)
to study the three-dimensional AHM in the more general
non-particle-hole symmetric situation (μ 
= U

2 ), considering
the case of densities n lower than half filling. In particular,
we focus on the SC and CDW instabilities. We recall that,
at half filling CDW and SC phases are fully degenerate and
they obviously share the same critical temperature and the
critical exponents of the 3D Heisenberg model universality
class. When the system is doped, the CDW is progressively
suppressed and the SC state emerges as the only stable broken
symmetry phase [51].

The critical temperatures related to the different insta-
bilities are obtained by calculating the associated physical
susceptibility and tracking their divergence as a function of
temperature. We also note that, in ladder D�A, the different
channels [see Eqs. (A1) and (A2)] are not coupled and, thus,
one can study their associated susceptibilities independently.
This gives us the possibility of tracking, separately, the di-
vergences of the susceptibility in both the leading particle-
particle and the subleading charge channel, and to determine,
thus, the two correspondent critical lines in the phase diagram
T vs n at fixed U . As mentioned, we expect T SC

c � T CDW
c

for every filling, though the situation could be reversed if
retarded interactions or a mass imbalance between the two
fermionic species (here ↑ and ↓ electrons) had been consid-
ered. Hence, though it refers here to a subleading instabil-
ity, our numerical evaluation of T CDW

c (n) could represent a
useful reference point in view of Fermi mixtures of ultracold
atoms.

A. Evaluation of physical susceptibilities

The physical susceptibilities, depending on a single mo-
mentum index, can be directly derived from the so-called
generalized susceptibilities, depending on three momenta and
defined as

χ
k,k′,q
σσ ′ ≡ −Vδk,k′δσ,σ ′GkGk+q − GkGk+qF k,k′,q

σ,σ ′ Gk′Gk′+q,

(15)

by means of a summation over the fermionic indices

χσσ ′ (q ) = 1

V2

∑
k,k′

χ
k,k′,q
σ,σ ′ . (16)

The calculation of χDMFT
σ,σ ′ (q ) in finite dimensions repre-

sents the first step in the ladder D�A algorithm. As DMFT
is an exact theory in d = ∞ only, its two- (and many-)particle
self-consistency with the local properties of the auxiliary AIM
is violated in finite dimension. For instance the equivalence
1
V

∑
q χDMFT

σ,σ ′ (q ) = χ loc
σ,σ ′ (ω), where χ loc of the auxiliary im-

purity susceptibility is no longer guaranteed by the validity of
the corresponding one-particle self-consistence condition on
the Green’s function [ 1

V

∑
k GDMFT

k = Gloc(ω)]. As a conse-
quence the physical susceptibility violates certain sum rules
holding in the exact case, and the self-energy in Eqs. (9)
and (10) acquires an incorrect asymptotic behavior at high
frequencies [39,41,52].

At the level of the ladder D�A this problem can be solved
[39,41] by including a variational parameter λσ,σ ′ > 0 in the
definition of the physical susceptibility:

χD�A
σ,σ ′ (q ) ≡ [(

χDMFT
σ,σ ′ (q )

)−1 + λσ,σ ′
]−1

. (17)

This λσ,σ ′ correction term is chosen [39] in order to restore the
two-particle self-consistency of the theory:

1

V
∑

q

χD�A
σ,σ ′ (q )

!= T
∑

ω

χ loc
σ,σ ′ (ω), (18)

and thus the correct high-energy asymptotics of � [39,52],
though other choices [41] are possible.

The role of the variational parameter λ can be most
easily understood by considering a system is close to a
phase transition: If χDMFT has a divergence at the point
Q = (Q, 0) at the critical temperature T DMFT

c , for T ∼ T DMFT
c

and q ∼ Q, one can write the susceptibility as χD�A(q ) ∼
A[(q − Q)2 + (ξ−2 + λ)]−1, where ξ is the coherence length
and A is a nonuniversal constant. Hence, a parameter λ >

0 lifts the divergency of the physical susceptibility, reduc-
ing the corresponding critical temperature. Similarly as in
two-particle self-consistent approach (TPSC) [53], which is
based on enforcing the same self-consistent condition in a
perturbative (RPA-like) framework, in d = 2 one recovers
the vanishing critical temperature predicted by the Mermin-
Wagner theorem and expects significant corrections in d = 3.
The specific results for the AHM are presented below.

We stress that given the SU(2) symmetry of the problem,
the λ corrections, Eqs. (17) and (18), evaluated within differ-
ent channels are independent of each other. Hence, the critical
temperature is reduced only by the (nonlocal) fluctuations of
the order parameter.
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TABLE II. Comparison between the critical exponents belonging to different universality classes and the ones obtained in ladder D�A.
We observe that our estimates, extracted from the single power-law fits shown in Fig. 3, relative to the SC and CDW instabilities, are closer to
the [53,54] results than to the expected values of the critical exponents of respectively the XY and Ising universality classes (see text).

d = ∞ O(1) O(2) O(3) O(∞) ladder D�A ladder D�A ladder D�A
(mean field) (Ising) (XY ) (Heisenberg) (TPSC) SC CDW AFM [38]

ν 1/2 0.63 0.67 0.71 1 0.98 0.86 0.72
γ 1 1.23 1.33 1.38 2 1.9 1.79 1.41

B. Critical properties and ordering temperatures

The determination of the ordering temperature (Tc) for the
different second-order phase transitions in D�A implies a
simultaneous definition of the associated critical properties.
This is necessary, because Tc is computed, similarly as in
DMFT, through the divergence of the corresponding static
susceptibility χ and the correlation length ξ . However, dif-
ferently from the DMFT case, where their critical behavior
[χ (T ) = (T − Tc )−γ , ξ = (T − Tc )−ν] is known a priori,
being purely mean field (γ = 1, ν = 1

2 ), the nonlocal spatial
correlations captured by the D�A modify it considerably,
yielding [38] larger values of both critical exponents in d = 3.
In practice, the determination of Tc in D�A is performed by
fitting the numerical data of χ in the proximity of the transi-
tion, i.e., where the value of χ and ξ are large enough to allow
entering the critical region (but still in the range numerically
treatable in the momentum grid of the calculation).

In particular, when T ∼ Tc and q ∼ Q, the susceptibility
will be expressed as

χD�A
d/pp (q ) ∼ Ad/pp

(q − Q)2 + ξ−2
d/pp

, (19)

where Q = (0, 0) for the particle-particle channel, while for
the charge sector Q = (� − δ(n), 0), with δ(n) being dif-
ferent from zero in a very narrow region of filling values
where incommensurate order occurs [55], and we have a
splitting of the susceptibility peak into multiple peaks, ac-
cording to the multiplicity of � − δ(n). Equation (19) can
be exploited, thus, to compute the correlation length via a
fit of the numerical data in momentum space. This way, the
temperature dependence of both χ and ξ is determined, and,
subsequently used to evaluate the critical exponents and the
critical temperature within D�A.

We recall, in this respect, that previous D�A studies [4,38]
for the repulsive Hubbard model in three dimensions have
yielded a plausible reduction of the antiferromagnetic order-
ing temperature (TN ) and values of the critical exponents (γ ∼
1.4, ν ∼ 0.7; see Table II) arguably consistent with the 3D-
Heisenberg universality class [56] (the expected one). Similar
results have been obtained [57,58] with other diagrammatic
extensions of DMFT, such as the dual fermion, both for the
CDW transition of the Falicov-Kimball in different dimen-
sions, in good agreement with Ising universality class, and,
again, for the Antiferromagnet (AF) transition of the 3D
Hubbard model, giving exponents close to the Heisenberg
model ones.

Therefore we would expect that the D�A applied to the
AHM would also yield critical exponents numerically con-
sistent with the exact ones for the corresponding universality

classes. As we are considering here the case of a not-half-
filled (i.e., non-particle-hole symmetric) AHM, the SC and
the CDW transition are no longer degenerate: the expected
universality classes are thus 3D-XY (γ � 1.32; ν � 0.67) for
the SC transition and 3D-Ising (γ � 1.23; ν � 0.63) for the
CDW [56].

As we will see below, however, our D�A results for
the AHM, both for the SC and the CDW transition, appear
not consistent with the corresponding universality classes.
More specifically, in Fig. 3, we show the numerical data for
correlation lengths and susceptibilities of the two different
channels under scrutiny. If assuming a simple power-law
form, as done in Refs. [38,57,58], the fit yields exponents
systematically larger than the ones belonging to the expected
universality classes. This is particularly evident for the case
of the CDW, where the difference between fitted values
(νd ∼ 0.86, γd ∼ 1.79) and the smaller exponents of the
3D-Ising universality class is even more evident (see Table II).
These systematically higher values might suggest, instead,
a consistency with the critical exponents of the spherically
symmetric (Kac [61]) model. These are ν = 1, γ = 2 (with
vanishing anomalous exponent η = 0), which also coincides
with the exponents found in TPSC [53,54]. In this scenario,
the residual difference between the fitted exponents and those
belonging to the O(∞) universality class might be ascribable
to the effects of sizable next-to-leading terms in the expansion
around t = (T − Tc )/Tc. For instance, by considering the
sub-to-leading orders [62], one would get ξ−1 = aξ t + bξ t2

and χ−1 = aχ t2 + bχ t3, which allows for a well-matched fit
of our D�A data for T ∼ Tc.

In any case, our results show that the different fitting
procedures associated with different critical exponents yield
no significant variation of the estimated critical temperatures
(cf. vertical arrows in the bottom panels of Fig. 3). Hence, the
results obtained for the phase diagram of the AHM in ladder
D�A can be considered quite accurate.

Our estimates of the critical temperatures of the SC and
CDW instabilities, computed in DMFT and in ladder D�A for
fixed interaction U = −2.0, and different values of the density
n are summarized in the (T , n) phase diagram in the plane of
Fig. 4.

We observe that critical temperature associated to the SC
ordering depends very weakly from the filling, a feature
which should be indeed expected, if one considers that the
doped AHM can be mapped in the half-filled repulsive one
in the presence of a magnetic field. In fact, this trend has
already been shown in previous studies at the level of DMFT
[9,11,17], and it is preserved also when the spatial correlations
beyond DMFT are taken into account by means of ladder
D�A. Nonlocal correlations, however, induced a significant
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FIG. 3. Numerical calculation of the particle-particle (charge) susceptibility χpp (0) [χd (�)] and correlation length ξpp (ξd ) computed
in ladder D�A as a function of the temperature for n = 0.5. In order to extrapolate the critical temperature of the SC (CDW) instability
we performed a numerical fit where the critical exponent is taken as a free parameter (blue solid line). We also performed a fit with the
exponent of the O(∞) universality class (red-dashed line) of our data taking into account of sub-to-leading orders (see the main text). A
review of our results compared with the critical exponents of the different universality classes is shown in Table II. The vertical arrows mark
the corresponding estimates of the critical temperatures, as obtained by means of the two fitting procedures.

reduction of the critical temperature, of about the 30% with
respect to the DMFT one, in a similar fashion to what it is
observed at half filling [38,41,58].

The suppression of the critical temperature due to nonlocal
correlations is even more pronounced in the case of the CDW

ordering, where we report a maximal reduction of about
76% with respect to DMFT for the highest doping (lower
density) we considered in our study. A greater suppression
of the ordering tendency in the charge channel is expected
on a physical basis, since CDW ordering (associated in the

FIG. 4. Phase diagram in the plane (n, T ) for the fixed value of the on-site interaction U = −2.0. The solid lines refer to the critical
temperature relative to the SC ordering estimated in DMFT (blue squares) and in D�A (red triangles). The dashed lines refer to the critical
temperature relative to the CDW instability evaluated in DMFT (cyan diamonds) and in D�A (orange triangles). The vertical thin line refers
to n = 0.5, that is the filling relative to the data shown in Fig. 3. Asterisks refer to the points where the self-energy shown in Fig. 5 has been
calculated. The cross lying on the vertical line at n = 0.5 marks the critical temperature of superconductivity evaluated using lattice QMC
[59,60].

045137-8



DYNAMICAL VERTEX APPROXIMATION FOR THE … PHYSICAL REVIEW B 99, 045137 (2019)

FIG. 5. Imaginary part of the self-energy evaluated on the imaginary axis for different values of the on-site interaction and temperature.
Specifically, we consider (upper panel) U = −1, n = 0.95 and temperatures β = 17.5, 24 (from left to right) and (lower panel) U = −2, n =
0.9 and temperatures β = 10, 14 (from left to right). The D�A self-energy has been reported for two k points, namely k1 and k2, chosen
among all the points lying on the Fermi surface in a way to maximize the spread of the self-energy evaluated at the first Matsubara frequency,
i.e., to maximize the quantity |Im�(πT, k1) − Im�(πT, k2)|. The coherence length of the pairing fluctuations ξpp is explicitly reported, in
order to quantify the “distance” from the SC transition of the corresponding data set: Significant deviations from the DMFT data are obtained
close to the SC phase transition. The data for U = −2 have been calculated in points of the phase diagrams marked as asterisks in Fig. 4.

mapped model to the AF component in the direction of
applied magnetic field) should disappear for strong enough
hole doping (in the mapped model: magnetic field). According
to our D�A data, such a critical value of the filling n = nc,
where a QCP might appear, could be significantly reduced
with respect to the DMFT estimate for three-dimensional
systems. Finally, let us mention that we expect the CDW to
become incommensurate for a tiny range of fillings just before
the critical value (n ∼ nc), as already shown in the DMFT
literature [55]. The determination of this elusive, tiny region,
where a switch to a first-order transition might eventually
occur [63], is numerically challenging in ladder D�A, but it
might considered in future, focused studies.

Finally, we also compared our results with with lattice
quantum Monte Carlo (QMC) data taken from the literature
[59,60] (see black cross in Fig. 4). We observe, in the in-
teresting (overdoped) region of n = 0.5, a good quantitative
agreement between the critical temperatures estimated within
the two approaches, which supports the quantitative accuracy
of the ladder-D�A at least for the evaluation of the ordering
temperatures.

C. Fermion self-energy

In this section, we highlight the effect of nonlocal spatial
fluctuations onto the single-particle properties of the AHM.

In particular, in Fig. 5, we show the self-energy obtained
in ladder D�A close to half filling, evaluated for two mo-

menta at the Fermi surface (k1, k2) and compare it with the
corresponding DMFT one. We recall that, in this part of the
study, we can access only the region of the phase diagram
above the SC instability of D�A, because the determination of
the self-energy through the ladder D�A, differently from the
DMFT case, requires us to work in the thermodynamically
stable phase [8,39]. In fact, in order to access the single-
particle properties below the SC instability, an extension of
the D�A equations and algorithms to the broken symmetry
phases would be necessary.

For generic values of filling and temperature away from the
SC phase transition (i.e., when ξpp ∼ 1), the data obtained re-
spectively using DMFT and D�A are very similar (left panels
of Fig. 5), giving additional proof of the validity of the DMFT
approximation for a generic case in three dimensions. At the
same time, when n and T are chosen close to the SC critical
line, we observe a sizable deviation from the DMFT data,
particularly enhanced in the intermediate-coupling regime
(U = −2, right bottom panel of Fig. 5): In the low-frequency
sector, the imaginary part of the self-energy is larger in ab-
solute value using D�A, signaling that electrons at the Fermi
surface become more correlated. This is due to increased SC
(as well as CDW close enough to half filling) fluctuations, that
in DMFT were included only at the local level.

Furthermore, the data at intermediate coupling show a
very different temperature trend of the DMFT and the D�A
self-energies. While the former is reduced in absolute value
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for lower temperature (indicating a reduction of the scatter-
ing rate), the latter shows a slight increase for the lowest
temperature. In fact, the temperature trend in DMFT simply
reflects the tendency towards a coherent low-temperature
metallic phase in the crossover region of DMFT, resulting
from the large entropy associated to the local pair insulator
phase. Conversely, in D�A this effect is gradually overcome
by the progressively increased scattering due to the nonlocal
correlations [41].

It is interesting to notice, on the other hand, that we do
not observe a significant dispersion of the D�A self-energy
on the Fermi surface, i.e., as a function of the crystalline
momentum. Hence, according to our ladder D�A results, at
intermediate coupling we have the following situation: a SC
(and CDW close enough to half filling) susceptibility strongly
depending on the momentum, which, at the Fermi level, renor-
malizes mostly the low-frequency dependence of the self-
energy through the Schwinger-Dyson equation, and determine
an enhanced scattering rate along the whole Fermi surface.

The weak momentum dependence of the scattering rate at
the Fermi surface is a consequence of the three-dimensional
momentum integration in the Schwinger-Dyson equation,
which partly smooths the k-selective effects of nonlocal
(here SC) fluctuations, and also a result of the relatively
large value of the interaction considered, which induces a
certain degree of localization already at the DMFT level.
We note, however, that a stronger momentum dependence
(mostly in the real part of the self-energy) is found when
considering momenta far away (above and below) from the
Fermi surface (not shown). Furthermore, consistent with
the above considerations, a relatively larger momentum
dependence in the D�A self-energy can be observed also
at the Fermi level, when approaching the SC transition for
smaller values of the interaction.

IV. CONCLUSIONS

In this paper we have presented an extension of the equa-
tions and the algorithm for the dynamical vertex approxi-
mation in its ladder version (ladder D�A), designed to treat
nonlocal spatial correlations beyond DMFT in the attractive
Hubbard model.

The derivation of the corresponding equations has been
dictated by the requirement of a perfect equivalence to the lad-
der D�A scheme for repulsive interactions in the case of the
half-filled, particle-hole symmetric model. In particular we
proved that �(k) calculated within ladder D�A does not de-
pend on the sign of the interactions at half filling as implied by
the Shiba transformation. This result is not trivial for two main
reasons. The first reason is the different approximations per-
formed for the two-particle reducible objects (see Table I). As
we have clarified in our work, this has specific consequences
for the SU(2) symmetry of the D�A solution (see Sec. II C),
suggesting further possible improvements of the method.

The second reason is related to the fact that, in general, the
�r do not map onto each other when U ↔ −U , in contrast
with the physical susceptibilities in the different channels.
Therefore, one should pay special care when a ladder approx-
imation is performed and the proof of the mapping becomes
necessary. In particular, the nontrivial relation which ensures

the mapping within a ladder approximation is the following:
F

k,k′,q
(U ), ↑↓ = −F

k,−q−k′−�,q

(−U ), ↑↓ , as it has been derived explicitly in
the Appendix.

We also stress that the main steps of our derivations, as
well as the considerations made on their basis, are relevant
not only for the specific case of the D�A, but for any ladder
diagrammatic scheme (e.g., in the context of the diagrammatic
extensions of DMFT [4], for the ladder DF [64] or the 1PI
approaches) which needs to be extended to the attractive case.

After proving that our implementation preserves the physi-
cal equivalence between the attractive and the repulsive mod-
els at half-filling, we have applied our modified algorithm out
of the particle-hole symmetric sector, studying the effects of
nonlocal correlations for the more relevant case of a (hole)
doped AHM in three dimensions. In particular, we have
focused on the physics close to the superconducting (SC)
and charge density wave (CDW) instabilities, by computing
the temperature behavior of the corresponding susceptibilities
and coherence lengths in the critical region, both in DMFT
and ladder D�A. The fitted critical exponents in ladder D�A
resulted larger not only than the DMFT ones (as expected)
but also than the exact ones of the corresponding universality
class. In fact, the fit including also subleading terms suggests
that the actual critical exponents of the ladder D�A with
Moriya corrections belong to the universality class of the
spherical model (see Table II) where

ν = 1, γ = 2,

which would also correspond to the result obtained using the
TPSC [53].

Nonetheless, the determination of the critical temperature
turned out to be essentially unaffected by the underlying un-
certainty in the exponents, allowing for a reliable computation
of the phase diagram of the AHM in three dimensions. The
obtained critical temperature computed in D�A are visibly
reduced with respect to DMFT and TPSC, which are indeed
expected to overestimate the ordering temperature (cf. [4])
and shows a good quantitative agreement with lattice QMC
results [59,60].

This way we could highlight the different effects of the
nonlocal (SC and CDW) fluctuations on the corresponding
transition temperature, as well as on the single-particle prop-
erties for the parameter regime of temperature above the
physical (SC) transition. In particular, close enough to the
phase transition, the absolute magnitude of the imaginary
part of the fermionic self-energy increases with respect to the
one calculated in DMFT, indicating an increased electronic
scattering rate due to the enhancement of the nonlocal pairing
fluctuations (see Fig. 5).

The equations and the corresponding ladder D�A algo-
rithm could be exploited in future studies of the AHM in
lower dimensions (i.e., with layered/two-dimensional lattices)
as well as for systems of ultracold atoms trapped in optical
lattices.
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APPENDIX: PROOF OF THE MAPPING

In this section, we prove that �(k) as defined in Eqs. (9)
and (10) does not depend on the sign of the interactions at half
filling, confirming the conclusions of the heuristic arguments
presented in Sec. II B.

We divide the proof into three parts:
(1) In the first, we derive some general properties relative

to the mapping of two-particle Green’s functions of the exact
solution under a partial particle-hole transformation, that will
be used in the subsequent sections.

(2) In the second part, we shall use a property of the 2PI
local vertex function already derived in Ref. [5] and show
that the F

k, q−k′, q−�
pp ↔ F

k, k′, −q
m when U ↔ −U , where � =

(�, 0), with

� ≡ (π, π, . . . , π︸ ︷︷ ︸
d

).

(3) In the third part, we shall demonstrate that F
k k′,q
↑↓ ≡

1
2 (Fk,k′,q

d − F
k,k′,q
m ) ↔ −F

k,−q−k′,q
↑↓ , when U ↔ −U . To our

knowledge this is an original result, since we did not find this
relation in the literature.

From the second and third points, it follows that Eq. (10) is
mapped onto Eq. (9) when U → −U .

Before entering the details of the proof, let us remind that
the ladders Fr are calculated via Bethe-Salpeter’s equations,
schematically depicted in Fig. 2, that read

F
k,k′,q
d/m = �

ν,ν ′,ω
d/m + 1

V
∑
k1

�
νν1ω
d/m Gk1Gk1+q F

k1,k
′,q

d/m , (A1)

Fk,k′,q
pp = �ν,ν ′,ω

pp − 1

V
∑
k1

�ν1,ν
′,ω

pp Gk1Gq−k1 Fk,q−k1,q
pp , (A2)

where Gk = [iν + μ − �(ν) − ε(k)]−1, with �(ν) being the
local self-energy calculated with DMFT. It is worthwhile to
notice that the ladders depend on three frequency indices and
only on the exchanged momentum q; for simplicity we will
keep the four-momentum notation for all the indices keeping
in mind that Fr (k, k′, q ) ≡ Fr (ν, ν ′, ω; q).

1. Transformation properties of two-particle Green’s functions

In this section we derive properties relative to the two-
particle Green’s function of the Hubbard model when the
system possesses particle-hole symmetry. In particular, we
show how the two-particle Green’s function transforms when
a partial particle-hole transformation is performed.

The two-particle Green’s function is defined as

Gσσ ′ (x1, x2, x3, x4) ≡ Tτ 〈c†σ (x1)cσ (x2)c†σ ′ (x3)cσ ′ (x4)〉, (A3)

where xi = (Ri , τi ), cσ (xi ) = eτiĤ cRi σ
e−τi Ĥ and its Fourier

components can be written as

G
k,k′,q
σσ ′ ≡

∫ 4∏
i=1

dxi Gσσ ′ (x1, x2, x3, x4)

× e−i[kx1−(k+q )x2+(k′+q )x3−k′x4], (A4)

where k x = τν − k · R. At half filling, when a partial
particle-hole transformation is performed, i.e., cR↓→
ei� xc

†
R↓, Ĥ (U )→Ĥ (−U ), and therefore the two-particle

Green’s function is transformed in the following way:
G(U ),↑↓(x1, x2, x3, x4)=−e−i�(x3−x4 )G(−U ),↑↓(x1, x2, x4, x3),
G(U ),↓↓(x1, x2, x3, x4)=e−i�(x1−x2+x3−x4 )G(−U ),↓↓(x2, x1, x4,

x3). The system is SU(2) symmetric, therefore
G↓↓ = G↑↑, and since the partial particle-hole
transformation does not affect the spin-up fermions, i.e.,
G(U ),↑↑(x1, x2, x3, x4) = G(−U ),↑↑(x1, x2, x3, x4), it is
also true that G(U ),↑↑(x1, x2, x3, x4) = e−i�(x1−x2+x3−x4 )

G(U ),↑↑(x2, x1, x4, x3). Using these equalities in real space
time and Eq. (A4), we can write the following relations
in Fourier space: G

k,k′,q
(U ),↑↓ = −G

k,−q−k′−�,q

(−U ),↑↓ , G
k,k′,q
(U ),↑↑ =

G
−q−k−�,−q−k′−�,q

(U ),↑↑ . It is easy to prove, from Eq. (3), that
these relations hold also for the 1PI-vertex function, namely

F k,k′,q
(U ),↑↓ = −F k,−q−k′−�,q

(−U ),↑↓ , (A5)

F k,k′,q
(U ),↑↑ = F−q−k−�,−q−k′−�,q

(U ),↑↑ . (A6)

Equation (A5) implies that the exact self-energy
of the Hubbard model at half filling does
not depend on the sign of the interactions, in
fact �(U )(k) = U

∑
k′,q Gk+qGk′Gk′+qF k,k′,q

(U ),↑↓ =
(−U )

∑
k′,q Gk+qGk′Gk′+qF k,−q−k′−�,q

(−U ),↑↓ =
(−U )

∑
k′,q Gk+qGk′Gk′+qF k,k′,q

(−U ),↑↓ = �(−U )(k), where
for the last equality we performed a shift of the dummy
indices, i.e., k′ → −q − k′ − �, and we used the
half-filling properties of the one-particle Green’s function
G(k) = −G(−k − �) and G(U )(k) = G(−U )(k).

2. Relation between the particle-particle and magnetic ladders

In Ref. [5], it has been shown that at half filling �
ν,ν ′,−ω
(U ),m =

�
ν,ω−ν ′,ω
(−U ),pp . If we substitute this into Eq. (A1) we obtain

F
k,k′,−q

(U ),m = F
k′,k,−q

(U ),m

= �
ν ′,ω−ν,ω
(−U ),pp + 1

V
∑
k1

�
ν ′,ω−ν1,ω
(−U ),pp Gk1Gk1−qF

k1,k,−q

(U ),m

= �
ν,ω−ν ′,ω
(−U ),pp − 1

V
∑
k1

�
ν1,ω−ν ′,ω
(−U ),pp Gk1Gq−�−k1F

k,k1,−q

(U ),m ,

(A7)

where we used time-reversal, space-inversion, and SU(2)
symmetry, that together imply F

k,k′,q
σσ ′ = F

k′,k,q

σσ ′ for both local
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and nonlocal quantities and in the second passage we used the
following property of the Green’s function: G(k) = −G(k ±
�) at half filling. If we perform the following shift q →
q − �, k′ → q − k′ in Eq. (A7) and afterwards subtract the
obtained expression from Eq. (A2), we obtain the following
homogenous system of linear equations for every couple of
points k and q:

(1 + App · S) · X = 0, (A8)

where [App]
k,k′ = 1

V �
ν,ν ′,ω
(−U ),pp Gk′Gq−k′ , [S]k,k′ ≡ δk,q−k′ and

[X]k′ ≡ F
k,k′,q
(−U ),pp − F

k,q−k′,−q+�

(U ),m . If det(1 + App · S) 
= 0 the
only solution of the homogeneous linear system is the trivial
one, that reads explicitly

F
k, k′,q
(−U ), pp = F

k, q−k′,−q+�

(U ),m . (A9)

Conversely, if nontrivial solutions are admitted, these solu-
tions will not satisfy the mapping relation.

3. Transformation of the F↑↓

In the previous section we have shown that the property of
the 1PI-vertex function in Eq. (A5) assures the right mapping
of the self-energy at half filling. This property holds for the
exact case, therefore if approximations are carried out it could
no longer be valid. In this section, we prove that this property
that stems from particle-hole symmetry is preserved in the
ladder approximation, namely

F
k,k′,q
(U ),↑↓ = −F

k,−q−k′,q
(−U ),↑↓ . (A10)

Equations (A9) and (A10) imply the right mapping of �(k)
that in our ladder approximation is defined in Eqs. (9) and
(10). Before addressing the proof, we shall express Eq. (A1)
in an alternative way that we found useful, that reads

F
k,k′,q
d/m = F ν,ν ′,ω

d/m + 1

V
∑
k1

F
k,k1,q

d/m G̃k1G̃k1+q F ν1,ν
′,ω

d/m , (A11)

where for brevity we used the notation F ν,ν ′,ω
σ,σ ′ ≡ F loc,ν,ν ′,ω

σ,σ ′ ,
that is the local 1PI-vertex function of the AIM, not to be
confused with F k,k′,q

σσ ′ , where the dependence on the momenta
is fully taken into account, and G̃k ≡ Gk − 1

V

∑
k G(k) is the

fully nonlocal Green’s function that for construction has the
following property:

∑
k G̃k = 0. First, let us note that F νν ′ω

σσ ′
is an exact quantity and therefore satisfies the relations in
Eqs. (A5) and (A6) at the local level. Let us write explicitly

the Bethe-Salpeter equations for the F↑↑ and the F↑↓ that can
be obtained from Eq. (A11):

F
k,k′,q
↑↑ = F νν ′ω

↑↑ + 1

V
∑
k1

F
kk1q

↑↑ G̃G̃F ν1ν
′ω

↑↑

+ 1

V
∑
k1

F
kk1q

↑↓ G̃G̃F ν1ν
′ω

↑↓ , (A12)

F
k,k′,q
↑↓ = F νν ′ω

↑↓ + 1

V
∑
k1

F
kk1q

↑↑ G̃G̃F ν1ν
′ω

↑↓

+ 1

V
∑
k1

F
kk1q

↑↓ G̃G̃F ν1ν
′ω

↑↑ , (A13)

where G̃G̃ ≡ G̃k1G̃k1+q . Using the fact that F νν ′ω
(U ),↑↑ =

F νν ′ω
(−U ),↑↑ = F−ω−ν,−ω−ν ′,ω

(−U ),↑↑ and that F νν ′ω
(U ),↑↓ =

−F ν,−ω−ν ′,ω
(−U ),↑↓ = −F−ω−ν,ν ′,ω

(−U ),↑↓ we can manipulate Eqs. (A12)
and (A13) as follows:

F
k,k′,q
(U ),↑↑ = F νν ′ω

(−U )↑↑ + 1

V
∑
k1

F
kk1q

(U ),↑↑G̃G̃F ν1ν
′ω

(−U ),↑↑

+ 1

V
∑
k1

( − F
k,−q−k1,q

(U )↑↓
)
G̃G̃F ν1,ν

′,ω
(−U )↑↓ (A14)

−F
k,−q−k′,q
(U ),↑↓ = F ν,ν ′,ω

(−U ),↑↓ + 1

V
∑
k1

F
kk1q

(U )↑↑G̃G̃F ν1,ν
′,ω

(−U )↑↓

+ 1

V
∑
k1

( − F
k,−q−k1,q

(U )↑↓
)
G̃G̃F ν1,ν

′,ω
(−U )↑↑. (A15)

If we subtract Eq. (A14) from Eq. (A12) and Eq. (A15) from
Eq. (A13) we obtain the following homogeneous system of
equations for a generic couple of q and k points that is useful
to write in a matrix notation:(

1 − A↑↑ −A↑↓
−A↑↓ 1 − A↑↑

)(
X
Y

)
=

(
0
0

)
, (A16)

where [Aσσ ′]kk′ ≡ 1
V G̃k′G̃k′+q F ν,ν ′,q

(−U ) σσ ′, [X]k′ ≡ F
k,k′,q
(−U )↑↑ −

F
k,k′,q
(U )↑↑, [Y]k′ ≡ F

k,k′,q
(−U )↑↓ − (−F

k,−q−k′,q
(U ),↑↓ ). If the determinant

of the matrix in Eq. (A16) does not vanish, the unique solution
of the homogeneous system is the trivial one and Eq. (A10)
is guaranteed. Conversely, if the homogeneous system admits
nontrivial solutions, these solutions would not satisfy the
mapping relation in Eq. (A10), likely leading to unphysical
results. We notice, however, that even in such a case the
mapping properties of the linear combination defining Fm are
preserved, due to the symmetry (X ↔ Y) of Eqs. (A16).
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