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We perform an exact-diagonalization study of quasihole excitations for the two-component Halperin (221)
state in the lowest Landau level and for several ν = 1/3 bosonic fractional Chern insulators in topological flat
bands with Chern number |C|=2. Properties including the quasihole size, charge, and braiding statistics are
evaluated. For the Halperin (221) model state, we observe isotropic quasiholes with a clear internal structure,
and obtain the quasihole charge and statistics matching the theoretical values. Interestingly, we also extract
the same quasihole size, charge, and braiding statistics for the continuum model states of |C|=2 fractional
Chern insulators, although the latter possess a “color-entangled” nature that does not exist in ordinary two-
component Halperin states. We also consider two real lattice models with a band having |C|=2. There we find
that a quasihole can exhibit much stronger oscillations of the density profile, while having the same charge and
statistics as those in the continuum models.
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I. INTRODUCTION

While identical particles in three spatial dimensions obey
either bosonic or fermionic statistics, fractional statistics be-
yond these two elementary cases exists when particles are
restricted in two spatial dimensions [1–3]. Exotic particles
with fractional statistics, known as anyons, can be realized
as fractionally charged quasiparticle excitations in topologi-
cally ordered systems [4–6]. In particular, quasiparticles with
non-Abelian statistics [7] are key resources for fault-tolerant
quantum computation [8,9].

As representative topologically ordered systems, fractional
quantum Hall (FQH) states [10,11] in two-dimensional (2D)
electron gas penetrated by a strong magnetic field are promi-
nent platforms to host anyons. Some experimental indica-
tions of the predicted fractional statistics of quasielectron and
quasihole excitations in FQH states have been observed using
quasiparticle interferometers [12–19]. The design of these
experiments can be aided by microscopic characterization
of quasiparticles, which have been done for various Abelian
and non-Abelian one-component FQH states. These studies
evaluate the quasiparticle size [20–26] and simulate the braid-
ing process [21–23,25–29]. However, apart from theoretical
predictions [30,31], there were much less efforts [32–34]
to pursue a full microscopic characterization of quasiholes
in multicomponent FQH systems with internal degrees of
freedom such as spin, layer, and valley [35–38].
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Recently, theoretical [39–44] and experimental [45] works
have shown that cousins of FQH states on the lattice, called
fractional Chern insulators (FCIs) [46–48], can emerge in
a partially filled flat band with nonzero Chern number C

[49–53]. FCIs in |C|=1 flat bands (denoted |C|=1 FCIs) can
be mapped to one-component FQH states to which the adia-
batic continuity has been explicitly established [54–56]. The
microscopic characterization of quasiholes in these |C|=1
FCIs has confirmed the correspondence to one-component
FQH states in the quasiparticle level [21,57–60]: (i) the
density distribution around one quasihole in a |C|=1 FCI
can be mapped to that in the continuum by choosing an
appropriate length unit on the lattice, allowing the estimation
of quasihole size on the lattice once the quasihole size in
the corresponding one-component FQH state is known [21],
and (ii) quasiholes of |C|=1 FCIs have the same braiding
statistics as those in the corresponding one-component FQH
states. However, there is an obvious lack of similar studies of
quasiholes of FCIs in |C| > 1 flat bands [61–66], which can-
not be simply mapped to ordinary multicomponent FQH states
due to their “color-entangled” nature [67–70]. Indeed, such
FCIs can be related to multicomponent FQH systems with
extended twist defects. It is unclear whether such an exotic
nature causes discrepancy between the quasihole properties
in |C| > 1 flat bands and in ordinary multicomponent FQH
systems.

In this work we perform a direct characterization of quasi-
holes of bilayer FQH states in the continuum and FCIs in
|C|=2 flat bands (denoted |C|=2 FCIs). Motivated by the
relevance for the ultracold gas implementation, we focus on
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the (221) Halperin state at νFQH = 2/3 [35,36] and bosonic
|C|=2 FCIs at νFCI = 1/3 [61,62,64–66]. With the help of
numerical exact diagonalization, we calculate the particle
density around a single quasihole pinned by an impurity
potential, then estimate its size and charge. We also simulate
the braiding process between two quasiholes by adiabatically
exchanging the positions of their pinning potentials to extract
the fractional statistics. We start our study from the Halperin
(221) model state in Sec. II. In this case, each quasihole must
be pinned by a potential with a specific layer index. The den-
sity profile around a quasihole is isotropic and shows a clear
internal structure related to the distribution of total quasihole
charge among layers, which agrees with earlier results of
the off-resonant light scattering from ultracold atoms in the
quantum Hall regime [33]. We consider the total density over
two layers, then accurately recover the predicted quasihole
charge −e/3 as well as the statistical phase (pα )an = ±2π/3
[30–32]. In Sec. III we consider the bilayer continuum model
of νFCI = 1/3 bosonic |C|=2 FCIs [67,68], which has a color-
entangled nature that is absent in the ordinary Halperin (221)
model state. In this case we find that the potential with a layer
index is also necessary for pinning a quasihole. Interestingly,
although the color-entangled nature of this model affects the
layer-resolved density around a quasihole extending across
the boundary, the quasihole size, charge, and statistics show
no differences from those for the Halperin (221) model
state, indicating that adding color-entangled nature in ordinary
bilayer FQH systems does not change the key features of
quasiholes. In Sec. IV we study quasiholes of |C|=2 FCIs
in two real lattice models [61,66], both of which do not
explicitly include layer information. In these cases we find
that a quasihole without an internal structure can be pinned
by a layer-independent onsite potential, which is impossible
in the two continuum models studied above. We obtain the
same quasihole charge and statistics on the lattice as in the
continuum, however, the single-quasihole particle density on
the lattice displays much stronger oscillations than those for
the continuum model states, suggesting the deviation of these
FCIs from model states. In Sec. V we summarize our results,
and list some open questions for future work.

II. QUASIHOLES IN THE HALPERIN (221) STATE

We start our study with the ordinary bilayer FQH system
[35,36]. In this case we impose periodic boundary conditions
separately on each layer, such that each layer has a torus
geometry. We fix the torus aspect ratio to 1. The periodic
boundary conditions require the number of magnetic flux
quanta Nφ piercing each layer as an integer, related to the
corresponding torus length L by L2 = 2π�2

BNφ , where �B is
the magnetic length. The upper and lower layers (which we
will also call colors) are indexed with σ =↑ and ↓, respec-
tively, which can also be understood as any two-component
degree of freedom like the spin. We populate the system with
Nσ particles in each layer such that the total particle number
and pseudospin is N = N↑ + N↓ and Sz = (N↑ − N↓)/2, re-
spectively. The total filling factor is defined as νFQH = N/Nφ .
Similarly, we have the layer-resolved filling factor as νσ =
Nσ /Nφ .

In this article we will focus on bosons at νFQH = 2/3 with
a layer-independent contact interaction

Hint =
N↑∑

i<j=1

δ(ri,↑ − rj,↑) +
N↓∑

i<j=1

δ(ri,↓ − rj,↓)

+
N↑∑
i=1

N↓∑
j=1

δ(ri,↑ − rj,↓), (1)

where ri,σ is the 2D position of the ith boson in layer σ .
Note that Hint preserves Sz. After the projection to the lowest
Landau level (LLL), both intralayer and interlayer interactions
reduce to the zeroth Haldane pseudopotential [71,72]. For
such a system, the Halperin (221) state [35,36] is the densest
zero-energy ground state. As a spin singlet, it occurs in the
Sz = 0 sector (ν↑,↓ = 1/3) and is threefold degenerate on the
torus. The rest of this section is devoted to the microscopic
characterization of the Halperin (221) quasiholes by numeri-
cal investigation using exact diagonalization.

A. A single (221) Halperin quasihole

When we add half extra flux quanta into the system,
namely Nφ = (3N + 1)/2, a single Abelian (221) quasihole
is nucleated. Since Nφ has to be an integer, we require N

to be odd in this case. In the energy spectrum of Hint, zero-
energy eigenstates exist in the 2Sz = ±1 sectors (one state
per momentum sector for each Sz), which are associated with
the delocalized quasihole. We pin the quasihole using a layer-
dependent delta potential of strength W located at position w
in layer σ0, i.e.,

Himp(wσ0 ) = W

Nσ0∑
i=1

δ(ri,σ0 − wσ0 ). (2)

A direct diagonalization of Hint + Himp(wσ0 ) in the LLL gives
three zero-energy ground states, whose pseudospin is 2Sz =
−1 if σ0 =↑ or 2Sz = 1 if σ0 =↓. These three zero-energy
ground states correspond to the topological degeneracy of
a localized (221) quasihole on the torus [73,74]. However,
the computational cost of this direct diagonalization is high
because the impurity potential Eq. (2) breaks the magnetic
translation symmetry on the torus. In order to increase the
numerical efficiency, we assume that W is small enough such
that the impurity cannot mix the zero-energy manifold of Hint

with excited states. Then for a specific σ0, we can first com-
pute the zero-energy eigenstate of Hint per momentum sector
with the corresponding Sz, where we rely on the magnetic
translation symmetry to reduce the Hilbert space dimension,
then diagonalize the impurity potential within this zero-energy
manifold.

We focus on the particle density. In the absence of quasi-
holes, the particle density in each layer, after being aver-
aged over three degenerate (221) states, is uniform at ρ↑,↓ =
(1/3)/(2π�2

B ). We then generate a quasihole pinned by a
delta potential, Eq. (2), located in the upper layer at a point
corresponding to the center of Figs. 1(a)–1(c). In this case
the obtained three zero-energy ground states of the impurity
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FIG. 1. A single quasihole of the (221) Halperin state for N = 11, Nφ = 17, pinned by an impurity potential Eq. (2) located in the upper
layer. We show the particle density in the upper layer and lower layer and the total density in (a), (b), and (c), respectively, with the pinning
potential located at the center of the plot. The corresponding radial density (blue line) and excess charge (orange line) around the quasihole are
shown in (d), (e), and (f), respectively. The horizontal lines in (d), (e), and (f) correspond to 2π�2

Bρ = 1/3, Q/(−e) = 2/3 in (d), Q/(−e) =
−1/3, 2π�2

Bρ = 1/3 in (e), and Q/(−e) = 1/3, 2π�2
Bρ = 2/3 in (f).

potential have 2Sz = −1. Computing the particle density for
a single ground state gives similar, however slightly state-
dependent results. Such differences should disappear for large
enough systems. To reduce this finite-size effect, we consider
ρσ and the total density ρtot = ∑

σ ρσ , averaged over the three
ground states, as shown in Fig. 1(c) for N = 11, Nφ = 17.
Interestingly, particle densities in both layers deviate from
the uniform case even though the impurity potential only
acts in the upper layer, indicating an internal structure of the
quasihole: ρ↑ drops to zero at the position of the impurity
potential [Fig. 1(a)], but meanwhile ρ↓ develops a peak at
the same position [Fig. 1(b)]; both tend to the uniform value
(1/3)/(2π�2

B ) when the distance r from the center reaches
r ≈ 4�B . Such an internal structure reflects the interlayer cor-
relation in the (221) state. We note that a similar distribution of
charge among the layers in a Halperin quasihole was obtained
in Ref. [33]. Assuming isotropic ρ↑ and ρ↓ [supported by
Figs. 1(a) and 1(b)], we measure the excess charge in each
layer by [20,21]

Qσ (r ) = 2πe

∫ r

0
[ρσ (r ′) − ρ0,σ ]r ′dr ′, (3)

where e is the charge of each boson, ρσ (r ) is the radial
density with respect to the sample center in layer σ , and
ρ0,σ = (1/3)/(2π�2

B ) is the uniform density in the absence of
quasiholes. We adopt the convention of e > 0 throughout this
work, thus Eq. (3) leads to negative quasihole charge. When
evaluating Eq. (3) in our finite systems, we choose r along the
diagonal direction from the sample center to the upper right
corner. The calculations show that the excess charge saturates
to −2e/3 and +e/3 in the upper and lower layer, respectively

[Figs. 1(d) and 1(e)], agreeing with the fact that there is 2/3
missing particle in the upper layer and 1/3 excess particle in
the lower layer compared to the exact filling ν↑,↓ = 1/3.

The internal structure of the quasihole observed in the den-
sity profile motivates us to characterize the quasihole by the
total particle density ρtot over two layers [Figs. 1(c) and 1(f)],
which gives the excess charge as −e/3 in agreement with
the theoretical prediction of the (221) quasihole charge (see
Ref. [30] and references therein for details, and Ref. [31]
for a field-theoretical derivation). There are several ways to
estimate the quasihole radius R [20], using for example the
first or second moment of the particle density relative to that
far from the quasihole. These moments can quantify the extent
of the density fluctuation induced by the quasihole. Since the
square root of the second moment gives a roughly 15% larger
estimation of R than the first moment, here we adopt the
former as a safer definition of the quasihole radius. Assuming
isotropic density distribution, we define

R =
√∫ rmax

0 |ρtot(r ) − ρtot(rmax)|r3dr∫ rmax

0 |ρtot(r ) − ρtot(rmax)|rdr
, (4)

for finite systems, where ρtot(r ) is the total radial density with
respect to the sample center, rmax = L/

√
2 is the largest radius

available within the sample of length L, and we use numerical
values of ρtot along the diagonal direction from the sample
center to the upper right corner as ρtot(r ). For N = 11, Nφ =
17, we obtain R ≈ 2.05�B [similar estimations by using the
layer-resolved density ρσ in Eq. (4) give R↑ ≈ 2.06�B and
R↓ ≈ 2.29�B ]. This can be compared with R ≈ 1.76�B of the
νFQH = 1/2 Laughlin quasihole [21].
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B. Braiding two (221) Halperin quasiholes

Having characterized a single (221) Halperin quasihole,
let us now determine the quasihole statistics. To create two
quasiholes, we need to add one extra flux quantum into the
system, namely Nφ = (3N + 2)/2 which fixes N to be even.
These two delocalized quasiholes are associated with zero-
energy eigenstates of Hint in the 2Sz = −2, 0, and 2 sectors.
The number of states in this manifold and their momenta can
be deduced from the generalized Pauli principle [75,76]. We
then pin the two quasiholes by two delta potentials located at
w1 in layer σ0 and w2 in layer σ ′

0, respectively:

Himp2
(
w1,σ0 , w2,σ ′

0

) = Himp
(
w1,σ0

) + Himp
(
w2,σ ′

0

)
, (5)

where Himp(wσ0 ) is defined in Eq. (2). The direct diagonal-
ization of Hint + Himp2(w1,σ0 , w2,σ ′

0
) in the LLL gives three

zero-energy ground states corresponding to two localized
(221) quasiholes. These three ground states have pseudospin
2Sz = −2, 0, and 2 if (σ0, σ

′
0) = (↑,↑), (↑,↓), and (↓,↓),

respectively. Similarly to the strategy used in the single-
quasihole case, we diagonalize Eq. (5) in the zero-energy
manifold of Hint with a specific Sz determined by (σ0, σ

′
0) to

obtain the three zero-energy ground states with two localized
(221) quasiholes.

The braiding of two quasiholes can be achieved by fix-
ing w1 and varying w2 as w2 = w1 + (r cos θ,−r sin θ ) in
Eq. (5), where r is a constant and θ changes from 0 to 2π ,
corresponding to moving one quasihole clockwise around the
other along a circle of radius r . The accumulated Berry phase
during such a braiding is encoded in the eigenvalues of the
unitary Berry matrix

B = exp

{
−2πi

∫ 2π

0
γ (θ )dθ

}
, (6)

where γαβ (θ ) = i〈ψα (θ )|∇θ |ψβ (θ )〉 is the Berry connection
matrix, and |ψα (θ )〉 are the three zero-energy ground states
that we get by diagonalizing Eq. (5) for each θ . After choosing
a smooth gauge 〈ψα (θ )|ψβ (θ + dθ )〉 = δαβ + O(dθ2) (see
Ref. [57] for more details), we have Bαβ = 〈ψα (2π )|ψβ (0)〉.
The eigenvalues of B are {e−ipα }α=1,2,3, where pα’s are the
Abelian Berry phases. We choose pα ∈ [0, 2π ) throughout the
paper.

The Berry phases obtained using this procedure have two
origins: one is the Aharonov-Bohm (AB) phase (pα )AB =
π (r/�B )2/3 caused by moving a single quasihole in the uni-
form magnetic field along the same path without the other
quasihole enclosed, where we have considered the total excess
charge −e/3 over two layers; the other contribution comes
from the anyonic phase (pα )an. Therefore, the pure anyon
statistics is (pα )an = pα − π (r/ lB )2/3. We show the pure
anyon statistics as a function of r in Fig. 2. Because all three
(pα )an are almost equal, we plot the mean p̄an = ∑

α (pα )an/3.
In the case of locating both impurity potentials in the upper
layer (the orange line in Fig. 2), we find that p̄an converges
to 2π/3 for large enough r , being consistent with the theo-
retical prediction of the exchanging phase of two (221) quasi-
holes [31,32]. Moreover, we also recover the predicted anyon
statistics at large r when locating two impurity potentials in
different layers (the blue line in Fig. 2), which means that
the density peak shown in Fig. 1(b) does behave as a part of

FIG. 2. The anyonic phase of clockwise braiding one (221)
Halperin quasihole around another static one along a circular path
of radius r . The system size is N = 10, Nφ = 16. The blue (orange)
curve corresponds to the case where the two impurity potentials
are located in different layers (in the same layer). The dashed line
corresponds to p̄an = 2π/3.

the quasihole during the braiding, thus further confirming the
internal structure of the (221) quasihole. The anyon statistics
deviates from the theoretical prediction at small r due to the
overlap between two quasiholes. The critical value of r for
which p̄an is close enough to 2π/3 can be used as another
definition of the quasihole size. One can see that p̄an reaches
2π/3 at r ≈ 4.5�B in both cases, leading to R ≈ 2.25�B .

C. Layer-independent pinning potential

In |C|=2 lattice models (except those constructed by mul-
tiorbital or layer stacking [63,69,70]), we will in general
not have the luxury of a layer-dependent pinning potential.
It is thus relevant to consider a layer-independent potential
H̃imp(w) = ∑

σ0=↑,↓ Himp(wσ0 ) first for the (221) state. Doing
so when we have one quasihole, i.e., Nφ = (3N + 1)/2, we
obtain three ground states of H̃imp(w), but, in contrast to the
case of Himp(w), they are only approximately degenerate, and
they have finite energy.

In the situation of two quasiholes, i.e., Nφ = (3N + 2)/2,
we end up in the case Sz = 0 described in Sec. II B with
w1 = w2 = w and (σ0, σ

′
0) = (↑,↓). The zero-energy ground

states of H̃imp(w) correspond to a pair of quasiholes localized
on top of each other in two different layers, for which the
particle density and excess charge are shown in Fig. 3. In this
case, the density profile is identical in the two layers. As the
density excess (depletion) of one quasihole is partially can-
celed by the density depletion (excess) of the other quasihole,
we expect an excess charge −e/3 in both layers, which is
exactly what we observe [Fig. 3(b)]. Interestingly, we find
a reduction of the quasihole size compared with that of a
single quasihole evaluated in Sec. II A. Using Eq. (4) with the
particle density per layer in Fig. 3, we estimate the quasihole
radius as R ≈ 1.73�B when two (221) quasiholes are on top
of each other. Note that this value is obviously smaller than
the size of a single (221) quasihole, but almost the same as the
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FIG. 3. A pair of (221) Halperin quasiholes localized on top of
each other in a N = 10, Nφ = 16 system. (a) The particle density
in the upper layer, which is the same as that in the lower layer.
(b) The radial density and excess charge in the upper layer. The
dashed horizontal line corresponds to 2π�2

Bρ = 1/3, Q/(−e) =
1/3.

νFQH = 1/2 Laughlin quasihole radius [21]. Such a reduction
of the quasihole size is a result of the interplay between two
quasiholes when their pinning potentials are dragged towards
each other and finally located on top of each other. It is
also possible to braid two such pairs of quasiholes around
each other. To do so, we set Nφ = (3N + 4)/2, even N , and
pin each pair of quasiholes by a layer-independent potential
H̃imp(w). Using the procedure similar to the one in Sec. II B,
we obtain a braiding phase close to 2π/3 for large r , which is
consistent with previous results (4 · 2π/3 mod 2π = 2π/3).

III. QUASIHOLES IN THE CONTINUUM
ANALOGS OF |C|=2 FCIs

In ordinary multilayer FQH systems, periodic boundary
conditions are imposed separately on each layer (like in
Sec. II), i.e., the layer index of a particle does not change
after it goes across the boundary and returns to the starting
point. The number of magnetic flux quanta per layer Nφ is
required to be an integer in this case. Naively, such an ordinary
|C|-layer FQH system could be thought of as the continuum
analog of an FCI in a Bloch band with Chern number C

[77], where Nφ is related to the number of lattice unit cells
Nx × Ny by Nφ = NxNy/|C|. However, this analogy meets a
fundamental difficulty for |C| > 1 when NxNy is not divisible
by |C|. This problem was later solved by introducing a new
type of |C|-layer FQH systems, in which the layer index of
a particle also changes when it goes across the boundary
[67]. Therefore, unlike in ordinary |C|-layer FQH systems,
different layers (or equivalently, colors) are now connected at
the boundary by an extended twist defect. In this sense, we
can call these new systems as color-entangled |C|-layer FQH
systems. The color-entangled nature removes the restriction of
integer Nφ that appears in ordinary |C|-layer FQH systems.
Indeed, by establishing the adiabatic continuity, numerical
calculations have confirmed that the color-entangled |C|-layer
FQH states are proper continuum analogs of FCIs in |C| > 1
flat bands [67].

In this section we will first recall the basics of color-
entangled |C|-layer FQH systems, then investigate their quasi-
holes for the |C|=2 case. The study of |C|=2 FCI quasiholes
in real lattice models will be left to Sec. IV.

A. Color-entangled multilayer FQH systems

We consider a rectangular C-layer FQH system of dimen-
sions Lx × Ly , pierced by Nφ = LxLy/(2π�2

B ) magnetic flux
quanta in each layer. Our analysis below can also be gener-
alized to tilted systems. We assume C > 0 in the remaining
part of this section. The layers (or equivalently, the colors)
are indexed by σ = 0, 1, . . . , C − 1. The total number of
orbitals in the system is Ns = CNφ , which can be factorized
as Ns = NxNy . Note that the aspect ratio Lx/Ly of the system
does not depend on the choice of Nx and Ny for a fixed Ns .
We require C,Ns,Nx,Ny ∈ Z. However, unlike in ordinary
C-layer systems, we do not restrict to integer values of Nφ .

As shown in Ref. [67], a set of LLL basis states {|k〉}
compatible with both integer and fractional Nφ can be con-
structed in the Brillouin zone kx = 0, 1, . . . , Nx − 1 and ky =
0, 1, . . . , Ny − 1, where k = (kx, ky ) ∈ Z2. Under the Lan-
dau gauge A ∝ (0, x), the wave function of |k〉 in real space
r = (x, y) for color σ is given by

ψk(rσ ) = 〈rσ |k〉 = 1√√
πNxLy�B

Z∑
n

ei2π (nC+σ )kx/Nx

× exp

{
i
2π

Ly

(
ky + nNy + σ

C
Ny

)
y

}

× exp

{
− 1

2�2
B

[
x − 2π�2

B

Ly

(
ky + nNy + σ

C
Ny

)]2
}

.

(7)

One can verify that ψk(rσ ) obeys boundary conditions

Tx (Lx )P Nx ψk(rσ ) = ψk(rσ ),

Ty (Ly )QNy ψk(rσ ) = ψk(rσ ), (8)

where Tx (Ty) is the magnetic translation operator in the x (y)
direction acting on the coordinate r, and P and Q are color
operators acting on the color index σ as

P |σ 〉 = |(σ + 1) mod C〉 ,

Q |σ 〉 = e2πiσ/C |σ 〉 . (9)

When Nx is divisible by C (implying that Nφ is an integer),
as P Nx is an identity, the boundary conditions in Eq. (8)
return to those of ordinary C-layer FQH systems (up to a
layer-dependent flux insertion induced by Q). However, when
Nx is not divisible by C (fractional Nφ), the simultaneous
appearance of magnetic translation and color operators in the
boundary conditions entangles the color degrees of freedom
at the boundary. Indeed, in this case, the layer index of a par-
ticle is shifted at the boundary according to Tx (Lx )ψ (rσ ) =
P −Nx ψ (rσ ) = ψ (r(σ−Nx ) mod C ), i.e., different layers are con-
nected by an extended twist defect at the boundary. Such a
color-entangled nature is absent in ordinary C-layer FQH sys-
tems. Note that the specific dependence of the color-entangled
nature on Nx is due to a gauge choice in ψk(rσ ). Indeed, it
would depend on Ny for the other Landau gauge A ∝ (−y, 0).

The single-particle basis {|k〉} leads to a uniform Berry
curvature in the Brillouin zone and Chern number C [67],
thus mimicking a Bloch band with Chern number C on a
lattice of Nx × Ny unit cells. Similarly to the situation of
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ordinary FQH systems, color-entangled FQH model states can
be constructed. Cousins of C-layer Halperin states can be
defined as the zero-energy ground states of suitable Haldane’s
pseudopotentials diagonalized under the basis {|k〉} at a spe-
cific filling ν = N/(NxNy ) [67]. These zero modes can be
regarded as the continuum analogs of lattice FCIs in Chern
number C bands [67]. In the following we will investigate
the quasiholes in the C=2 case for bosons interacting via the
color-independent zeroth Haldane’s pseudopotential Eq. (1).
This interaction Hamiltonian, after being diagonalized under
the basis {|k〉}, gives three degenerate zero-energy ground
states for any N , Ns , Nx , and Ny at ν = 1/3, which are
the continuum analogs of numerically observed C=2 FCIs at
νFCI = 1/3 [61–66].

B. Quasiholes of color-entangled ν = 1/3 FQH states

We choose Lx = Ly = L without any loss of generality
in our numerical calculations. We first generate a single
quasihole in the color-entangled ν = 1/3 FQH state by adding
one extra orbital into the system, i.e., putting Ns = 3N + 1.
For even Ns , because either Nx or Ny must be even, we can
always make the color-entangled nature trivial by choosing
a suitable Landau gauge. Therefore, we focus on odd Ns ,
in which case Nφ must be fractional and the C=2 color-
entangled FQH systems are truly different from the ordinary
bilayer ones. To make the comparison with Sec. II easier, we
will use the notation σ =↑ or ↓ instead of σ = 0 or 1. The
delocalized quasihole is associated to a zero-energy manifold
of the interaction Hamiltonian Hint [Eq. (1)], containing one
state per momentum sector. We again use a layer-resolved,
i.e., a color-resolved delta potential of strength W located at
position w in layer σ0, i.e., W

∑N
i=1 δ(ri,σ0 − wσ0 ) to pin the

quasihole. Diagonalizing the impurity potential in the zero-
energy manifold of Hint gives three zero-energy ground states
for each value of σ0, corresponding to a localized quasihole.

In Fig. 4 we show the particle density around the quasihole
for N = 8, Ns = 25, Nx = Ny = 5 and σ0 =↑. In order to
make the effect of the color-entangled nature explicit, we
arbitrarily assume that the extended twist defect connecting
two layers is located at x = L/2 [equivalent to x = −L/2 due
to the boundary conditions Eq. (8)]. Similarly to what we saw
in Sec. II A, the quasihole has an internal structure. When the
quasihole is far from the twist defect, the layer-resolved parti-
cle densities ρ↑,↓ [Figs. 4(a) and 4(b)] are almost identical to
those in the ordinary (221) state shown in Figs. 1(a) and 1(b).
This is as expected because the quasihole does not feel the
defect. On the contrary, when the quasihole is pinned near
the twist defect, the density depletion and excess change their
layer indices as the quasihole extends across the twist defect
[Figs. 4(d) and 4(e)], reflecting the effect of color-entangled
boundary conditions Eq. (8). However, the total density over
two layers with respect to the quasihole is identical, irrespec-
tive of the quasihole position [Figs. 4(c) and 4(f)]. Therefore,
we have the same quasihole size in both cases, which is also
the same as that of the ordinary (221) state.

We then set Ns = 3N + 2 to generate two quasiholes of the
color-entangled ν = 1/3 FQH state. These two delocalized
quasiholes are associated with the zero-energy eigenstates of
Hint, the number and momentum of which can be deduced
from the generalized Pauli principle [68]. In order to braid the
two quasiholes, we pin one of them by a delta potential located
at w1 in layer σ0, i.e., W

∑N
i=1 δ(ri,σ0 − w1,σ0 ), where w1 and

σ0 are fixed. The other quasihole is dragged around the static
one along a clockwise circular path of radius r by a mobile
potential W

∑N
i=1 δ(ri,σ ′

0
− w2,σ ′

0
) located at w2 in layer σ ′

0,

FIG. 4. A single quasihole of the color-entangled ν = 1/3 FQH state for N = 8, Ns = 25, Nx = Ny = 5, pinned by a delta potential in
the upper layer. The extended twist defect connecting two layers is located at x = ±L/2. In (a), (b), and (c) we show the particle density in
the upper layer and lower layer and the total density, respectively, with the pinning potential located at w = (0, 0). In (d), (e), and (f) the same
quantities are shown for the pinning potential located at w = (2L/5, 0).
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FIG. 5. The anyonic phase of clockwise braiding one quasihole
around another static one along a circular path of radius r for
the color-entangled ν = 1/3 FQH state. The system size is N = 9,
Ns = 29, Nx = 1, and Ny = 29. The aspect ratio of the sample is
determined by Lx/Ly = 1 rather than Nx/Ny . The braiding path
crosses with the twist defect at r ≈ L/10 ≈ 0.95�B , as described in
the text. The blue (orange) curve corresponds to the case where the
two impurity potentials are initially located in different layers (in the
same layer). The dashed line corresponds to p̄an = 2π/3.

where w2 = w1 + (r cos θ,−r sin θ ). Diagonalizing the sum
of two impurity potentials in the zero-energy manifold of
Hint gives three zero-energy ground states for any (σ0, σ

′
0),

corresponding to two localized quasiholes. Again we assume
that the extended twist defect connecting two layers is located
at x = ±L/2. The layer index σ ′

0 of the mobile impurity
potential will flip when the braiding path crosses with the
defect. In order to probe the interplay between the defect and
braiding properties, we put the static quasihole near x = L/2.
In Fig. 5 we show the anyonic braiding phase obtained by the
same method as that used in Sec. II B, as a function of r for
w1 = (2L/5, 0) and different initial (σ0, σ

′
0). For this setting,

the braiding path starts to cross with the defect at x = L/2
when r ≈ L/10. We do not observe any discontinuity of the
braiding phase near this point. In fact, the results at all r’s are
almost the same as those for the ordinary (221) state (Fig. 2).
As expected for any twist defect without endpoints [78], the
color-entangled nature does not affect the quasihole braiding
statistics when |C|=2.

IV. QUASIHOLES IN |C|=2 FCIs ON THE LATTICE

A. Lattice models

Having investigated the quasiholes in ordinary and color-
entangled bilayer FQH states, let us now move to lattice
quasiholes in |C|=2 FCIs. We study two lattice models:
the triangular lattice model [61] and the generalized Hofs-
tadter model on a square lattice [66]. Particles can hop be-
tween nearest-neighboring and next-nearest-neighboring sites
in both models. The hopping terms that define the respective
tight-binding models are given in Fig. 6. We adopt parameters
t = 1, t ′ = 1/4, and φ = π/3 for the triangular lattice model
[Fig. 6(a)] and t = 1, λd = 1, λod = −1/2, and φ = 1/3 for

FIG. 6. The hopping terms in (a) the triangular lattice model and
(b) the generalized Hofstadter model. The unit cell in each model
is covered by a gray polygon. We show hoppings starting or ending
within this unit cell. The hopping coefficients are given below the
lattice configuration of each model. For a complex hopping, the
given phase in the hopping coefficient is obtained when a particle
moves along the arrow direction. In (b), the value of n in a hopping
coefficient is the x position of the starting site of the hopping.

the generalized Hofstadter model [Fig. 6(b)], such that the
lowest band of each model carries |C|=2.

We then consider N bosons on a finite lattice of Ns unit
cells under periodic boundary conditions. Since there are Ns

single-particle states in the lowest band, the band filling factor
is defined as νFCI = N/Ns . For bosons interacting via the
onsite repulsion

H lat
int = U

∑
i

ni (ni − 1), (10)

where ni is the boson number operator on lattice site i and
U is the interaction strength. We will use the flat band ap-
proximation, meaning that we set the band gap to infinity first
(projection onto the lowest band), and then take U to be large,
neglecting the band dispersion. In this approximation, U is
the sole energy scale which can be set to U = 1. Both lattice
models have three quasidegenerate gapped ground states at
νFCI = 1/3, corresponding to |C|=2 FCIs [61,66]. In this
section we evaluate the quasihole properties of these FCIs
using exact diagonalization. Moreover, considering the corre-
spondence between |C|=2 FCIs and color-entangled bilayer
FQH states, we study both even and odd Ns to expose the
possible color-entangled effect in the lattice systems.

B. Tilted lattice

Before presenting results on FCI quasiholes, let us first
elaborate on our choice of lattice samples. The most common
choices are regular samples spanned by the two primitive
lattice vectors a1 and a2, with Ni unit cells in the direction
of ai and N1N2 = Ns . However, for some Ns’s, we cannot
find suitable factors N1 and N2 such that the system aspect
ratio is close to 1. When the system size is too small in one
direction, the FCI phase has an instability towards CDW [79].
This problem especially plagues the generalized Hofstadter
model with a1 = (3, 0) and a2 = (0, 1), whose unit cell is
very elongated in one direction.
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In order to overcome this difficulty, we also consider tilted
samples which can keep the lattice aspect ratio close to 1
[43,80]. In that case, the sample is a parallelogram spanned
by vectors T1 = n1,1a1 + n1,2a2 and T2 = n2,1a1 + n2,2a2,
where n1,1, n1,2, n2,1, n2,2 ∈ Z. It contains Ns = ‖T1×T2‖

‖a1×a2‖ =
|n1,1n2,2 − n1,2n2,1| unit cells. The regular cases just corre-
spond to the special choice of n1,1 = N1, n1,2 = 0, n2,1 = 0,
n2,2 = N2. We then define the lattice aspect ratio for a tilted
sample as

A =
{

‖T2 − projT1
(T2)‖/‖T1‖ if ‖T1‖ � ‖T2‖,

‖T1 − projT2
(T1)‖/‖T2‖ if ‖T1‖ < ‖T2‖,

(11)

where projA(B) denotes the projection of vector B onto the
direction of vector A. For a given Ns , we can choose suitable
n1,1, n1,2, n2,1, n2,2 to keep A as close to 1 as possible.

Under periodic boundary conditions in the directions of T1

and T2, we can construct the first Brillouin zone containing Ns

momentum points. These momenta are used in our numerics
to do band projection and label many-body eigenstates. We
refer to Ref. [80] for the details of extracting all allowed
momenta in the first Brillouin zone of tilted samples.

C. A single quasihole of |C|=2 FCIs at νFCI = 1/3

Let us now study a single quasihole in |C|=2 FCIs. To
create it, we enlarge the lattice size to Ns = 3N + 1. Similar
to the FQH case, this quasihole is associated with a low-
energy (but generally not zero-energy) manifold, containing
one state per momentum sector, in the energy spectrum of
PLBH lat

int PLB, where PLB is the operator of projection onto
the lowest band. We apply a simple onsite impurity potential
V lat

imp(i) = Wni to pin the quasihole on lattice site i. Note that
this potential is layer independent in contrast to the ones used
in FQH systems, as we are considering lattice models without
layer index. The situation is thus similar to Sec. II C. Again,
we assume the impurity strength W cannot mix the quasihole
manifold with higher-energy states. Therefore, we can first
compute the quasihole manifold of PLBH lat

int PLB, where we
rely on the lattice translation symmetry to reduce the Hilbert
space dimension, then safely diagonalize V lat

imp in this manifold
to obtain the ground states with a localized quasihole. These
ground states are almost threefold degenerate.

We focus on the lattice site occupation 〈ni〉. In the absence
of quasiholes, we find that 3〈ni〉 is approximately uniform at
1/3 for each individual ground state of a finite system, where
the factor 3 is because there are three lattice sites per unit cell
in both models that we consider. The deviation of 〈ni〉 from
the uniform value is a finite-size effect and can be reduced
by averaging over the three degenerate ground states. In the
presence of one quasihole, we thus demonstrate 〈ni〉 averaged
over the three ground states of the impurity potential for the
triangular lattice model and the generalized Hofstadter model,
with odd and even Ns , respectively (Fig. 7). In both cases,
the quasihole is indeed pinned at the position of the impurity
potential where particles are almost fully screened, leading to
a very small 〈ni〉 ∼ 10−3. Note that this is very different from
the situation of a single quasihole in bilayer FQH states, where
only particles in one of the two layers are fully screened,
with an particle excess in the other layer (Figs. 1 and 4). The

FIG. 7. The lattice site occupation around one |C|=2 FCI quasi-
hole at νFCI = 1/3 for (a) the triangular lattice model with N = 8
bosons on a regular N1 × N2 = 5 × 5 sample; and (b) the general-
ized Hofstadter model with N = 9 bosons on a tilted sample. The
tilted sample is generated by n1,1 = 1, n1,2 = 9, n2,1 = −3, n2,2 = 1,
with Ns = 28 unit cells.

density profile is closer to a Laughlin quasihole [20,21] with
a vanishing density at the center. The lattice site occupation is
inversion symmetric with respect to the quasihole, and 3〈ni〉
tends to the uniform value 1/3 on sites far from the quasihole.
However, beside the global minima at the position of the
impurity potential, 〈ni〉 also develops several local minima
and maxima around the quasihole in both models, showing
much stronger oscillations than the FQH density for model
states studied in Secs. II and III. Such oscillations can be
clearly seen in the radial plot of 〈ni〉 (Fig. 8). The excess
charge on the lattice can be measured by

Qlat(ri ) = e
∑
rj <ri

(〈nj 〉 − νFCI/3), (12)

where ri is the distance between the site i and the position of
the pinning potential, and the summation goes over all sites

FIG. 8. (a) The radial lattice site occupation and (b) the excess
charge around a |C|=2 FCI quasihole at νFCI = 1/3, as a function of
the distance r (in units of the lattice constant) from the quasihole. We
use the same lattices as those in Fig. 7. The dashed line is located at
3〈ni〉 = 1/3 in (a) and Qlat/(−e) = 1/3 in (b).
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TABLE I. The AB phases p1, p2, and p3 obtained by moving a single quasihole anticlockwise around a unit cell indicated in Fig. 6. The
columns n1,1, n1,2, n2,1, n2,2 are the parameters of the tilted lattices that we have considered (as defined in Sec. IV B). The aspect ratio A is
defined in Eq. (11). Note that the AB phases deviate more from 2π/3 for small lattice aspect ratio A.

FCI model N Ns n1,1 n1,2 n2,1 n2,2 A (p1, p2, p3)AB/π

Generalized 8 25 1 8 −3 1 0.915 (0.668,0.666,0.666)

Hofstadter 9 28 1 9 −3 1 0.933 (0.663,0.669,0.668)
9 28 4 0 0 7 0.583 (0.639,0.680,0.681)

Triangular 8 25 5 0 0 5 0.866 (0.670,0.666,0.664)
9 28 4 0 0 7 0.495 (0.617,0.696,0.687)

j with rj < ri . The 1/3 factor comes from the number of
sites per unit cell, i.e., νFCI/3 is the average site occupation
for the uniform distribution. In this way, we count the total
excess of particle number compared with an FCI without
quasiholes. We find that Qlat(r ) also strongly oscillates with
r (Fig. 8). Nevertheless, it approaches −e/3 for sufficiently
large r , indicating that the quasihole charge of |C|=2 FCIs
at νFCI = 1/3 is the same as that in ordinary νFQH = 2/3 and
color-entangled νFQH = 1/3 FQH states.

We can further confirm the quasihole charge from the
Aharonov-Bohm phase that a quasihole picks up when mov-
ing around a unit cell. As discussed in Ref. [21], this phase
should be equal to ±2πqqh/(−e) due to the existence of
an effective magnetic field in the unit cell, where qqh is
the quasihole charge. Therefore, we expect a Berry phase
±2π/3 for |C|=2 FCI quasiholes at νFCI = 1/3, where the
sign depends on the direction of the path enclosing a unit cell
area.

We adopt the method in Refs. [21,57] to move the quasi-
hole by a time-dependent impurity. At each time t , this
impurity potential has the form of (1 − η)V lat

imp(j ) + ηV lat
imp(k),

which is nonzero only on two nearest-neighboring sites j and
k. When η slowly changes with t from 0 to 1, a quasihole is
gradually moved from j to k. Then similarly it can be moved
from k to the next site. We suppose the quasihole returns to the
initial site at t = T . Similar to Sec. II, the unitary Berry matrix
is B = Pe−2πi

∫ T

0 γ (t )dt , where γαβ (t ) = i〈ψα (t )|∇t |ψβ (t )〉 is
the Berry connection matrix, |ψα (t )〉 are the approximately
degenerate states that we get by diagonalizing the impurity
potential at each t in the quasihole manifold of PLBH lat

int PLB,
and P is the time ordering symbol. We have checked that the
threefold degeneracy of |ψα (t )〉 holds at any t . By imposing a
smooth gauge condition 〈ψα (t )|ψβ (t + dt )〉 = δαβ + O(dt2),
we have Bαβ = 〈ψα (T )|ψβ (0)〉. The eigenvalues of B are
{e−ipα }α=1,2,3, where pα’s are the AB phases that the quasihole
picks up. In Table I we show the results for the largest
investigated systems with either even or odd Ns , where we
move the quasihole anticlockwise around a unit cell indicated
in Fig. 6. The AB phases are indeed very close to the expected
2π/3 for all systems, which is consistent with the quasihole
charge −e/3.

D. Braiding two quasiholes of |C|=2 FCIs at νFCI = 1/3

We now investigate the statistics of |C|=2 FCI quasiholes
at νFCI = 1/3. We generate two quasiholes on the lattice by
considering Ns = 3N + 2. Again, these two quasiholes are
associated with a low-energy manifold in the energy spectrum

of H lat
int , whose counting can be deduced from the generalized

Pauli principle [68]. We exchange two quasiholes or move one
around the other by a time-dependent impurity similar to the
one used in the last subsection. At each time t , this impurity
potential is nonzero only on three lattice sites j , k, and l,
with the form of V lat

imp(j ) + (1 − η)V lat
imp(k) + ηV lat

imp(l). Here
we choose k and l to be two nearest-neighboring sites. Such
an impurity potential pins one quasihole at site j , and move
the other one from site k to site l when η varies continuously
from 0 to 1. We then use the same method as that in the last
subsection to calculate the Berry phase.

We focus on the generalized Hofstadter model in the
following. Let us first pin one quasihole at the sample center,
then move the other quasihole clockwise around it. For regular
samples, the mobile quasihole simply goes through the outer-
most sites of the sample [Fig. 9(a)]. However, for tilted sam-
ples we choose polylines as the braiding path, connecting only
the nearest-neighboring sites near the boundary [Fig. 9(b)].
This path goes slightly out of the periodic boundaries, but
it reduces the error on the Berry phases. Again, the total
Berry phase pα can be split into two parts: one is the AB
phase (pα )AB caused by moving a single quasihole along
the same path without other quasiholes enclosed; and the
other is the anyonic braiding phase (pα )br. In Table II we
show (pα )br = pα − (pα )AB for three representative systems.
Although exhibiting some distortions related to the overlap of
two quasiholes during the braiding, (pα )br are always close

FIG. 9. Braiding one quasihole around another
for |C|=2 FCIs at νFCI = 1/3 in the generalized
Hofstadter model. Here we give the braiding path on
(a) a regular sample with n1,1 = 4, n1,2 = 0, n2,1 = 0,
n2,2 = 8 and (b) a tilted sample with n1,1 = 1, n1,2 = 9, n2,1 = −3,
n2,2=2. The mobile quasihole is dragged around the static quasihole
along the path indicated by the arrows, starting from the lower right
corner of the sample. When the path goes outside the sample, we
use periodic boundary conditions to shift the pinning potentials back
into the sample. The plot of the path is superimposed on the initial
lattice site occupation before the braiding.
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TABLE II. The anyon statistics for |C|=2 FCIs at νFCI = 1/3 in the generalized Hofstadter model. The columns n1,1, n1,2, n2,1, n2,2,
and A provide the geometry of the tilted lattice. The (p1, p2, p3)br/π column contains statistics obtained by moving one quasihole around
another along a clockwise path. Then, in the last column we show the statistics obtained by exchanging two quasiholes along a clockwise path.
Considering the uniform magnetic field in the model, we simply approximate the AB phase as (pα )AB = −(8/9)πS [81], where S is the area
enclosed by the path.

N Ns n1,1 n1,2 n2,1 n2,2 A (p1, p2, p3)br/π (p1, p2, p3)ex/π

8 26 2 6 −2 7 0.918 (0.690,0.631,0.651) (1.360,1.346,1.319)
9 29 1 9 −3 2 0.967 (0.621,0.692,0.675) (1.290,1.345,1.334)
10 32 4 0 0 8 0.666 (0.686,0.619,0.649) (1.333,1.333,1.333)

to 2π/3 for both even and odd Ns . Therefore, |C|=2 FCIs at
νFCI = 1/3 have the same anyon statistics as the continuum
(221) and color-entangled ν = 1/3 FQH states.

Further examination of the quasihole statistics can be per-
formed by exchanging the positions of two quasiholes. The
typical paths of this kind are shown in Fig. 10. Initially we
pin the first and the second quasihole at points A and D,
respectively. We denote this configuration as (AD). Then, we
exchange two quasiholes in such a way that the configuration
evolves as (AD) → (BD) → (BC) → (DC) → (DA). In
each of these four steps, only one quasihole is moved, and
the other is static. We carefully choose the path connecting
A,B,C,D (especially on tilted lattices) to reduce the overlap
between two quasiholes as much as possible. The results are
also given in Table II, where we obtain anyonic exchange
phases (pα )ex = pα − (pα )AB all close to 4π/3. Note that the
anyonic statistics of moving one quasihole around the other
is indeed twice of that of exchanging two quasiholes (up to
modulo 2π ).

V. SUMMARY AND CONCLUSIONS

In this work we perform an extensive numerical study of
quasiholes in the νFQH = 2/3 bilayer Halperin (221) state, the
ν = 1/3 color-entangled bilayer FQH state, and the νFCI =
1/3 fractional Chern insulators in C=2 bands. For the (221)
model state, we pin a −e/3 quasihole by a layer-dependent
delta impurity. The quasihole shows an internal structure with
density depletion and excess among two layers, reflecting the
interlayer correlation of the (221) state. We use the second
moment of the total particle density relative to that far from

FIG. 10. Exchanging two |C|=2 FCI quasiholes at νFCI = 1/3 in
the generalized Hofstadter model. Here we give the braiding path
on (a) a regular sample with n1,1 = 4, n1,2 = 0, n2,1 = 0, n2,2 = 8
and (b) a tilted sample with n1,1 = 1, n1,2 = 9, n2,1 = −3, n2,2 = 2.
The two quasiholes are moved following (AD) → (BD) →
(BC ) → (DC) → (DA), as indicated by the arrows. The plot of the
path is superimposed on the initial lattice site occupation before the
exchange.

the quasihole to measure the quasihole radius and get R ≈
2.05�B , which is larger than the quasihole radius R ≈ 1.76�B

of the ν = 1/2 Laughlin quasihole [21]. In the presence of two
quasiholes, we accurately reproduce the predicted braiding
phase 2π/3 when two quasiholes are well separated. Inter-
estingly, when two quasiholes are dragged close and finally
located on top of each other in different layers, we find
that their radius reduces to R ≈ 1.73�B due to the interplay
between them.

Similarly, we also pin a −e/3 quasihole in the ν = 1/3
color-entangled bilayer FQH model state (with an odd total
number of orbitals) by a layer-dependent delta impurity. In
this case, an extended twist defect exists in the sample,
connecting two layers. While the particle density in two
respective layers is exchanged once the quasihole extends
across the twist defect, the total density over two layers with
respect to the quasihole keeps identical irrespective of the
quasihole position. The second moment of the total relative
particle density gives the same quasihole radius as for the
(221) model state. Moreover, even if the braiding path goes
across the twist defect, we still get the same braiding statistics
as for the ordinary (221) state, as expected [78]. While our
work focuses on the bilayer case, we argue that adding color-
entangled feature in a general multicomponent FQH system
does not change key quasihole properties such as the radius
and statistics.

For the two |C|=2 FCI models that we study, we observe
the same quasihole charge and statistics as those in ordinary
and color-entangled bilayer FQH states. This is true for both
even and odd number of unit cells, thus the effect of the
color-entangled nature on key quasihole properties is also
absent on the lattice. In contrast to the continuum case, the two
lattice models that we consider do not have a layer structure.
We find that an onsite impurity potential, not referring to
any internal (color) degree of freedom, is sufficient to pin
a quasihole in these systems. The resulting lattice quasihole
thus does not have an internal structure similar to that in
the continuum, so we cannot map the density distribution
on the lattice to that in the continuum by a simple rescaling of
the length unit on the lattice, like what was done in Ref. [21].
However, this may not be true for all the existing FCI models,
as we expect that a layer-dependent impurity is still needed to
pin a quasihole in other |C|=2 models constructed by layer
or orbital stacking [63,69,70]. We also notice that the site
occupation around a quasihole in the two |C|=2 FCI models
present strong oscillations. On the contrary, such oscillations
do not exist in all |C|=1 FCI models studied in Ref. [21]. This
difference suggests that those |C|=1 FCIs are closer to model
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states after the FCI-FQH mapping [56,67] than our |C|=2
FCIs.

There are several possible future developments based on
this work. So far we only consider Abelian anyons in the
|C|=2 case. It is more challenging to generalize our results
to non-Abelian anyons or the |C| > 2 case. It would be also
interesting to characterize the quasiholes from other view-
points, for example, by modular matrices extracted from the
minimally entangled states [82–84], in which the information
of braiding statistics is encoded. In this work we have probed
the interplay between the quasihole properties and the color-
entangled nature represented by an extended twist defect
without ending points. Since a microscopic model of twist

defects with ending points was proposed for FCIs in Ref. [85],
it would be instructive to study the effect of these nonextended
defects on the braiding statistics of quasiholes.
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