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We study the nonequilibrium phase diagram and the dynamical phase transitions occurring during the
prethermalization of nonintegrable quantum spin chains, subject to either quantum quenches or linear ramps of
a relevant control parameter. We consider spin systems in which long-range ferromagnetic interactions compete
with short-range, integrability-breaking terms. We capture the prethermal stages of the nonequilibrium evolution
via a time-dependent spin-wave expansion at leading order in the spin-wave density. In order to access regimes
with strong integrability breaking, instead, we perform numerical simulations based on the time-dependent
variational principle with matrix product states. By investigating a large class of quantum spin models, we
demonstrate that nonequilibrium fluctuations can significantly affect the dynamics near critical points of the
phase diagram, resulting in a chaotic evolution of the collective order parameter, akin to the dynamics of
a classical particle in a multiple-well potential subject to quantum friction. We also elucidate the signature
of this novel dynamical phase on the time-dependent correlation functions of the local order parameter. We
finally establish a connection with the notion of dynamical quantum phase transition associated with a possible
nonanalytic behavior of the return probability amplitude, or Loschmidt echo, showing that the latter displays
cusps whenever the order parameter vanishes during its real-time evolution.
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I. INTRODUCTION

Consider an extended quantum many-body system in an
equilibrium, low-temperature, ordered phase (e.g., a ferro-
magnet), and drive it out of equilibrium by varying in time
a control parameter (e.g., a magnetic field). This can occur via
an abrupt change from an initial to a final value (the so-called
quantum quench [1–3]), or a continuous time-dependent ramp.
In these cases, the initial long-range-ordered state is destabi-
lized, and it is therefore natural to investigate the fate of the
order parameter out of equilibrium. If thermalization occurs
quickly, the order parameter will show a behavior consistent
with its equilibrium finite-temperature phase diagram. On the
other hand, if a metastable, nonequilibrium quasi-steady state
is established at intermediate timescales before thermaliza-
tion, nontrivial time-dependent phenomena may occur. This
scenario, which focuses on prethermal states [4–14], typically
occurs in systems close to integrability. Quantum many-body
integrable systems are known to relax towards a generalized
Gibbs ensemble (GGE), a sort of grand-canonical ensemble
accounting for all the local (or quasilocal) conserved quanti-
ties of the system [15–24]. Under weak integrability-breaking
perturbations, GGEs can act as metastable attractors of the
dynamics, before the system slowly drifts towards its long-
time, asymptotic steady state described by a canonical Gibbs
ensemble [25–34]. In particular, the system lingers close
to a state violating detailed balance in which conventional
equilibrium statistical mechanics does not apply, making the

onset of novel types of phases of matter and critical behavior
possible.

An interesting example of nonequilibrium critical phe-
nomena may emerge after a quantum quench of an interact-
ing quantum many-body system which displays symmetry
breaking at equilibrium. These dynamical phase transitions
(DPTs) [35–53] are characterized by a nonequilibrium order
parameter exhibiting a finite or vanishing long-time temporal
average, depending on whether the quantum model under
consideration is quenched below or above an associated dy-
namical critical point separating the dynamical ordered phase
from the dynamical disordered one which depends, inter alia,
on the initial conditions. In addition, in systems with local
interactions, the scaling of dynamical correlation and response
functions can distinguish the different phases [54–59]. A
recent experiment [60] has shown that these dynamical phase
transitions can be realized with ultracold trapped ions which
simulate long-range interacting Ising ferromagnets. A second
notion of DPT, proposed in Ref. [61], has been recently
studied experimentally in Ref. [62]. This notion, however, is
not directly related to the existence of a local order parameter
characterizing the various dynamical phases, but rather to a
nonanalytic behavior in the time dependence of the return
probability amplitude. These two notions of dynamical phase
transition are in general distinct, and therefore they may
even not occur concomitantly in the same model. However,
a connection has been pointed out whenever both DPTs are
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present [63] (see also Refs. [64,65]). The study of the two
instances of DPTs is typically restricted to either integrable
or mean-field models, or to numerical works, while Gaussian
fluctuations have been accounted for in a limited number
of cases [45,46,49,56–59]. The purpose of this paper is to
thoroughly study DPTs in nonintegrable models that, despite
possessing nontrivial fluctuations and a nonvanishing order
parameter, are amenable to an analytical approach.

As we anticipated in Ref. [66], the analysis of the fully con-
nected quantum Ising model with an additional short-range
integrability-breaking perturbation reveals that fluctuations
may induce unexpected “chaotic” behavior in the nonequilib-
rium dynamics: in the presence of Z2 symmetry breaking, the
asymptotic sign of the order parameter turns out to depend
sensitively, and to a large extent unpredictably, on the initial
conditions and on the specific values of the parameters of
the post-quench Hamiltonian. We thoroughly show here that
this phenomenon turns out to rely on few essential physical
ingredients, namely, (i) the existence of multiple, macro-
scopically distinct equilibrium configurations for a collective
order parameter, and (ii) the possibility of dissipating the
energy of the collective motion into microscopic nonequilib-
rium fluctuations. In this work, these ingredients are provided
by the competition between long- and short-range interac-
tions in quantum many-body systems when quenched near
a dynamical critical point: a mean-field collective degree of
freedom moves in a multiple-well landscape and is weakly
coupled to an extensive set of microscopic degrees of freedom
which represent quantum fluctuations at all length scales.
The latter provide a sort of quantum friction on the classical
collective motion that in turn makes the eventual “choice”
of the asymptotic well highly sensitive to the parameters.
This behavior is actually reminiscent of what is observed
in a coin toss [67], with the coin playing the role of the
macroscopic collective degree of freedom with two possible
stable equilibrium configurations (“heads” and “tails”), which
dissipates its energy into the microscopic degrees of freedom
(phonons of the floor, air molecules, ...) and finally undergoes
a pseudorandom choice of the asymptotic state. The peculiar
behavior described above is based on general properties and
is therefore expected to occur in a variety of systems. Here,
we will first illustrate it in the case of the fully connected
quantum Ising model in a transverse field, i.e., the Lipkin-
Meshkov-Glick (LMG) model, and later on we will discuss
a much more general class of models where the phenomenon
is observed. Moreover, we investigate the signatures of this
phenomenon in the nonequilibrium spreading of correlations,
as well as its occurrence with more general nonequilibrium
protocols such as linear ramps.

The paper is organized as follows. In Sec. II, we review
the properties of both the equilibrium and the dynamical
criticality of the LMG model which represents the basis for
the analysis presented in the following sections. Section III
illustrates in a pedagogical fashion the methods used in this
study, based on a spin-wave (Holstein-Primakoff) expansion
around the instantaneous average direction of the spins, whose
evolution is self-consistently determined by taking into ac-
count the feedback from the quantum spin-wave fluctuations.
This approach is suitable for studying both equilibrium and
nonequilibrium problems in a wide range of systems close to

mean-field integrability (i.e., long-range or high-dimensional
systems), and is therefore of interest by itself.

In Secs. IV A and IV B, we discuss in detail the impact of
integrability-breaking perturbations on the dynamical phase
diagram of mean-field models, showing explicitly, through
an extensive analysis encompassing several different types
of perturbations and generalizations of the LMG model, that
the chaotic dynamical phase found in Ref. [66] has to be
expected in general. Section IV C is devoted to the calculation
of the equal-time correlation function of the order parameter at
different space points across the dynamical phase diagram of
the LMG model perturbed by nearest-neighbor transverse spin
interactions. These correlation functions exhibit a periodic
modulation in time, illustrating that the dynamics of the spin
waves is periodically self-driven as a result of the precession
of the collective magnetization of the LMG model induced by
the transverse field. Finally, in Sec. IV D, results are presented
for a linear ramp of the transverse field as a function of time in
the LMG model, generalizing the sudden quench considered
in Sec. IV. As the duration of the ramp increases, the chaotic
phase shrinks in the adiabatic limit; on the contrary, the faster
the ramp is, the closer the dynamical phase diagram is to the
one generated by a sudden quench (Sec. IV).

In Sec. V A, we confirm the onset of the chaotic phase
for strong integrability-breaking perturbations by employing
a numerical method based on matrix product states, extend-
ing the findings of Ref. [66]. In Sec. V B, we discuss the
connection between the dynamical phase transition discussed
in this paper and the notion of dynamical phase transition
associated with cusps of the Loschmidt echo [61], confirming
also in the present case the prediction of Ref. [63]: whenever
the order parameter vanishes during its evolution, cusps are
concomitantly formed in the real-time dynamics of the return
probability amplitude.

In Sec. VI, we discuss the important issue of finite-size
effects, relevant to possible experimental realizations of the
phenomena hereby discussed. In Sec. VII, we discuss further
perspectives.

II. DYNAMICAL PHASE TRANSITION IN THE
INFINITE-RANGE ISING MODEL

In this work, we first focus on the nonequilibrium dynamics
of a general class of Ising-type systems with quantum s spins
on a lattice, interacting via ferromagnetic coupling and subject
to a transverse magnetic field

H = −
∑
r,r′

J|r−r′ | σx
r σx

r′ − g
∑

r

σ z
r , (1)

where the sums run over the sites of a lattice, while σα
r =

Sα
r /s are the operators corresponding to the normalized spin

components in the α = x, y, z direction, acting on site r. This
represents a generalization of the case of spins one-half, where
s = 1

2 and the σα
r ’s reduce to the standard Pauli matrices.

Controlling s allows us to keep track of the impact of quantum
fluctuations, which is suppressed in the classical limit s → ∞.
The ferromagnetic couplings Jr depend on the distance r =
|r − r′| between two sites.

For generic ferromagnetic (short- or long-range) inter-
action Jr , the system is expected to have an equilibrium
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zero-temperature phase transition from a unique paramagnetic
ground state with 〈σx〉 = 0 for g > gcr to a pair of ferro-
magnetic ground states with 〈σx〉± = ±m �= 0 for g < gcr,
characterized by the breaking of the Z2 symmetry σx �→
−σx . The emergence of a nonvanishing order parameter at
a finite energy density above the ground state (e.g., in an
equilibrium finite-temperature state, or in a nonequilibrium
state attained after a quench) depends on the dimensionality
and on the range of the interactions. While one-dimensional
systems with short-range interactions cannot support order in
excited states [68,69], this is possible in models with either
higher spatial dimensionality or with long-range interactions.
In these cases, a nonvanishing order parameter may persist in
thermal as well as in prethermal phases.

The simplest instance of the generic Hamiltonian (1) is that
with Jr = λ/N , corresponding to the infinite-range or fully
connected model [70,71]

H = − λ

N

N∑
i,j=1

σx
i σ x

j − g

N∑
i=1

σ z
i , (2)

where each of the N spins interacts with all the others with the
same ferromagnetic coupling strength λ/N . This is equivalent
to the Lipkin-Meshkov-Glick model [70]. The rest of Sec. II
is devoted to reviewing the equilibrium and nonequilibrium
behavior of this paradigmatic model, focusing on dynamical
phase transitions after a quench. The readers familiar with this
may skip to Sec. III, in which we discuss fluctuations in the
presence of perturbations.

The 1/N scaling of Jr in Eq. (2) is necessary in order to
make the energy extensive in the thermodynamic limit. As
N → ∞, the mean-field approximation becomes exact for the
Hamiltonian (2), and therefore the model is exactly solvable
in the thermodynamic limit. Indeed, H is solely a function of
the total spin components

H = − λ

N

(
σ̃ x

k=0

)2 − g σ̃ z
k=0, (3)

where σ̃ α
k=0 = ∑

i σ
α
i is the Fourier mode with zero momen-

tum k = 0 of the spins on the lattice. All the other degrees of
freedom σ̃ α

k �=0, corresponding to the spatial fluctuations with
k �= 0 in Fourier space of the spins, do not contribute to the
dynamical properties of the model (3).

The Hamiltonian H is diagonalizable separately in each
sector of fixed total spin magnitude (Ns − m)(Ns − m + 1),
with m = 0, 1, . . . , Ns or Ns − 1/2 (depending on Ns being
integer or half-integer, respectively). When N → ∞, these
sectors can be labeled by a continuous variable

| 	̃σk=0|/N → ρ, (4)

with 0 � ρ � 1. The ground state always belongs to the max-
imal total spin sector | 	̃σk=0| = N or ρ = 1. Accordingly, this
state has extensive quantum numbers, and the thermodynamic
limit N → ∞ is equivalent to the semiclassical limit, or, in
loose terms, to a classical, continuous spin 	σ ≡ 〈	̃σk=0〉/N of
(conserved) length ρ. The behavior of the system in that limit
is then completely determined by the classical Hamiltonian

Hcl(	σ ) = −λ(σx )2 − gσ z, (5)

FIG. 1. Classical energy landscape (5) of the collective spin 	σ
of the LMG model along the plane σy ≡ 0 as a function of the
magnetization σ x , in the ferromagnetic phase 0 < g < gcr ≡ 2λρ.
The location of the two symmetric minima is determined by Eq. (7).
In the thermodynamic limit, the degenerate ground-state wave func-
tions of the collective spin are localized at the two classical minima,
respectively, and 	σ behaves like a classical particle at rest at the
bottom of one of the two wells (e.g., black dot in the figure). At
finite size, however, quantum tunneling induced by the presence
of the other well occurs over an exponentially long time scale
(see Sec. II C).

corresponding to the quantity H/N , where 	σ is now a clas-
sical spin, its phase space being the surface of a sphere of
radius 0 < ρ � 1. The rigorous version of this statement is
the following: When N → ∞, the ground state expectation
value of the spins 〈	σi〉 is given by the minimum point of
Hcl on the sphere, while its nonequilibrium evolution 〈	σi (t )〉
with a possibly time-dependent field g(t ), starting from a
fully polarized state, is given by the corresponding classical
trajectory on the sphere governed by Hcl via the equations
of motion σ̇ α = {σα,Hcl}, with {σα, σ β} = εαβγ σ γ and with
time rescaled by s.

A. Equilibrium behavior

For a given sphere radius ρ, the classical Hamiltonian (5)
has a single minimum for large g with σx = σy = 0 σ z = ρ,
corresponding to a paramagnetic phase. As the strength of the
field decreases below the critical value

gcr ≡ 2λρ, (6)

that minimum bifurcates into a pair of minima character-
ized by nonvanishing, opposite magnetizations σx along the
x direction, located on the xz plane symmetrically with
respect to the inversion of the x axis [i.e., connected by
the Z2 symmetry of the Hamiltonian (2)]. The correspond-
ing double-well energy landscape is represented in Fig. 1.
Parametrizing 	σ with spherical angles (θ, φ), i.e., as 	σ =
ρ(sin θ cos φ, sin θ sin φ, cos θ ), the two ferromagnetic min-
ima are given by (θ∗, 0) and (θ∗, π ), with

cos θ∗ = g

gcr
. (7)

Accordingly, the value of order parameter is

σx = ±ρ sin θ∗ = ±ρ
√

1 − (g/gcr)2 (8)

(see the left panel of Fig. 2).
Let us now determine the spectrum of the lowest excita-

tions above the ground states discussed above. Within each
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FIG. 2. Left panel: equilibrium order parameter σx of the
infinite-range Ising model at zero temperature as a function of the
external field g, determined by Eq. (7). Right panel: frequency ω<,>

of small oscillations of the collective spin around the minimum [see
Eqs. (11) and (14)], equal to the energy gap above the ground state.
In both cases, the critical behavior is characterized by a square-root
singularity.

sector with fixed value of the total spin magnitude, labeled by
ρ, the quantum mechanics of the collective spin is equivalent
to that of a quantum particle in a potential well whose depth
grows proportionally to N . (The absolute ground-state sector
corresponds to ρ = 1.) In the thermodynamic limit, the lowest
excitations of this particle are harmonic, and are determined
by the quadratic expansion of the Hamiltonian around its
energy minimum (minima). This can be seen by a simple
Holstein-Primakoff transformation, as we discuss below.

For g > gcr the minimum occurs at θ = 0, and in terms
of tangent canonical coordinates q, p, with [q, p] = i, the
quantum fluctuations around that minimum take the form

s σ̃ z
k=0 = Nsρ − n = Nsρ − q2 + p2 − 1

2
,

(9)
s σ̃ x

k=0 ≈
√

Nsρ q, s σ̃
y

k=0 ≈
√

Nsρ p.

The quantum number n = 0, 1, 2, . . . labels the quantized
spin projection along the direction of the minimum. The
Hamiltonian (3) becomes, using Eqs. (9),

H> = −Ngρ + g

s

q2 + p2 − 1

2
− λρ

s
q2

= −Ngρ + 1

s

(
ω> − ω(0)

>

2

)
+ 1

s
ω> n, (10)

where

ω> =
√

g(g − gcr), ω(0)
> = g. (11)

The first term in the last line of Eq. (10) represents the
classical energy [compare with Eq. (5)], the second one is
the quantum zero-point energy contribution, i.e., the energy
increase due to the quantum fluctuations of the spin around
the classical minimum configuration, while the last one is
the energy of the elementary (harmonic) excitations, with
n = 0, 1, 2, . . . .

For g < gcr, the two minima of the classical Hamiltonian
are determined by Eq. (7). Introducing the canonical coor-
dinates given by the total spin projection P along z and the
conjugated angle Q,

P = sσ̃ z
k=0 = Nsρ cos θ, Q = φ, (12)

respectively, and expanding the Hamiltonian (3) around one
of the two classical minima (θ∗, 0) or (θ∗, π ) with θ∗ given

by Eq. (7) (by symmetry the excitations spectra are identical)

P = Nsρ cos θ∗ + δP, Q = φ∗ + δQ,

we get

H< = − N (gρ cos θ∗ + λρ2 sin2 θ∗)

− 1

2s
(g cos θ∗ + 2λρ sin2 θ∗)

+ 2λ

s

[
1

Ns

(δP )2

2
+ Nsρ2 sin2 θ∗ (δQ)2

2

]
= − N

(
g2

4λ
+ λρ2

)
+ 1

s

(
ω< − ω(0)

<

2

)
+ 1

s
ω< n,

(13)

where

ω< =
√

g2
cr − g2, ω(0)

< = gcr. (14)

Analogously to Eq. (10), the first term in the last line
of Eq. (13) represents the classical energy [compare with
Eq. (5)], the second one is the quantum zero-point energy
contribution, i.e., the energy increase due to the quantum
fluctuations of the spin around the classical minimum con-
figuration, while the last one is the energy of the elementary
(harmonic) excitations, with n = 0, 1, 2, . . . . We observe that
the energy gap above the ground state closes at the equilibrium
critical point g = gcr, with a mean-field critical exponent 1

2
(see Fig. 2).

In principle, one could think of including modes at finite
k �= 0 (spin waves) which would, however, in this limit, be
decoupled from the dynamics of the zero mode. If Nsw =
0, 1, 2, . . . is the total occupation number of the spin-wave
modes with k �= 0, the collective spin magnitude is (Ns −
Nsw)(Ns − Nsw + 1), i.e.,

ρ = |	̃σk=0|
N

= 1 − Nsw

Ns
. (15)

Hence, one finally obtains from Eqs. (11) and (14) the com-
plete spectrum of excitations above the ground state, in the
thermodynamic limit, and to leading order in Nsw,

H> = −Ng + ω> − ω(0)
>

2s
+ 1

s
(gNsw + ω> n),

H< = −N

(
g2

4λ
+ λ

)
+ ω< − ω(0)

<

2s
+ 1

s
(2λNsw + ω< n),

(16)

valid for g > 2λ and g < 2λ, respectively. All the spin-wave
excitations introduced above have finite gap g/s or 2λ/s and a
flat dispersion relation independent of the wave vector k �= 0
because the fully connected interactions carry no information
on spatial scales, hence cannot resolve finite wavelengths. As
a consequence, the presence of a finite low temperature T

leads to exponentially small corrections to the order param-
eter, with a shift of the critical point that can be computed
[71] by minimizing the mean-field classical Hamiltonian (5)
with

ρ(T ) = 1 − 1

s

1

e
2λ/s

T − 1
. (17)
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FIG. 3. Classical energy landscapes (5) of the collective spin 	σ of
the LMG model in the plane σy ≡ 0 as a function of the magnetiza-
tion σ x in the ferromagnetic phase, with a postquench value g such
that 0 < g < gcr (black solid line) and several possible prequench
values g0 such that 0 < g0 < g (blue, red, and green dashed lines) of
the transverse magnetic field. If the system is prepared in a ground
state, e.g., with positive magnetization as illustrated by the blue, red,
and green dots for decreasing values of g0, and the magnetic field is
suddenly quenched to a larger value g0 < g < gcr, then depending
on the strength g − g0 of the quench, the resulting nonequilibrium
evolution may display dynamical ferromagnetic or paramagnetic
behavior, exemplified by the blue and green lines, respectively, sepa-
rated by a critical trajectory with a diverging period, corresponding to
the red line and associated with the dynamical critical point g = gdyn.
In contrast to Fig. 4, here the various resulting evolutions correspond
to varying the prequench parameter g0, with a fixed postquench
value g.

B. Dynamical criticality

After setting the stage, let us now focus on the dynamics
of interest in this work. Suppose that the system is prepared at
time t = 0 in a ferromagnetic ground state of the Hamiltonian
(2) with a transverse field g0 < gcr = 2λ. Microscopically,
this state is close to a spin-coherent state with all the spins
aligned in the direction (θ∗, 0) or (θ∗, π ) with cos θ∗ = g/gcr

[see Eq. (7)] and with subextensive zero-point fluctuations of
the collective spin [see Eq. (16)]. Then, the external field is
suddenly increased to g > g0, faster than the typical timescale
of the system’s dynamics. As argued above, the spins will
initiate a collective precession, and the evolution of their
direction on the sphere will be described by the classical
trajectory of the postquench Hamiltonian Hcl(g), with the
initial data corresponding to the minimum of the prequench
Hamiltonian Hcl(g0) [see Eq. (5)].

Depending on the strength g − g0 of the quench g0 → g of
the transverse field, starting from a ferromagnetic prequench
Hamiltonian, the resulting dynamics displays qualitatively
different orbits [42,72], as shown in Figs. 3 and 4:

(1) For a shallow quench [g < gdyn ≡ (g0 + gcr)/2], the
postquench energy remains below the top of the barrier that
separates the two ferromagnetic sectors. Correspondingly, the
spin will precess within the starting ferromagnetic sector (blue
lines in Figs. 3 and 4).

(2) As the strength of the quench increases, the preces-
sion period Tcl = 2π/�cl (which depends on both g0 and g)
increases, until for g ↗ gdyn it takes an infinite time to com-
plete one cycle, and the unstable point at the top of the energy
barrier is approached exponentially fast along the classical
separatrix (red lines in Figs. 3 and 4).

(3) For deep quenches above this threshold g > gdyn, the
corresponding postquench energy is larger than the barrier and
the orbit of the collective spin on the sphere encircles both
minima, such that the symmetry is dynamically restored after
taking time averages.

In fact, the time average

σx = lim
T →∞

1

T

∫ T

0
dt σ x (t ) (18)

of the equilibrium order parameter σx as a function of the
quench strength vanishes abruptly at the dynamical critical
value gdyn of the transverse field which depends also on the
initial condition. This dynamical critical point separates a dy-
namical ferromagnetic phase with σx �= 0 from a dynamical
paramagnetic phase with σx = 0.

The vanishing of an order parameter and the divergence
of a characteristic timescale such as those reported in Fig. 5
are usually associated with critical phenomena. However, the
system under consideration is clearly out of thermal equilib-
rium, as all microscopic spins perform a coherent, undamped
precession. For this reason, the above phenomenology can
be described as dynamical criticality. In order to reinforce
the idea that this behavior is distinct from the corresponding
equilibrium phase transition, we emphasize that the equilib-
rium singularity of the order parameter upon approaching a
critical point has a critical exponent 1

2 (see Fig. 2), whereas
the nonequilibrium order parameter σx actually displays a
logarithmic singularity. Indeed, the divergence of the period
of the classical oscillations as g ↗ gdyn is of the same form as
that of a classical pendulum as the initial position approaches
the upper configuration, with vanishing initial velocity [73],
and therefore the time average σx inherits the same type of
singularity.

The dynamical criticality thoroughly discussed here is not
peculiar of the Ising ferromagnets or of sudden quenches.
Rather, it is a general feature of mean-field models driven
away from equilibrium [42,43]. If the driving is chosen to be
a slow ramp of the value of g instead of a sudden quench,
the dynamical critical point retains its nature, although it gets
shifted towards the equilibrium critical point, until it merges
with the latter in the limit of adiabatic variation.

C. Finite-size (quantum) corrections

In order to understand the possible connection with experi-
mental realizations of long-range models, we now discuss the
quantum corrections to the above classical behavior, which are
relevant when the size N of the system is finite.1

As we have argued above, the infinite-range Hamiltonian
(2) describes the dynamics of a single collective degree of
freedom, namely, 	σ ≡ ∑N

i=1 	σi/N . In fact, the operators σα ,

1The LMG model is solvable by Bethe ansatz for all N (see
Ref. [91]), which allows in principle to compute analytically the
ground state as well as the nonequilibrium properties. However, this
exact solution in quite unpractical for large N , and a semiclassical
approach turns out to be simpler and more powerful in order to
understand the behavior of the system.
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FIG. 4. Nonequilibrium dynamics of the LMG model (2) in the thermodynamic limit, after a sudden quench g0 → g of the transverse
magnetic field starting from a ferromagnetic ground state of H (g0). The first row shows the semiclassical phase portrait of the prequench
Hamiltonian Hcl(g0), where the initial state is represented by one of the two minima. The second row shows the semiclassical phase portrait
of the postquench Hamiltonian Hcl(g), where the initial state is no longer a stationary point but moves along a nontrivial nonequilibrium
trajectory, in the three qualitatively different cases corresponding to g < gdyn, g = gdyn and g > gdyn in the first, second, and third columns,
respectively. The third row shows the dynamics of the order parameter as a function of time for the three cases. First column: for a weak
quench, the dynamics remains trapped within the starting ferromagnetic sector; second column: for the critical quench, the initial state lies
on a separatrix of the postquench Hamiltonian and its subsequent evolution approaches the unstable equilibrium point at infinite time; third
column: for a strong quench, the semiclassical orbit encircles both ferromagnetic minima, hence, the symmetry is dynamically restored and
the time-averaged order parameter is zero. In contrast to Fig. 3, here the different trajectories correspond to a varying postquench parameter g,
with a fixed prequench value g0.

with α = x, y, z, have spectrum in [−1, 1] and satisfy

[σα, σ β] = 1

Ns
iεαβγ σ γ , (19)

FIG. 5. Left panel: nonequilibrium order parameter σx , defined
in Eq. (18), of the infinite-range Ising model (2) after a quench of
the external magnetic field starting from a ferromagnetic ground
state with g0 = 0 and positive magnetization, as a function of the
postquench field g. Right panel: classical frequency �cl of the
mean-field dynamical trajectory, which represents the characteristic
timescale of the nonequilibrium evolution, as a function of the
postquench field g. For both quantities, the nature of the singular
behavior at the dynamical critical point g = gdyn is logarithmic,
as explained in the text. These plots can be compared with the
analogous ones in equilibrium conditions in Fig. 2.

which implies that an effective Planck’s constant h̄eff ≡
1/(Ns) characterizes the quantum dynamics [42]. For this rea-
son, the corrections to the classical motion can be investigated
via a semiclassical expansion in inverse powers of N of the
solution of the Schrödinger equation.

Let us now discuss the nonequilibrium dynamics within
the semiclassical approximation [74,75]. The first quantum
correction to the classical evolution starting from a spin-
coherent state is equivalent to treating the corresponding
Gaussian Wigner function in phase space as a probability
distribution and considering its classical (Liouville) evolu-
tion. To this level of approximation, known as the truncated
Wigner approximation (TWA), the role of quantum mechanics
amounts just to providing a degree of uncertainty to the
classical phase-space point which represents the initial state
of the system [76]. The amount of uncertainty is quantified by
the phase-space extension of the wave packet, which covers
an area equal to Planck’s constant h, corresponding to the
maximal phase-space resolution allowed by the Heisenberg
uncertainty relation.

In the presence of a nonquadratic Hamiltonian, like the
one in Eq. (5) in which we are interested in this work,
closeby points in phase space separate linearly in time, due to
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their different periods, with the sole exception of the critical
trajectory with diverging period, around which two points
separate exponentially fast in time.2 Accordingly, since the
linear extension of the initial wave packet in phase space
is

√
h̄eff ∼ 1/

√
N , after a timescale of order O(

√
N ) [or

O(log
√

N ) around the separatrix] (the so-called Ehrenfest
time tEh) the wave packet spreads over the whole classical
trajectory, and the observables relax to their “microcanonical”
average [42,74,75,77].

In light of the above, the qualitative modifications of the
classical dynamics discussed in the previous section due to
finite-size effects can be summarized as follows:

(1) A fully polarized spin-coherent initial state actually
corresponds to a broad wave packet of linear extension ∝
1/

√
N on the sphere of radius 1, rather than to a single point

in phase space.
(2) In order to observe the classical evolution described in

the previous section, the thermodynamic limit must be taken
first: at finite N , instead, quantum-mechanical effects such as
the wave-packet spreading set in after the timescale TEh ∼
O(

√
N ) [or O(log N ) around the dynamical critical point]

and the persistent classical oscillations are correspondingly
damped.

(3) The sharp dynamical phase transition highlighted in
the previous section is smoothed out by quantum fluctuations,
resulting in a crossover.

The four relevant timescales Tcl = O(1) (classical pe-
riod), TEh = O(

√
N ) (wave-packet-spreading timescale),

Trec = O(N ) (wave-packet recurrence time), Ttun = O(ecN )
(tunneling time) are all well separated in the thermodynamic
limit. Despite that all quantum phenomena set in at increas-
ingly longer time with N , in small systems they become
important. In order to highlight the relevance and conse-
quences of these finite-size effects, we report in Fig. 6 the time
evolution of the order parameter σx as well as the infinite-time
averaged distribution pde of the magnetization for increasing
system sizes N , as obtained from numerical diagonalization
of the Hamiltonian (2) in the maximal spin sector.

III. STATIC AND DYNAMICAL SPIN-WAVE EXPANSIONS

The lack of interaction between the collective mode dis-
cussed in Sec. II and the spin waves is an artifact of the
infinite-range limit. In any realistic model, quantum fluctua-
tions contribute to the dynamics and, as a result of this in-
teraction, the system is expected to eventually thermalize. It is
thus natural to investigate the possible persistence of instances
of dynamical criticality discussed above in the prethermal
stage of the dynamics, together with the possible onset of
qualitatively new phenomena generated by these additional
fluctuations. For this aim, we present in this section a method
to account systematically for the effect of fluctuations on
the dynamics of general interacting spin models, which was
briefly introduced in Ref. [66].

2This fact is crucial for the phenomenology of the chaotic dynami-
cal ferromagnetic phase (see Sec. IV).

A. Perturbative corrections to the equilibrium transition

In order to understand the impact of quantum fluctuations
on the physics of the fully connected Ising ferromagnet of
Sec. II, we consider perturbations in the form of additional
spatially decaying interactions,

H = − λ

N

∑
r,r′

σx
r σx

r′ − g
∑

r

σ z
r −

∑
r,r′

J|r−r′ |σx
r σx

r′ , (20)

where r, r′ run over a d-dimensional lattice with N sites,
and the coupling Jr decays to zero upon increasing the ge-
ometrical distance r = |r − r′|. For simplicity, we will focus
on the one-dimensional case d = 1 with periodic boundary
conditions, even though all of the results we find do not
rely on this assumption, as will become clear in the follow-
ing. Accordingly, we denote by i, j = 1, . . . , N the lattice
sites.

The perturbation makes the Hamiltonian a function not
only of the spin Fourier component at k = 0 (as occurs for
Jr ≡ 0), but of all the Fourier components with k �= 0. When
the perturbation is small, the amplitude of the modes with
k �= 0 is expected to be small, so that we can treat them
perturbatively at the lowest nontrivial order corresponding to
a quadratic approximation. In order to do so, we introduce
canonical coordinates representing small fluctuations around
the mean-field spin-coherent states by using a Holstein-
Primakoff transformation relative to the direction of the av-
erage collective spin vector 〈	̃σk=0〉. Let us start by describing
this approach in equilibrium. We first rewrite the Hamiltonian
(20) in terms of Fourier components

H = − λ̄

N

(
σ̃ x

k=0

)2 − g σ̃ z
k=0 − 1

N

∑
k �=0

J̃k σ̃ x
k σ̃ x

−k, (21)

where λ̄ ≡ λ + J̃0, J̃k = J̃−k = ∑N−1
r=0 e−ikrJr , and σ̃ α

k =∑
j e−ikj σ α

j , where k varies in the Brillouin zone. Let us now

introduce a rotated reference frame (X̂, Ŷ , Ẑ), whose compo-
nents in the original fixed frame (x̂, ŷ, ẑ) are parametrized by
the polar angles θ and φ as

X̂ ≡

⎛⎜⎝cos θ cos φ

cos θ sin φ

− sin θ

⎞⎟⎠, Ŷ ≡

⎛⎜⎝− sin φ

cos φ

0

⎞⎟⎠,

Ẑ ≡

⎛⎜⎝sin θ cos φ

sin θ sin φ

cos θ

⎞⎟⎠. (22)

The spins can be then decomposed on the basis of R as

	σj = X̂ σX
j + Ŷ σ Y

j + Ẑ σZ
j . (23)
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FIG. 6. Convergence to the classical behavior in the thermodynamic limit N → ∞ of the quantum dynamics governed by the Hamiltonian
(2) with finite size N and with s = 1

2 . This is studied via exact diagonalization in the maximal spin sector. Left panels: evolution of the
dynamical order parameter with g/λ = 0.9 (top), g/λ = 1.1 (center), g/λ = 1.7 (bottom), and increasing system size N = 16, 64, 256,
starting from a fully polarized state along the x̂ direction, i.e., from a ground state with g0 = 0. The classical limit is shown by the
black dashed curve. Right panels: corresponding infinite-time average distribution of the order parameter, as obtained from the diagonal

ensemble pde(m) = |〈�(t ) | m〉|2, where |m〉 is the state with magnetization m and the overline stands for infinite-time average. The classical
“microcanonical” distributions, obtained by averaging over the trajectory of Hcl with energy E = 〈ψ0|H |ψ0〉 /N = −λ, are shown by the
black dashed curve. Note that the quantum evolution agrees with its classical limit over a time window that increases with N . After this time,
quantum phenomena emerge. In all cases, damping of the classical oscillations takes place as a consequence of the quantum spreading of the
wave packet. Furthermore, for system sizes N as small as 16, additional quantum effects become observable. In the top left panel, quantum
tunneling to the opposite well can be observed in the dynamical ferromagnetic phase at relatively small time, which scales as Ttun = O(ecN );
note that the corresponding infinite-time distribution of the magnetization is suppressed in the classically forbidden region m ≈ 0 as N → ∞.
In the center left panel, a remnant of ferromagnetic behavior can be observed in the dynamical paramagnetic phase, due to contributions to the
wave packet coming from ferromagnetic initial conditions (in order to visualize this, one should replace the small black dot in Fig. 4 with an
extended circle of radius 1/

√
N ). In the bottom left panel, recurrences in the evolution of the order parameter emerge at relatively small time

Trec = O(N ), due to wave-packet refocusing after spreading. All these three effects occur at larger times for N = 64, 256, and thus do not
appear in the relative plots.
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Accordingly, the Hamiltonian (21) can be rewritten as

H

N
= −λ̄

[
(X̂ · x̂)

σ̃ X
0

N
+ (Ŷ · x̂)

σ̃ Y
0

N
+ (Ẑ · x̂)

σ̃ Z
0

N

]2

− g

[
(X̂ · ẑ)

σ̃ X
0

N
+ (Ŷ · ẑ)

σ̃ Y
0

N
+ (Ẑ · ẑ)

σ̃ Z
0

N

]

−
∑
k �=0

J̃k

[
(X̂ · x̂)

σ̃ X
k

N
+ (Ŷ · x̂)

σ̃ Y
k

N
+ (Ẑ · x̂)

σ̃ Z
k

N

]
·
[

(X̂ · x̂)
σ̃ X

−k

N
+ (Ŷ · x̂)

σ̃ Y
−k

N
+ (Ẑ · x̂)

σ̃ Z
−k

N

]
(24)

in terms of the Fourier transforms σ̃
X,Y,Z
k of σ

X,Y,Z
j .

In the rotated frame R, we introduce the spin-wave canonical variables via the Holstein-Primakoff transformation [78],
expanded to lowest order in 1/

√
s, i.e.,

σX
j = qj√

s
+ · · · , σ Y

j = pj√
s

+ · · · , σZ
j = 1 − nj

s
≡ 1 − q2

j + p2
j − 1

2s
, (25)

where qj and pj are the conjugate canonical variables representing small deviations of the spin away from the Ẑ axis, and along
the directions X̂ and Ŷ , respectively. In our notation, the bosonic number operator nj = b

†
j bj is defined via bj = (qj + ipj )/

√
2.

Accordingly, after introducing the coordinates q̃k = N−1/2∑
j e−ikj qj and p̃k = N−1/2∑

j e−ikjpj in Fourier space we get

σ̃ X
k

N
= q̃k√

Ns
+ · · · ,

σ̃ Y
k

N
= p̃k√

Ns
+ · · · ,

σ̃ Z
k

N
= δk,0 −

∑
k′

q̃k′ q̃k−k′ + p̃k′ p̃k−k′ − δk,0

2Ns
. (26)

The Hamiltonian (24) can now be written in terms of the canonical spin-wave coordinates

H = −λ̄N (Ẑ · x̂)2

(
1 − n0 + Nsw

Ns

)2

− gN (Ẑ · ẑ)

(
1 − n0 + Nsw

Ns

)
− 2λ̄

√
N√
s

(Ẑ · x̂)

(
1 − n0 + Nsw

Ns

)
[(X̂ · x̂)q̃0 + (Ŷ · x̂)p̃0] − g

√
N√
s

[(X̂ · ẑ)q̃0 + (Ŷ · ẑ)p̃0]

− λ̄

s

[
(X̂ · x̂)2q̃2

0 + (Ŷ · x̂)2p̃2
0 + 2(X̂ · x̂)(Ŷ · x̂)

q̃0p̃0 + p̃0q̃0

2

]
+ U2 + U3 + U4, (27)

with the k �= 0 contribution of the short-range interaction split into the following three terms:

U2 = −
∑
k �=0

J̃k

s

[
(X̂ · x̂)2q̃kq̃−k + (Ŷ · x̂)2p̃kp̃−k + 2(X̂ · x̂)(Ŷ · x̂)

q̃kp̃−k + p̃kq̃−k

2

]
,

U3 = + 1√
Ns

∑
k �=0

J̃k

s
(Ẑ · x̂)

{
(X̂ · x̂)

[
q̃k

∑
k′

q̃k′ q̃−k−k′ + p̃k′ p̃−k−k′

2
+ (k ↔ −k)

]

+ (Ŷ · x̂)

[
p̃k

∑
k′

q̃k′ q̃−k−k′ + p̃k′ p̃−k−k′

2
+ (k ↔ −k)

]}
,

U4 = − 1

Ns

∑
k �=0

J̃k

s
(Ẑ · x̂)2

∑
k′

q̃k′ q̃k−k′ + p̃k′ p̃k−k′

2

∑
k′′

q̃k′′ q̃−k−k′′ + p̃k′′ p̃−k−k′′

2
, (28)

standing for the quadratic, cubic, and quartic terms in the spin waves, respectively.
In Eq. (27), the quantity Nsw is the total number of spin waves, i.e.,

Nsw =
∑
k �=0

nk =
∑
k �=0

q̃kq̃−k + p̃kp̃−k − 1

2
(29)

[cf. Eq. (15)]. The expansion in Eq. (27) is valid as long as the spin waves have a low density Nsw � Ns, i.e., the collective spin
magnitude is close to its maximal value Ns. In this regime, spin waves behave as free bosonic excitations which interact with the
macroscopic collective spin only, corresponding to the k = 0 mode. Higher-order terms, which account for nonlinear scattering
among the spin waves, can be neglected: they are expected to contribute significantly to the dynamics only at longer times and
to drive the system away from the prethermal regime relevant for the DPT discussed here.

Our approach is equivalent to treating fluctuations within the Gaussian approximation, which is the lowest nontrivial order
beyond mean field. This is expected to be sufficiently accurate when the interaction J̃k �=0 introduces a small perturbation to the
mean-field dynamics, such that a small spin-wave density Nsw/(Ns) is generated during the dynamics. In this case, similarly to
the well-known Bogolyubov theory of weakly interacting Bose gases [79], we can treat them as free particles. Accordingly,
the only relevant interaction is that between the collective mode q̃0, p̃0 and the spin waves, given by terms in U3, which
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describe scattering of a zero-momentum excitation into a pair of spin waves with opposite momenta (k,−k), and vice versa. This
approximation amounts to neglecting terms of order O(〈Nsw〉 /Ns)2. Thereby, we arrive at the following form of the Hamiltonian
(20), truncated to linear order in the collective k = 0 mode and to quadratic order in the spin-wave fluctuations with k �= 0:

H � −λ̄N (Ẑ · x̂)2 − gN (Ẑ · ẑ) + 1

s

∑
k �=0

[2λ̄(Ẑ · x̂)2 + g(Ẑ · ẑ)]
q̃kq̃−k + p̃kp̃−k − 1

2

− 1

s

∑
k �=0

J̃k

[
(X̂ · x̂)2 q̃kq̃−k + (Ŷ · x̂)2 p̃kp̃−k + 2(X̂ · x̂)(Ŷ · x̂)

q̃kp̃−k + p̃kq̃−k

2

]

+
√

N√
s

q̃0

⎧⎨⎩−2λ̄

(
1 − Nsw

Ns

)
(Ẑ · x̂)(X̂ · x̂) − g(X̂ · ẑ) + 2(Ẑ · x̂)

1

Ns

∑
k �=0

J̃k

[
(X̂ · x̂) q̃kq̃−k + (Ŷ · x̂)

q̃kp̃−k + p̃kq̃−k

2

]⎫⎬⎭
+

√
N√
s

p̃0

⎧⎨⎩−2λ̄

(
1 − Nsw

Ns

)
(Ẑ · x̂)(Ŷ · x̂) − g(Ŷ · ẑ) + 2(Ẑ · x̂)

1

Ns

∑
k �=0

J̃k

[
(Ŷ · x̂) p̃kp̃−k + (X̂ · x̂)

q̃kp̃−k + p̃kq̃−k

2

]⎫⎬⎭,

(30)

where the explicit expressions of the various scalar products
between versors in terms of the rotation angles θ and φ

can be inferred from Eq. (22). The Hamiltonian (30) is our
starting point for assessing the impact of fluctuations on the
equilibrium and dynamical phase transition occurring in the
LMG model.

We first study the equilibrium behavior in the presence
of fluctuations. The average total spin in equilibrium can
be determined at the Gaussian level by imposing vanishing
expectation values of q̃0 and p̃0, i.e.,

〈q̃0〉 = 〈p̃0〉 = 0. (31)

Equation (26) with k = 0 shows that this is equivalent to
requiring that the average total spin 〈	̃σk=0〉 is aligned along
the Ẑ direction determined by the spherical angles θ, φ. In the
mean-field limit J̃k �=0 = 0, the spin waves are frozen in their
vacuum state and the problem becomes equivalent to finding
the ground state of the single classical spin 	σ = 〈	̃σk=0〉/N
on the sphere. As J̃k �=0 �= 0, the spin waves are generically
excited even in the ground state, analogously to the depletion
of the condensate fraction in a dilute Bose gas in the presence
of weak interactions. Equations (31) are actually satisfied
when the values of θ and φ are chosen in such a way that the
equilibrium expectation values of the two curly brackets in
Eq. (30) vanish. The second one does it if Ŷ · x̂ = Ŷ · ẑ = 0,
and

∑
k �=0

J̃k

〈
q̃kp̃−k + p̃kq̃−k

2

〉
= 0, (32)

which implies that φ∗ = 0 or π , meaning that the collective
spin lies in the xz plane, as could be anticipated based on
symmetry arguments. The remaining equation determines the
value of θ∗. In particular, θ∗ = 0 is always a solution: how-
ever, it is stable only for g large enough. For small g, stable
solutions are calculated as follows. First, we diagonalize the
quadratic part of the Hamiltonian [second and third sums
on the right-hand side of Eq. (30)] obtaining a parametric

spin-wave dispersion relation ωk/s:

ωk =
√

(2λ̄ sin2 θ + g cos θ )(2λ̄ sin2 θ + g cos θ−2J̃k cos2 θ ).

(33)

Denoting by ω
(0)
k /s the “unperturbed” common frequency of

the spin-wave modes

ω
(0)
k ≡ ω(0) = 2λ̄ sin2 θ + g cos θ, (34)

the zero-temperature Gaussian expectation values of the rele-
vant observables can then be expressed as

〈q̃kq̃−k〉 = 1

2

ω
(0)
k

ωk

, 〈p̃kp̃−k〉 = 1

2

ωk

ω
(0)
k

,〈
q̃kp̃−k + p̃kq̃−k

2

〉
= 0. (35)

Accordingly, the equation of state which determines θ∗ reads
as

sin θ∗

⎡⎣−2λ̄(1 − ε) cos θ∗ + g + cos θ∗ 1

Ns

×
∑
k �=0

J̃k

√
2λ̄ sin2 θ∗ + g cos θ∗

2λ̄ sin2 θ∗ + g cos θ∗ − 2J̃k cos2 θ∗

⎤⎦ = 0.

(36)

Combining Eqs. (29) and (35), we get an explicit expression
for the total spin depletion ε defined by the equation

|〈 	̃σk=0〉|
N

= 1 − 〈Nsw〉
Ns

≡ 1 − ε, (37)

i.e.,

ε ≡ 〈Nsw〉
Ns

= 1

2Ns

∑
k �=0

(
1

2

ω
(0)
k

ωk

+ 1

2

ωk

ω
(0)
k

− 1

)
θ=θ∗

. (38)

Note that ε � 0 and ε = O(J̃ 2
k �=0). Moreover, in the limits

g → 0 and g → ∞, the depletion ε at equilibrium vanishes,
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whereas it is arguably maximal at the critical point gcr =
2λ̄ − O(J̃ 2

k �=0) (see below).
As a check, in the mean-field case J̃k �=0 ≡ 0, Eqs. (33)

and (36) imply ω
(0)
k = ωk, ε = 0, and cos θ∗ = g/2λ in the

ferromagnetic phase g < 2λ, retrieving the mean-field equi-
librium properties. As soon as a spatially decaying interaction
J̃k �=0 �= 0 is turned on, quantum fluctuations modify the equi-
librium state.

In the equilibrium paramagnetic phase g > gcr, the ground
state has θ∗ = 0, and from Eq. (33) we find

ωk,> =
√

g(g − 2J̃k ). (39)

Deep in the equilibrium ferromagnetic phase, with g → 0,
the system approaches instead a full ferromagnetic ordering
with θ∗ → π/2, and therefore the corresponding dispersion
relation derived from Eq. (33) becomes independent of k, i.e.,
the band becomes flat,

ωk,< −→
g→0

2λ̄. (40)

This could have been anticipated by observing that in the limit
g → 0, the spin Hamiltonian (20) becomes diagonal in the σx

basis.
Let us determine now the perturbative corrections to the

critical point, employing an equivalent variational approach.
The critical point corresponds to the value of g at which the
paramagnetic configuration θ = 0 becomes an unstable saddle
point of H . We compute the variational energy E (θ ) = 〈H 〉θ
as a function of θ (with fixed φ = 0), by taking the average
of H in Eq. (30) with 〈q̃0〉 = 〈p̃0〉 = 0 and 〈q̃kq̃−k〉 given by
Eq. (35), thereby obtaining

E (θ )

N
= −λ̄ sin2 θ − g cos θ + 1

Ns

∑
k �=0

ωk − ω
(0)
k

2
. (41)

In order to determine the stability of the solution θ∗ = 0, we
expand E (θ ) at small θ , finding

E (θ )

N
∼

θ→0
− g + 1

Ns

∑
k �=0

1

2

(√
g(g − 2J̃k ) − g

)

+
{
g − 2λ̄ + 1

Ns

∑
k �=0

[√
g(g − 2J̃k )

1

2

×
(

2λ̄ − g/2 + 2J̃k

g − 2J̃k

+ 2λ̄ − g/2

g

)
− (2λ̄ − g/2)

]}
θ2

2
+ O(θ4). (42)

The critical point is then determined by the vanishing of
the coefficient of the quadratic term in curly brackets, which
yields an equation for gcr. The corrections for small J̃k �=0 may
be found perturbatively by expanding the solution gcr(J̃k �=0)
with respect to J̃k �=0 and by equating both sides order by order.
The explicit calculation yields a quadratic correction:

gcr = 2λ̄

⎧⎨⎩1 − 5

16

1

Ns

∑
k �=0

(
J̃k

λ̄

)2
⎫⎬⎭+ O

(
J̃ 3

k �=0

)
. (43)

As expected on physical grounds, the spin waves destabilize
the ferromagnetic ordering and thereby lower the critical
value gcr.

The ground-state equations discussed above can imme-
diately be generalized to the case with a finite temperature
T > 0. In fact, it is sufficient to substitute in Eq. (35) the
prefactor 1

2 with

1

2
+ 〈nk〉T = 1

2
+ 1

eωk/T − 1
, (44)

where 〈nk〉T is the Bose-Einstein distribution of the excited
spin waves. The expression of ε in Eq. (38) and the equation
of state (36) are modified accordingly. As in the mean-field
case, thermal corrections are exponentially suppressed at low
temperature as long as the gap in the dispersion relation (33)
is nonvanishing.

B. Dynamics: Time-dependent spin-wave theory

The nonequilibrium dynamics in the presence of weak
fluctuations can be analyzed by generalizing the approach
developed in the previous section to a time-evolving state.
The spin-wave expansion will be performed with respect to
a time-dependent rotated frame R, with the angles θ (t ), φ(t )
comoving with the average collective spin [66]. This is imple-
mented by the unitary operator

V (θ (t ), φ(t )) = e−iφ s
∑

j σ z
j e−iθ s

∑
j σ

y

j , (45)

acting on the spins as a time-dependent global rotation:

V σx
j V † = X̂ · 	σj ≡ σX

j , V σ
y

j V † = Ŷ · 	σj ≡ σY
j , V σ z

j V † = Ẑ · 	σj ≡ σZ
j . (46)

The Heisenberg equations of motion for σα
j (α ∈ {X, Y,Z}), in the mobile frame R, then read as

d

dt
σ α

j = 1

i

[
σα

j , H̃
]
, with H̃ ≡ H + iV V̇ †, (47)
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where the last term is the inertial force contribution equal to

iV V̇ † = −s 	ω(t ) ·
∑

j

	σj = −s 	ω(t ) · 	̃σ0, (48)

where we introduced the vector 	ω = (ωX,ωY , ωZ ), with ωX = ˙̂Y · Ẑ, ωY = ˙̂Z · X̂, and ωZ = ˙̂X · Ŷ .
The resulting Hamiltonian H̃ (t ) is thus given by the expression in Eq. (30) for H with time-dependent X̂(t ), Ŷ (t ), Ẑ(t ) [i.e.,

with time-dependent θ (t ), φ(t )], and with the additional terms

−s( ˙̂X · Ŷ ) σ̃ Z
0 = −s( ˙̂X · Ŷ ) + 1

s

∑
k �=0

[
s( ˙̂X · Ŷ )

] q̃kq̃−k + p̃kp̃−k − 1

2
,

(49)

−s( ˙̂Y · Ẑ) σ̃ X
0 =

√
N√
s

q̃0
[−s( ˙̂Y · Ẑ)

]
, −s( ˙̂Z · X̂) σ̃ Y

0 =
√

N√
s

p̃0
[−s( ˙̂Z · X̂)

]
,

to be added to the second, fourth, and fifth lines of Eq. (30), respectively. This time-dependent Hamiltonian governs the self-
consistent coupled evolution equations of the angles θ, φ and of the excitations q̃k, p̃k . In particular, the motion of the angles
is obtained by imposing the condition (31) to hold at all times, which corresponds to setting the coefficients of q̃0 and p̃0

in H̃ (t ) equal to zero. This procedure yields a pair of classical evolution equations for θ (t ), φ(t ), which depend also on the
spin-wave correlation functions. The excitation of spin waves thereby affects the mean-field trajectory of θ (t ), φ(t ) at order J̃k �=0

for weak integrability breaking. Concurrently, the motion of the vacuum θ (t ), φ(t ) drives the nonequilibrium evolution of the
spin excitations q̃k, p̃k . Explicitly, we obtain⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

s
d

dt
θ = +2λ̄[1 − ε(t )] sin θ cos φ sin φ − 2

⎛⎝ 1

Ns

∑
k �=0

J̃k�
pp

k (t )

⎞⎠ sin θ cos φ sin φ + 2

⎛⎝ 1

Ns

∑
k �=0

J̃k�
qp

k (t )

⎞⎠ cos θ sin θ cos2 φ,

s
d

dt
φ = −g + 2λ̄[1 − ε(t )] cos θ cos2 φ − 2

⎛⎝ 1

Ns

∑
k �=0

J̃k�
qq

k (t )

⎞⎠ cos θ cos2 φ + 2

⎛⎝ 1

Ns

∑
k �=0

J̃k�
qp

k (t )

⎞⎠ sin φ cos φ,

(50)

where �
qq

k (t ), �
qp

k (t ), �
qq

k (t ) are the equal-time correlation functions

�
qq

k (t ) ≡ 〈q̃k (t )q̃−k (t )〉, �
pp

k (t ) ≡ 〈p̃k (t )p̃−k (t )〉, �
qp

k (t ) ≡ 1
2 〈q̃k (t )p̃−k (t ) + p̃k (t )q̃−k (t )〉, (51)

and, as in Eq. (52), the nonequilibrium density ε(t ) of spin waves reads as

ε(t ) ≡ 1

Ns

∑
k �=0

〈nk (t )〉 = 1

Ns

∑
k �=0

�
qq

k (t ) + �
pp

k (t ) − 1

2
. (52)

Using now the equations of motion for the spin-wave coordinates⎧⎪⎪⎨⎪⎪⎩
s

d

dt
q̃k = +2λ̄ cos2 φ p̃k − 2J̃k sin2 φ p̃k + 2J̃k cos θ cos φ sin φ q̃k,

s
d

dt
p̃k = −2λ̄ cos2 φ q̃k + 2J̃k cos2 θ cos2 φ q̃k − 2J̃k cos θ cos φ sin φ p̃k,

(53)

one obtains the evolution of the parameters �
qq

k ,�
qp

k ,�
pp

k , which describe the dynamics of the Gaussian wave function of the
spin waves: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

s
d

dt
�

qq

k = 4J̃k cos θ cos φ sin φ �
qq

k + 4(λ̄ cos2 φ − J̃k sin2 φ) �
qp

k ,

s
d

dt
�

qp

k = −2(λ̄ cos2 φ − J̃k cos2 θ cos2 φ)�qq

k + 2(λ̄ cos2 φ − J̃k sin2 φ)�pp

k ,

s
d

dt
�

pp

k = −4(λ̄ cos2 φ − J̃k cos2 θ cos2 φ)�qp

k − 4J̃k cos θ cos φ sin φ �
pp

k .

(54)

Note that the evolution does not conserve the occupation
numbers {nk}, except in the mean-field limit J̃k �=0 = 0. The
equations of motion in Eq. (54) are actually not independent,

as the quantities �qq,�qp,�pp are related by the condition

4(�qp )2 = 4�qq�pp − 1, (55)

045128-12



IMPACT OF NONEQUILIBRIUM FLUCTUATIONS ON … PHYSICAL REVIEW B 99, 045128 (2019)

which is an exact property of Gaussian quantum states with
minimal uncertainty, and which is then satisfied at all times
and for all values of k.

The dynamical problem is now fully specified by the
system of 2N coupled evolution equations (50) and (54),
taking into account the constraints (55), together with suit-
able initial conditions, which can correspond to the ground
state or to a thermal state of the prequench Hamiltonian. These
equilibrium states, already determined in Sec. III A via the
equation of state (36) (and its generalization to thermal states),
may be retrieved by looking for stationary solutions of the
dynamical equations with the initial parameters g0, λ0, J̃k,0.
A variation in time of g = g(t ), corresponding to the driving
under consideration, will then yield the nonequilibrium evo-
lution at Gaussian level according to the dynamical equations
of motion derived above.

C. Dynamics: Time-independent approach

The system of coupled evolution equations for the col-
lective spin and the spin waves discussed above can also be
derived by using a time-independent approach. Indeed, the
original Hamiltonian H in Eq. (20) can be written in terms
of two global canonical variables, the total spin projection P

along the ẑ direction

P = s σ̃ z
k=0 = (Ns − Nsw) cos θ, (56)

and its conjugated angle

Q = φ (57)

[see Eq. (12)], in addition to the canonical spin-wave variables
q̃k, p̃k analogous to the ones introduced in the previous section
[cf. Eq. (26)]. An explicit calculation shows that these observ-
ables provide a complete set of 2N canonical variables for the
spin system, i.e.,

[Q, q̃k] = [Q, p̃k] = [P, q̃k] = [P, p̃k] = 0. (58)

Expanding H up to the quadratic order in the modes q̃k and
p̃k , while retaining the full nonlinearity in the collective spin
coordinates Q and P , one has3

H � −Ng
P

Ns
− Nλ̄

[(
1 − 2

Nsw

Ns

)
− P 2

N2s2

]
cos2 Q

−
∑
k �=0

J̃k

s

[
P 2

N2s2
cos2 Q q̃kq̃−k + sin2 Q p̃kp̃−k

− 2
P

Ns
cos Q sin Q

q̃kp̃−k + p̃kq̃−k

2

]
, (59)

where Nsw is defined as in Eq. (29). Conceptually, this corre-
sponds to promoting θ and φ in the Hamiltonian to proper
dynamical variables rather than treating them as external
parameters to be self-consistently adjusted, as was the case
in the time-dependent approach discussed in the previous
section. Accordingly, in this derivation, there is no need to
introduce the variables q̃0, p̃0.

The equations of motion derived from the time-independent Hamiltonian (59) are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s Q̇ = −g + 2λ̄
P

Ns
cos2 Q − 1

Ns

∑
k �=0

2J̃k

[
P

Ns
cos2 Q�

qq

k − cos Q sin Q�
qp

k

]
,

s
Ṗ

Ns
= −2λ̄

[(
1 − 2

Nsw

Ns

)
− P 2

N2s2

]
cos Q sin Q − 1

Ns

∑
k �=0

2J̃k

[
P 2

N2s2
cos Q sin Q�

qq

k

− cos Q sin Q�
pp

k + P

Ns
(cos2 Q − sin2 Q) �

qp

k

]
,

s ˙̃qk = +2λ̄ cos2 Q p̃k − 2J̃k sin2 Q p̃k + 2J̃k

P

Ns
cos Q sin Q q̃k,

s ˙̃pk = −2λ̄ cos2 Q q̃k + 2J̃k

P 2

N2s2
cos2 Q q̃k − 2J̃k

P

Ns
cos Q sin Q p̃k,

(60)

where the �k’s are defined as in Eq. (51).

Crucially, the quantum fluctuations of the collective op-
erators P/N and Q in the initial state are of order 1/

√
N ,

and hence they behave like uncertainty-free classical variables
in the thermodynamic limit (see Sec. II C for details on the
convergence to the classical behavior). By identifying Q = φ

and by changing variable from P to θ via Eq. (56), after taking
quantum averages with 〈Nsw〉/(Ns) ≡ ε [cf. Eq. (52)], one

3The ordering of the operators Q, P is actually immaterial, as differently ordered expressions differ by terms of higher order in 1/N ,
suppressed in the thermodynamic limit. Indeed, as explained in Sec. II, when N → ∞, the behavior of the collective mode is classical.

finds

θ̇ =
Ṗ
Ns

+ cos θ ε̇

−(1 − ε) sin θ
,
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and one easily verifies that the equations of motion (60)
obtained here are equivalent to Eqs. (50) and (53) ob-
tained within the time-dependent spin-wave approach, to the
quadratic order in the quantum fluctuations.

The quadratic spin-wave expansion discussed in this sec-
tion indicates that the system with Hamiltonian (20) can be
alternatively regarded as being composed by a macroscopic
classical degree of freedom (Q,P ), corresponding to the
collective spin, interacting with an extensive ensemble of
quantum oscillators {(q̃k, p̃k )}k �=0 [see Eq. (59)].

IV. IMPACT OF THE SPIN WAVES ON THE MEAN-FIELD
DYNAMICAL PHASE TRANSITION

Let us now apply the methods described in the previous
section in order to study the impact of fluctuations on the
mean-field dynamical criticality discussed in Sec. II. For the
sake of definiteness, we will first depart from the exactly
solvable mean-field limit by considering a model in one di-
mension where a nearest-neighbor interaction is added to the
infinite-range interaction of the LMG model [66]. A similar
analysis is then carried out and similar results are obtained in
Sec. IV B for a much wider class of models.

We thus consider the Hamiltonian

H = − λ

N

N∑
i,j=1

σx
i σ x

j − g

N∑
i=1

σ z
i − J

N∑
i=1

σx
i σ x

i+1, (61)

where the strength of the nearest-neighbor perturbation is con-
trolled by the parameter J and periodic boundary conditions
are understood. In the opposite limit λ → 0 with finite J , the
model reduces to the well-known quantum Ising chain in a
transverse field, which is exactly solvable in terms of free
Bogolyubov fermions [68]. In this case, however, dynamical
criticality disappears, as discussed in the Introduction.

In order to study the resulting dynamics, we will use
Eqs. (50), (51), (52), and (54), where J̃k = J cos k with k =
(2π/N )j, j = −(N/2) + 1, . . . ,−1, 0, 1, . . . , (N/2) − 1,

N/2 for this periodic one-dimensional chain.

A. Quench: Chaotic dynamical phase

We numerically integrated the evolution equations (50)
and (54) for a range of postquench values of g and J and
starting from a fully polarized ferromagnetic initial state with
〈σx

j (t = 0)〉 = 1 (i.e., the prequench Hamiltonian is chosen
with g0 = 0, and the value of J0 is thus actually immaterial as
long as |J0| < λ). At each integration time, we compute the
time-dependent components of the average collective spin 	σ ,

	σ (t ) ≡ 1

N
〈	̃σk=0(t )〉 = [1 − ε(t )]

⎛⎝sin θ (t ) cos φ(t )
sin θ (t ) sin φ(t )

cos θ (t )

⎞⎠, (62)

verifying that the nonequilibrium density ε(t ) of spin waves
[see Eq. (52)] approaches asymptotically a small value at long
times within the range of parameters considered. From this
	σ (t ), we compute the long-time average of the magnetization
along the ferromagnetic direction x̂, i.e., the dynamical order
parameter σx , and plot it for different values of J and g,
coloring the corresponding point in light yellow if σx > 0
(dynamical ferromagnetic ordering in the initial sector), in

FIG. 7. Dynamical phase diagram of the model in Eq. (20) after
a quench of the magnetic field g0 = 0 → g starting from the fully
polarized ground state with positive magnetization, as a function of
g and J . Here, N = 100. As energy scale we choose λ̄ ≡ λ + J .
The color of each point of the diagram is determined by the sign of
the long-time average σ x of σ x (t ): light yellow for σ x > 0, orange
for σ x = 0, and blue for σ x < 0. Regions A and B are perturbative
extensions of the dynamical ferromagnetic and paramagnetic phases
of the LMG model with J = 0, corresponding to the horizontal
axis (see Fig. 8 for an illustration of the dynamics within A and
B). Upon increasing J at fixed g, in a neighborhood of the mean-
field critical point g = λ̄, a new chaotic dynamical ferromagnetic
phase C emerges, within which the magnetization σx (t ), after an
initial dynamical paramagnetic behavior, gets trapped in one of the
two symmetry-broken sectors with opposite signs of the collective
magnetization [process (a) in the inset], in some cases followed by
hopping between them [process (b) in the inset] (see Fig. 9 for an
illustration of the dynamics within C). The extent and features of the
three phases A, B, C are stable as N is increased.

orange if σx = 0 (dynamical paramagnetic behavior), and in
blue if σx < 0 (reversed dynamical ferromagnetic ordering).
The result is the dynamical phase diagram reported in Fig. 7.

This figure shows that the dynamical ferromagnetic and
paramagnetic phases A and B, respectively, which touch each
other at the dynamical critical point for J = 0, withstand
the effects of the quantum fluctuations introduced by having
J �= 0, apart from getting separated by a new phase C close
to g � λ̄ (note the horizontal scale of Fig. 7). The robustness
of phases A and B is further demonstrated in Fig. 8, which
shows the time evolution of the order parameter σx (t ) (first
row) and of the spin-wave density ε(t ) (second row) within
the dynamical ferromagnetic (first column) and paramagnetic
(second column) phases, with g/λ̄ = 0.9 and 1.5, respectively.
(Note that these values are well outside the range covered by
Fig. 7.) The red solid and blue dashed lines correspond to
increasing values of the coupling J with spin waves, which, as
anticipated, do not alter significantly the qualitative features of
the dynamics. Note that in both the dynamical phases A and
B, ε(t ) remains sufficiently small and, therefore, we expect
the spin-wave treatment developed in Sec. III to be accurate
and these two phases to be robust.
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FIG. 8. Dynamical behavior of the order parameter σx (t ) (first row) and of the spin-wave density ε(t ) (second row) in the presence of
a short-range interaction J/λ̄ = 0.1 (solid red line) and 0.2 (dashed blue line), after a quench from a fully polarized ferromagnetic state
(g0 = 0). Left panels: dynamical ferromagnetic phase with g/λ̄ = 0.9. Right panels: dynamical paramagnetic phase with g/λ̄ = 1.5. These
dynamical phases are characterized by the sign of the time average of σx (t ), shown in the top panels. The quantity ε(t ) shown in the bottom
panels represents the total amount of spin-wave excitations generated during the nonequilibrium evolution. This is the control parameter for
the validity of the low-density expansion, which is consistent if ε � 1, i.e., if the length of the total spin |	σ (t )| = 1 − ε(t ) remains close to
its maximal value. The presence of a short-range interaction, even of sizable strength J/λ̄ = 0.2, produces a perturbative modification of the
mean-field evolution and, correspondingly, a small amount of spin waves. In particular, the mean-field persistent oscillations are not damped
by the self-generated “bath.” In the plots, N = 100 and the mean-field dynamical critical point is gdyn/λ̄ = 1.

Close to the mean-field dynamical transition point
g = λ̄, however, the system becomes extremely sensitive
to nonequilibrium fluctuations, resulting in the peculiar phase
C. In a typical point of this region, the dynamics of σx (t ) is
driven by two processes, illustrated in the inset of Fig. 7: (a)
the decay from a transient paramagnetic behavior to one of
the two possible ferromagnetic sectors, and (b) the possible
hopping between them. Heuristically, these phenomena occur
when the energy of the macroscopic collective spin 	σ (t ) is
slightly above the barrier separating the two ferromagnetic
minima. In this case, the dynamical production of spin
waves reduces the energy carried by 	σ and hence causes
the dynamical trapping into one of the two ferromagnetic
wells, accompanied by an increase of the spin-wave density
ε(t ). The system is dynamically ferromagnetic, although it
can occasionally hop to the opposite well, with a process
assisted by the absorption of energy from the spin-wave bath.
The asymptotic sign of σx (t ), and therefore the sign of σx ,
sensitively depends on the specific values of the parameters
in a large portion of this dynamical ferromagnetic region (C
in Fig. 7), with a collective pseudoaleatory character of the
dynamics, which is illustrated in Fig. 9. Due to this sensitive
dependence on the postquench values of the parameters,
which actually implies the same for the choice of the initial
state, this phase C is referred to as “chaotic.”

This dynamical behavior, obtained on the basis of the time-
dependent spin-wave theory, persists up to values J/λ̄ � 0.67

of the coupling J , i.e., J = 2λ; at such strong coupling ε(t )
grows significantly, invalidating the low-density spin-wave
expansion. In order to explore this strong coupling regime,
we relied on a time-dependent variational principle developed
on matrix product states (see Sec. V).

FIG. 9. Evolution of the order parameter σx (t ) within the chaotic
dynamical ferromagnetic phase C in Fig. 7, for g/λ̄ = 1.03 (solid red
line) and 1.031 (dashed blue line), and with J/λ̄ = 0.1. Here, N =
100. The two lines are practically indistinguishable during the initial
paramagnetic transient, but they have markedly distinct fates at the
onset of the critical process denoted by (a) in the inset of Fig. 7 and
they eventually end up into distinct wells. In both cases, ε(t ) grows
from ε(t = 0) = 0 to values around 0.04. This extreme sensitivity on
the value of g (and of J ) is at the origin of the “mosaic” structure of
region C in Fig. 7.
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The dynamics in the chaotic dynamical ferromagnetic re-
gion C may be understood qualitatively via a simple analogy:
a coin toss. The toss corresponds to the sudden quench of
the external field, where a macroscopic amount of energy is
injected into the system in the form of regular macroscopic
motion. The coin repeatedly hitting the ground and exciting
its phonons corresponds to the loss of energy in favor of
the microscopic degrees of freedom, i.e., the spin waves.
Finally, the coin settling into one of the two macroscopically
distinct stable configurations (heads or tails) corresponds to
the trapping into one of the two ferromagnetic sectors (σx > 0
or σx < 0). A diagram of the outcomes of the coin (heads or
tails) as a function of the variables which parametrize the toss,
would result in a picture very similar to region C of Fig. 7, as
indeed shown in Ref. [67]. Although the equations of motion
in both cases are completely deterministic, the final outcome
is extremely sensitive to the details of the dynamics and it can
be considered as an effectively random process. We emphasize
that we checked that the numerical results reported above in
Fig. 7 and in the figures which follow are not affected as N is
increased (up to N = 400).

B. Generality of the chaotic dynamical phase

We now show that the chaotic dynamical phase is not
peculiar to the model in Eq. (61), but is actually expected
to emerge in a rather general class of ferromagnetic spin
systems, characterized by competition between long- and
short-range interactions.

First of all, the occurrence of the chaotic dynamical phase
discussed in the previous section does not depend on the
particular initial state we have chosen, as long as it has suffi-
ciently strong magnetic ordering. In particular, the direction of
the initial magnetization Tr [ρ(t = 0)	S ] ∝ (sin θ0, 0, cos θ0)
with θ0 �= 0 is immaterial, and the initial state ρ(t = 0) need
not be pure. This class encompasses all low-temperature
equilibrium ordered states of H (g < gcr).

The chaotic dynamical phase occurs for arbitrary quantum
spin magnitude since a larger value of s just amounts to
rescaling the coupling strength J in Eqs. (50), and therefore to
decreasing the overall effect of the feedback from fluctuations
on the evolution of the collective order parameter. In addition,
in the limit s → ∞, quantum fluctuations in the prequench
ground state are suppressed as a consequence of the individ-
ual spins approaching their classical limit. Accordingly, the
chaotic dynamical phase progressively disappears. However,
thermal fluctuations can play a role similar to that of quantum
fluctuations when initial states in equilibrium with a finite
temperature T > 0 are considered, leading to a nonvanishing
feedback and thus to an extended chaotic dynamical phase
even in the classical limit.

We also expect that the phenomena discussed here for a
spin chain with an interaction characterized by Z2 symmetry
should emerge also for other discrete symmetry groups. In the
case of a “clock” symmetry Zn, for instance, the dynamical
order parameter is expected to get eventually trapped into
one of the n distinct symmetry-breaking sectors, resulting in
a multicolor version of the picture of Fig. 7 with different
colors corresponding to the n possible sectors. In this case,

the appropriate heuristic analogy would be that of a “roulette”
rather than a coin.

Furthermore, changing the short-range spin-spin interac-
tion term J from ferromagnetic to antiferromagnetic (J < 0)
does not alter the structure of the phase diagram in Fig. 7.
Indeed, the time-dependent spin-wave theory evolution equa-
tions (50) do not change when J �→ −J , provided the substi-
tution of the summation variable k �→ π − k is performed.4

We now turn our attention to generalizations of the Ising
Hamiltonian (20). The top panel of Fig. 10 shows the
evolution of the order parameter σx (t ) for the XY (top left
panel) and XYZ (top right) versions of the LMG model with
a nearest-neighbor anisotropic perturbation, defined by

HXYZ = − λ

N

N∑
i,j=1

(
σx

i σ x
j + αyσ

y

i σ
y

j + αzσ
z
i σ z

j

)

− g

N∑
i=1

σ z
i −J

N∑
i=1

(
σx

i σ x
i+1+αyσ

y

i σ
y

i+1+αzσ
z
i σ z

i+1

)
(63)

with αz = 0 (XY model) or nonvanishing values of αy,z (XYZ

model), while they reduce to the LMG model in Eq. (61)
for αy = αz = 0. Note that at the isotropic point αy = 1, the
discrete Z2 symmetry turns into a continuous O(2) symmetry,
as σ z is conserved. Consequently, the barrier separating the
two ferromagnetic minima becomes increasingly shallow as
this point is approached, which hinders the possibility for the
collective order parameter to get trapped. Accordingly, the
chaotic dynamical phase disappears in this limit.

The bottom panel of Fig. 10 shows the evolution
of the order parameter σx (t ) for the LMG model with
a next-to-nearest-neighbor (bottom left) or algebraically
decaying (bottom right) perturbation, defined by

HLR = − λ

N

N∑
i,j=1

σx
i σ x

j −g

N∑
i=1

σ z
i −J

N∑
i,r

v(r )σx
i σ x

i+r , (64)

where v(r ) decays to zero upon increasing the distance r

between the two interacting spins. For finite-range pertur-
bations v(r ) has a compact support, while for power-law
decaying interactions one has v(r ) ∝ r−α with α > 0. The
qualitative similarity of all the panels in Fig. 10 with the
evolution displayed in Fig. 9 demonstrates that the chaotic
behavior observed in the latter case is actually a generic
phenomenon which emerges also in the generalized models
discussed above. In particular, the evolution of a certain initial
state under the effect of two close postquench Hamiltonians
(red and blue curves) results into two markedly different
asymptotic states. Although Fig. 10 refers to specific choices
of the various parameters involved, we verified that this strong
sensitivity of the dynamics to the values of the parameters
of the postquench Hamiltonian persists in a neighborhood
of the points considered. We finally observe that the spatial
dimensionality of the short-range perturbation does not play
an important role, as well.

4Note, however, that completely different phenomena are expected
in the presence of antiferromagnetic long-range interactions, i.e.,
when λ < 0: see, e.g., Ref. [92].
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FIG. 10. Evolution of the order parameter σx (t ) after a quench from a pure ferromagnetic state (g0 = 0) in four different generalizations
of the Ising Hamiltonian (20). Top left: XY spin chain with an infinite-range and a nearest-neighbor interaction, defined by Eq. (63) with
αy = 0.25, αz = 0, g/λ̄ = 1.03 (solid red line) and 1.032 (dashed blue line), with J/λ̄ = 0.4. Top right: XYZ spin chain with an infinite-
range and a nearest-neighbor interaction, defined by Eq. (63) with αy = 0.25, αz = 0.125, g/λ̄ = 0.9 (solid red line) and 0.902 (dashed blue
line), with J/λ̄ = 0.4. Bottom left: Ising spin chain with an infinite-range and a next-to-nearest-neighbor interaction, defined by Eq. (64)
with v(r ) = δr,1 + 0.5δr,2, g/λ̄ = 1.03 (solid red line) and 1.031 (dashed blue line), with J/λ̄ = 0.2. Bottom right: Ising spin chain with an
infinite-range and a power-law decaying interaction, defined by Eq. (64) with v(r ) = 1/r2, g/λ̄ = 1.03 (solid red line) and 1.031 (dashed blue
line), with J/λ̄ = 0.2. In all simulations, N = 100. These trajectories have been obtained by numerically integrating the evolution equations
given by the time-dependent spin-wave theory, analogous to Eqs. (50) and (54), derived for the generalized spin chains above through the same
procedure as that explained in details in Sec. III B for the Ising model.

In summary, we have shown that the emergence of a
chaotic dynamical phase is an ubiquitous phenomenon that
requires essentially two sole physical ingredients, namely, the
spontaneous breaking of a discrete symmetry and a mean-
field model perturbed by an interaction term with a nontrivial
spatial dependence, which introduces fluctuations.

C. Correlation function of the local order parameter

According to the picture presented above, the prethermal
dynamics of the system can be understood in terms of the

motion of a classical, macroscopic degree of freedom (the
collective spin 	σ ) coupled to a weakly interacting many-body
system (the “bath” of spin waves), which, in turn, is driven by
the former: see Eqs. (59) and (60). This driving mechanism
is determined by the persistent precession of the collective
spin and can be highlighted by studying the time- and space-
dependent equal-time correlation functions 〈σx

j (t )σx
j+r (t )〉,

of the local order parameter 〈σx
j (t )〉. Taking into account

Eq. (25) at the leading order in the low-density expansion of
Sec. III, the connected correlation function Cxx (r, t ) can be
expressed as

Cxx (r, t ) ≡ 〈
σx

j (t )σx
j+r (t )

〉− 〈
σx

j (t )
〉〈
σx

j+r (t )
〉

= (X̂ · x̂)2 1

s
〈qj (t )qj+r (t )〉 + (Ŷ · x̂)2 1

s
〈pj (t )pj+r (t )〉 + 2(X̂ · x̂)(Ŷ · x̂)

1

s

〈
qj (t )pj+r (t ) + pj (t )qj+r (t )

2

〉
= cos2 θ (t ) cos2 φ(t )

1

Ns

∑
k �=0

cos(kr ) �
qq

k (t ) + sin2 φ(t )
1

Ns

∑
k �=0

cos(kr ) �
pp

k (t )

− 2 cos θ (t ) cos φ(t ) sin φ(t )
1

Ns

∑
k �=0

cos(kr ) �
qp

k (t ). (65)
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FIG. 11. Space-time density plots of the dynamical correlation function Cxx (r, t ) [see Eq. (65)] after a quench of the magnetic field g from
a fully polarized ferromagnetic state (g0 = 0) to g/λ̄ = 0.7, 0.9, 1.025, 3, in clockwise order from top left. In all plots, J/λ̄ = 0.25, N = 240.
For a small quench occurring deep in the ferromagnetic phase (top left), the overall amplitude of the correlation function is weak (few
excitations are produced) and the light cone is narrow due to an almost constant spin-wave dispersion relation. The amplitude and the width
become larger as the dynamical critical region is approached (top right). In the chaotic dynamical phase (bottom right), a “knee” is visible,
marked by the black arrow, witnessing a change of the maximal velocity of propagation due to the trapping of the orbit, after a paramagnetic
transient, into a ferromagnetic sector (notice the change of scale, highlighting a larger amplitude of the correlations). Finally, deep in the
paramagnetic phase (bottom left), the maximal velocity approaches the value analytically predicted in Eq. (67), indicated by the black line. An
approximately periodic modulation of the amplitude of Cxx (r, t ) is visible in all cases, which reflects the approximately periodically driven
nature of the spin waves, induced by the precession of the collective spin.

Analogous expressions can be readily obtained for Cαβ (r, t ),
with α, β = x, y, z. In this section, for definiteness, we focus
on the perturbed LMG model of Eq. (61).

1. Modulated light-cone effect

Density plots of the equal-time correlation functions
Cxx (r, t ) are shown in Fig. 11. They are obtained by integrat-
ing the equations of motion (50) and (54) with the same initial
conditions as in the previous sections and by substituting their
solution (θ (t ), φ(t ), {�qq

k (t ),�qp

k (t ),�pp

k (t )}) into Eq. (65),

with s = 1
2 .

A light-cone effect [80] is present for all values of the
parameters g and J , which is characterized by an expo-
nentially fast decay in time of the correlation function for
|r| > 2vmaxt with a certain vmax (see Ref. [81]). In fact,
the infinite-range Hamiltonian generates a collective coherent
precession of all the spins with no spatial structure, due to
the full permutational symmetry of the spins. However, a
nontrivial spatial dependence of the dynamical correlations

arises in the presence of the additional short-range interaction
term, which results in a light cone. A closer inspection of
the figures reveals that a (seemingly) periodic modulation
is superimposed to the amplitude of the correlations. The
origin of this phenomenon can be explained in the following
terms. Within the low-density expansion considered here, the
quadratic bosonic Hamiltonian (30) governing the evolution
of the spin waves has coefficients which depend parametri-
cally on the angles θ (t ), φ(t ). The latter evolve approximately
periodically in time (cf. Fig. 8), resulting in an instantaneous
dispersion relation of the spin waves with an approximately
periodic time dependence. The “stroboscopic” dynamics of
the spin waves at integer multiples of the “period” of the
collective precession can thus be argued to relax to a periodic
or stroboscopic generalized Gibbs ensemble [82,83], which
is known to occur in quantum many-body systems subject
to an external periodic driving. We emphasize, however, that
here the periodic drive is given by the dynamics of the system
itself, i.e., it is self-generated by the autonomous Hamiltonian
dynamics, without external actions: the collective motion of
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the classical spin 	σ (t ) generates an effective “external” drive
for the spin waves [see Eq. (59)].

Let us now investigate the behavior of the slope of the
light-cone edge as a function of the system’s parameters.
This quantity can be derived in terms of the maximal veloc-
ity vmax of propagation of the quasiparticles, which can be
computed as the maximal slope of their effective dispersion
relation ω

(eff)
k (see below). In the two limiting cases g → 0

and g → ∞, this velocity vmax can be easily determined
analytically.

For g � λ̄, the classical spin performs small oscillations
near the initial ferromagnetic configuration, hence, θ (t ) ≈
π/2 and φ(t ) ≈ 0 (or π ) for all times. The dispersion rela-
tion in such a near-equilibrium condition has already been
determined in Eq. (40): in fact, the corresponding dispersion
relation is asymptotically flat, ω

(eff)
k → 2λ̄, as g → 0, and

hence vmax approaches zero in this limit. This is confirmed
by numerical computations, as shown in the two top panels of
Fig. 11 where the light-cone width shrinks as g decreases.

In the opposite limit g � λ̄, the collective spin ap-
proximately rotates uniformly along the equator θ (t ) ≈
π/2, φ(t ) ≈ 2gt , at frequency 2g. The effective (Floquet)
Hamiltonian [84] of the spin waves is simply given by the
time-averaged Hamiltonian to lowest order in the driving
period π/g. Thus, by averaging in time the coefficients of
Eq. (59), we find the effective dispersion relation

ω
(eff)
k = 4

√
λ̄(λ̄ − J cos k), (66)

and, therefore, for small J/λ̄, the maximal velocity of propa-
gation is given by

vmax = max
k

∣∣∣∣∂ω
(eff)
k

∂k

∣∣∣∣ ∼ J. (67)

Comparing this prediction with the slope 2vmax of the light
cone of correlations, we find fairly good agreement with the
data shown in the bottom left panel of Fig. 11.

A more precise quantitative determination of the light-cone
edge from numerics requires some care. In order to address
this, consider a quantum system composed by free quasiparti-
cles with dispersion relation ωk , and assume parity symmetry,
i.e., ωk = ω−k . An equal-time, two-point correlation function
can be generically expressed as (see, e.g., Ref. [69])

C(r, t ) =
∫ π

−π

dk

2π
f (k) eikr−i2ωkt , (68)

where the function f depends on the model and on the
quench. In the scaling limit of large r and t with fixed
r/t ≡ ξ, t → ∞, this correlation function shows a different
asymptotic behavior along rays within or outside the causal
region delimited by the light cone |ξ | � 2vmax. Indeed, one
finds

C(ξ t, t ) ∼
t→∞

⎧⎨⎩
∑

k∗ f (k∗(ξ )) exp[i(k∗(ξ )ξ−2ωk∗ (ξ ) )t]√
2πω′′

k∗ (ξ )t
for |ξ | < 2vmax,

A exp(−δ(ξ )t ) for |ξ | > 2vmax,

(69)

where k∗(ξ ) is a solution to the equation 2∂ωk/∂k(k) = ξ ,
which exists only if |ξ | < 2vmax, and the sum runs over
the set of such solutions. Accordingly, upon increasing the
time t , the correlation function decays to zero as t−1/2 along
rays within the light cone, whereas it decreases exponentially
along rays outside the light cone (the latter is a general fact
valid for all systems with short-range interactions, as follows
from the Lieb-Robinson bound [81]). The proper way of
extracting vmax, and thus of defining the light-cone edge from
the numerical data, is therefore by inspecting the decay of
the correlation function along space-time rays and thereby
discriminating power law from exponential decay: the critical
ray which separates the two behaviors is the light-cone edge,
and its slope unambiguously determines the maximal velocity
of propagation of excitations within the system. Figure 12
shows that the two scaling behaviors in Eq. (69) are indeed
found in the the numerical data. This agrees with the picture
of self-consistently periodically driven spin waves.

2. Dynamical correlations in the chaotic dynamical phase

The chaotic dynamical ferromagnetic phase C in Fig. 7
leaves detectable signatures on the dynamics of the
local order-parameter correlation functions. The self-
consistent internal driving provided by the collective spin

dynamics changes when the transient paramagnetic behavior
turns into an evolution occurring eventually within one of the
ferromagnetic sectors, as happens, e.g., in Fig 9. From the
point of view of the spin waves, this can be seen as a change
of their effective (Floquet) Hamiltonian, which, accordingly,
results in a change of the associated “speed of light.” Although
the values of vmax before and after this change from dynamical
paramagnet to dynamical ferromagnet, are not very different,
a variation of slope in the light cone is visible in some of the
numerical computations, e.g., those reported in the bottom
right panel of Fig. 11. They correspond to the macroscopic,
qualitative change in the internal driving provided by 	σ (t ).
This phenomenon is a consequence of the existence of a
chaotic dynamical ferromagnetic phase, and it can be seen as
a further, characteristic hallmark of its peculiar nature.

D. Ramp dynamics

We now extend the analysis of the previous section and of
Ref. [66] for the system described by the Hamiltonian (20) to
a time-dependent ramp g(t ) of the transverse field, describing
the crossover from the sudden quench (infinitely quick ramp)
to the adiabatic evolution (infinitely slow ramp). We consider
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FIG. 12. Long-time behavior of the correlation function C(ξ t, t )
along two close space-time rays with fixed ξ = 0.5λ̄ (left) and
0.55λ̄ (right) in a log-log scale, after a quench of the magnetic
field from a pure ferromagnetic state (g0 = 0) to g/λ̄ = 0.9 with
J/λ̄ = 0.25, N = 240, corresponding to the data of the top right
panel of Fig. 11. Apart from an (approximately) periodic modulation,
C(ξ t, t ) decays, in the large space-time limit, as a power law (left)
or as an exponential (right) as a function of time. The red line
highlights the t−1/2 decay suggested by the argument in the text [see
Eq. (69)]. Data are consistent with a maximal velocity of propagation
of the effective free quasiparticles between 0.25λ̄ and 0.275λ̄ in this
specific numerical instance.

a linear time dependence

g(t ) =

⎧⎪⎨⎪⎩
g0 for t < 0;

g0 + (g − g0) t
τ

for 0 � t � τ ;

g for t > τ.

(70)

The parameter τ controls the total duration of the ramp. The
system is initialized in the ground state of H (g0) at t0 < 0 and
then evolves with the time-dependent Hamiltonian H (g(t )) at
later times. When λ̄τ � 1, the results approach those obtained
for the quantum quench dynamics of the previous section (see
Fig. 7). Upon increasing τ , we expect two effects. (i) First,
the final state for t � τ will be progressively closer to the
adiabatic one (i.e., the ground state of the final Hamiltonian
since the system is initialized in a zero-temperature ground
state); this implies that the dynamical critical point, sepa-
rating nonequilibrium trajectories within one ferromagnetic
well from the dynamically paramagnetic ones encircling both
wells, will move towards the equilibrium critical point, which
is asymptotically reached in the adiabatic limit τ → ∞.
This phenomenon occurs also in the absence of fluctuations,
i.e., within the LMG model. (ii) Second, in the presence of
fluctuations, an increasingly slower protocol will deposit in

the system a progressively smaller amount of energy in the
form of spin-wave excitations with k �= 0. By inspecting the
Hamiltonian (59) or the equations of motion, one notices that
the driving g(t ) directly affects only the dynamics of the
collective spin. This macroscopic precession, in turn, causes
the production of pairs of spin waves with opposite quasi-
momenta: Near the dynamical transition, the self-generated
bath of spin waves dissipates the energy of the classical
spin, causing its trapping into either of the ferromagnetic
wells. Accordingly, the smaller the amount of spin waves, the
smaller the region of the parameter space within which the
trapping phenomenon can occur is, and we therefore expect
that the chaotic dynamical ferromagnetic phase C will shrink
as τ increases.

This picture is confirmed by the numerical integration of
the equations of motion, as one can see from Figs. 13 and 14.
In particular, Fig. 13 shows how the dynamical phase diagram
in Fig. 7 changes upon increasing, from left to right, the
duration of the ramp τ in g(t ) which takes it from the initial
value g0 to the final value g. As expected, the chaotic region
C in the parameter space shrinks with its two boundaries
getting increasingly closer to each other, while region C as
a whole moves towards the line at which the transition occurs
in equilibrium [see Eq. (43)].

In order to highlight this shift and the fate of the chaotic
phase, the left panel of Fig. 14 shows a cut of the phase
diagrams in Fig. 13 corresponding to a fixed value J/λ̄ = 0.2
along the horizontal axis, and how the corresponding phases
as a function of g/λ̄ change as λ̄τ increases well beyond the
values considered in Fig. 13. In order to assess the reliability
of the spin-wave approximation on which our analysis relies,
the right panel of Fig. 14 shows with color code how fast
the long-time-averaged spin-wave density ε(t ) [see Eq. (52)]
decreases upon increasing the ramp duration and as a function
of g/λ̄ for the same conditions as in the left panel.

V. STRONG INTERACTIONS

In order to check the robustness of the observed phenom-
ena in the presence of a nearest-neighbor interaction strength
J increased beyond the perturbative regime considered in the
previous sections, we simulate numerically the evolution of
the system by using the time-dependent variational principle
developed in Refs. [85,86]. This formulation requires a matrix
product operator (MPO) representation of the Hamiltonian.
Since the interaction strength of the infinite-range part of the
Hamiltonian (20) scales with the system size N , it is not
possible to rewrite the thermodynamic limit of the Hamil-
tonian in the MPO form and hence to simulate the time
evolution directly in the thermodynamic limit. Accordingly,
we performed finite-size simulations on long chains, up to
N = 400.

The reformulation of the Hamiltonian in the MPO form is
done in two steps. First, we write an exact homogeneous MPO
with a large bond dimension DMPO = N + 1 and then use
standard methods in order to find a compact inhomogeneous
MPO representation with a bond dimension up to DMPO = 17
and an error below 10−10. In all simulations we used a time
step of 0.02 (in units of λ), a matrix product state bond
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FIG. 13. Dynamical phase diagrams for linear ramps [see Eq. (70)] of the transverse magnetic field for the model described by Eq. (20)
starting from g0 = 0 (fully polarized ferromagnetic state), in the plane of the dimensionless final magnetic field g/λ̄ and short-range interaction
strength J/λ̄, analogous to Fig. 7. Here, N = 100. The color of each point in the diagrams indicates the asymptotic sign of the time-averaged
order parameter, with the same graphical conventions as in Fig. 7. The dimensionless duration λ̄τ of the ramp is 0.7 (left), 1.00 (middle), 1.15
(right). As the driving becomes slower, the mean-field dynamical critical point for J → 0 shifts from the sudden quench value gdyn/λ = 1
towards that in the adiabatic limit, i.e., the equilibrium critical point gcr/λ = 2 which is witnessed by the progressive shift rightwards along the
horizontal axis of the border between the yellow and orange regions in the plot. Simultaneously, the chaotic dynamical ferromagnetic phase
shrinks, due to the progressively smaller amount of nonequilibrium excitations produced by the increasingly slower ramp.

dimension up to D = 600, and the second-order single-site
integrator proposed in Refs. [85,86].

A. Trajectories and the phase diagram at large
nearest-neighbor interactions

We first verify that the sensitivity of the evolution and of
the final state to the values of the quench parameters observed
in the perturbative regime of small spin-wave density ε carries

FIG. 14. Left panel: dynamical phase diagram for linear ramps
of the magnetic field g of the same model as in Fig. 13, in the
plane of the dimensionless final magnetic field g/λ̄, and of the
dimensionless ramp duration λ̄τ , but with fixed J/λ̄ = 0.2. The color
of each point of the diagram is assigned as in Figs. 13 or 7, and the
diagram corresponds to taking a horizontal cut of those in Fig. 13 at
fixed J/λ̄ = 0.2 and varying τ continuously. As the ramp becomes
slower, we notice two features: first, the two boundaries of the chaotic
phase shift from the sudden quench position around gdyn/λ̄ = 1
towards the equilibrium critical point gcr/λ̄ = 2 − (5/8)(J/λ̄)2 +
O(J/λ̄)3 ≈ 1.975 [see Eq. (43)] in the adiabatic limit, marked by
the black vertical line. Second, the chaotic dynamical phase shrinks
and practically disappears as τ is increased. Both these features are
clearly visible in the picture. The “oscillatory” dependence of the
phase boundary on τ is already present at the mean-field level. Right
panel: long-time average of the density ε(t ) of spin-wave excitations
generated in the nonequilibrium dynamics.

over to a larger nearest-neighbor interaction strength J . By
extensive numerical simulations, we show that indeed both
phenomena persist as summarized in Fig. 15, where we show
the dependence of the long-time-averaged value of the order
parameter σx as a function of the transverse field g for various
values of J around 0.5λ̄, i.e., J ≈ λ. In particular, depending
on the value of J , the dynamical ferromagnetic phase with
σx > 0 at g/λ̄ � 0.9 turns into a dynamical paramagnetic
phase with σx = 0 at g/λ̄ � 1.3 via an intermediate region in
which the ferromagnetic ordering is reversed as compared to
the initial one, i.e., σx < 0. This is reminiscent of the “stripes”
of reversed magnetization in Fig. 7 in the leftmost part of
region C. We therefore expect a “chaotic” region to be present
in-between.

Far from the mean-field dynamical critical point gdyn = λ̄,
the time evolution of the order parameter remains qualitatively
similar to the mean-field case. As shown in Fig. 16, for
g/λ̄ = 0.5 and 1.5 the ferromagnetic (red solid line) and para-
magnetic (blue solid line) trajectories are only slightly shifted
with respect to the mean-field evolution (J = 0, dashed
red and blue lines) despite the large interaction strength
J = 0.5λ̄ = λ.

Upon getting closer to the mean-field dynamical critical
point g = λ̄ with J �= 0 one observes, instead, significant
qualitative changes in the time evolution of σx (t ) compared to
the case J = 0, as shown in Figs. 17 and 18. In particular, in
the region of parameters highlighted in Fig. 15, one observes
that the eventual sign of σx (t ) is reversed compared to the
initial value and that it is attained possibly after a number of
sign changes, as in Fig. 17. This final sign reversal appears
to be stable in longer simulations. The dynamics, however,
becomes more complex when g approaches the dynamical
paramagnetic phase: as expected, the associated instability
significantly affects the resulting evolution of σx (t ) which
is displayed in Fig. 18 and which is characterized by a
sensitive dependence of the long-time magnetization on the
quench parameter (magnetic field). Correspondingly, the time
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FIG. 15. Time-averaged order parameter σx of the model of
Eq. (61) as a function of the postquench values g of the transverse
field, for various values of the coupling J around 0.5, with λ̄ = λ +
J = 1. The black crosses (J = 0.58) correspond to a finer grid of
values of g, with δg = 0.008, are shown in order to display the high
sensitivity of the chaotic phase to postquench parameters. These data
show that the dynamically ferromagnetic and chaotic region persist
also at large nearest-neighbor interactions. The data are calculated
for system size N = 200.

FIG. 16. Comparison between the evolution of the order parame-
ter σ x at large J (solid lines) with those of the mean-field model with
J = 0 (dashed lines) far from the critical region and for the same
model as in Fig. 15. We observe that the evolution corresponding
to both the ferromagnetic and paramagnetic phases is not altered
qualitatively by the effects of quantum fluctuations. The decay of the
oscillations’ amplitude upon increasing time is a finite-size effect. In
these simulations, N = 400 and D = 300.

FIG. 17. Stability of the flipped ferromagnetic region. We show
several trajectories within a wide range of different quench param-
eters as a part of the same region with a flipped final magnetiza-
tion. This demonstrates stability of the flipped ferromagnetic region
at large nearest-neighbor interactions. Simulations were performed
with N = 200, D = 200.

evolution of the order parameter looks irregular before it
settles in one of the two sectors with a definite sign of σx .
For some trajectories visible in both Figs. 17 and 18, the
order parameter oscillates between them before it eventually
reaches the final magnetization sector. In this case, the pe-
riod of these oscillations progressively increases before the
“trapping” occurs. Similarly to the case of the propagation
of correlations at weak interactions discussed in Sec. IV C,
this change of the oscillation frequency corresponds to a

FIG. 18. Evolution of the order parameter σx (t ) for a quench
occurring close to the mean-field dynamical critical point within the
chaotic phase. These curves at fixed J/λ̄ = 0.583 show a sensitive
dependence on the value of g, and they may oscillate for a long
time before settling eventually in a sector with definite positive or
negative order parameter. By changing the quench parameter g/λ̄

only slightly (approximately by 0.08) we observe a large change in
the final magnetization which jumps from the positive to the negative
sector and finally back to the positive sector. The curves in this plot
correspond to the data points indicated by black crosses in Fig. 15.
Simulations were performed with N = 200, and with D = 600 (full
lines) and D = 500 (dashed lines).
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transition from a dynamically paramagnetic to a dynamically
ferromagnetic regime. Trajectories of Fig. 18 are marked in
the phase diagram shown in Fig. 15 by black crosses.

In summary, the qualitative picture of the phases observed
at small interactions persists also at large J . We emphasize the
fact that for the values of J used in the simulations reported
in this section, the accuracy of the spin-wave approach is poor
and no quantitative agreement between the two methods has to
be expected. In turn, at smaller values of J and for the largest
system sizes N reached in these simulations, the timescale
over which the collective magnetization gets trapped into a
ferromagnetic sector is larger than the Ehrenfest time scale
TEh � O(

√
N ) over which the motion of the collective mag-

netization is approximately classical (see Secs. II C and VI).
This fact makes it difficult to observe the chaotic dynamical
phase in this regime with MPS-TDVP. For this reason, the two
methods used in this paper effectively explore complementary
regimes of the dynamics of the system and they cannot be
quantitatively compared.

B. Correspondence between the zeros of the order parameter
and the cusps of the return probability

In addition to the dynamical phase transition in the qualita-
tive features of the long-time behavior of the order param-
eter discussed so far, another type of dynamical criticality
related to nonanalytic behavior of the return probability to
the ground-state manifold has been proposed in Refs. [61,87],
as discussed in the Introduction. In Ref. [63], an intimate
connection between them has been observed by studying a
transverse field Ising model with variable-range interactions
similar to that discussed in this work. We provide here nu-
merical evidence that this correspondence remains valid also
when the mean-field infinite-range Hamiltonian is perturbed
by nearest-neighbor interactions studied in this work. In par-
ticular, we demonstrate that the cusps in the time evolution
of the return probability P (t ) to the ground-state manifold
are simultaneous with the zeros of the time-dependent order
parameter σx (t ) since P (t ) = P1(t ) + P2(t ), where P1(t ) is
the probability to return to the initial state and P2(t ) is the
probability to end up in the state with opposite longitudi-
nal magnetization, cusp singularities are expected whenever
P1(t ) = P2(t ). Notice that both P1 and P2 become dramati-
cally small as a function of time as a result of the excitation of
spin waves.

Deep in the ferromagnetic region, shown in Fig. 19, the
order parameter σx (t ) remains positive, and, in fact, we
observe that the probability P1 to return to the initial state is
always much larger than the probability P2 to reach the state
with an opposite magnetization. This region thus corresponds
to a nonvanishing order parameter and the absence of cusps in
the return probability.

By increasing the magnetic field g we enter a region where
the order parameter σx vanishes at certain times but later
remains finite for a long time. Also in this region we observe
that the zeros of the order parameter are close to the cusps
in the return probability as shown in Fig. 20. Similarly, the
reversal of the final magnetization of one of the trajectories
(left panels) corresponds to a larger probability P2, which in
this case becomes much larger than the probability to return

FIG. 19. Relationship between the vanishing of the order pa-
rameter σ x and the change of sign of the difference between the
probability P1 to return to the initial state and the probability P2

to reach the state with the opposite magnetization. Upper panels:
comparison between the order parameter (orange) and the sign of
(P1 − P2) (blue). Lower panels: evolution of the return probabilities
P1 (blue) and P2 (red). In the ferromagnetic region (left) we observe
that the order parameter remains close to one, which corresponds
to a large difference in the probabilities P1 and P2. The return
probability to the initial state P1 remains at all times much larger
than the return probability to a state with the opposite magnetization
P2. On the other hand, in the paramagnetic region (right panels)
the order parameter periodically changes the sign. These changes
correspond well with the cusps in the return probability which
appear at points where P1 − P2 changes its sign. Parameters: D =
300, N = 400, J/λ̄ = 0.5, g/λ̄ = 0.5 (top), 1.5 (bottom).

to the initial state P1. The correspondence remains valid also
in the paramagnetic region, as shown in Fig. 19.

Finally, we remark that the convergence properties with
respect to the bond dimension are better in the ferromagnetic
and paramagnetic regions than in the chaotic region. Far
from the critical point, the simulations for the system size
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FIG. 20. Same plots as in Fig. 19 with different values of the
parameters corresponding to the flipped and chaotic ferromagnetic
regions. Initially, the zeros of the order parameter correspond pre-
cisely to the cusps in the return probability, i.e., to P1 = P2. At
intermediate times, the quality of this correspondence decreases, due
to finite-size effects (and is improved by increasing the system size).
(Left) At late times the return probability P2 to the state with the
opposite magnetization becomes larger than the return probability
P1 to the initial state. This corresponds well to the flipped time-
dependent order parameter at late times. (Right) By changing the
parameters only slightly, the final magnetization changes its sign,
but the correspondence between the zeros of the order parameter and
the cusps in the return probability remains valid. Parameters: D =
600, N = 200, J/λ̄ = 0.583, g/λ̄ = 1.15 (top), 1.158 (bottom).

N = 400 converged already with bond dimension D = 300.
On the other hand, in the chaotic region we needed bond
dimensions around D = 600. Therefore, we could perform
simulations only up to the system size N = 200. In addition,
the probabilities P1 and P2 are closer in the chaotic region,
where the system initially oscillates between the positive and
negative magnetization sectors and only later remains in one
or the other. Hence, the finite-size effects are noticeably larger
in this region. We, however, checked that the zeros of the

order parameter and the cusps in the return probability move
closer as the system size is increased. Despite relatively large
finite-size effects in the chaotic region, we observe a clear ten-
dency that P1 > P2 when σx > 0 and P1 < P2 when σx < 0.
In summary, this analysis shows that the correspondence
between the zeros in the time evolution of the order parameter
and the occurrence of cusps in the return probability remains
valid also in the presence of strong nearest-neighbor interac-
tions.

In order to reduce spurious sign changes of P1 − P2 due to
finite-size effects in Figs. 20 and 19, we performed a moving
average of P1, P2 over a small time window 0.2λ.

VI. FINITE-SIZE EFFECTS

In this last section, we discuss the relevance of the finite-
size effects in the chaotic dynamical phase. For the sake of
definiteness, we will focus on the model in Eq. (61).

The first observation in order is that the spin-wave tech-
nique developed in Sec. III is rigorously valid in the thermody-
namic limit, in which, as thoroughly discussed in Sec. II C, the
collective spin can be treated as a classical degree of freedom.
For the LMG model with J̃k �=0 = 0, the spin-wave expansion
(27) of the Hamiltonian allows one to compute the modifica-
tions to the classical evolution equations by accounting for the
feedback from the quantum fluctuations of the k = 0 mode in
terms of �

qq

0 , �
qp

0 , �
pp

0 , which are suppressed as N−1 [see
Eq. (27)]. The presence of integrability-breaking perturba-
tions J̃k �=0 �= 0, as discussed in Sec. III, activates the quantum
feedback from all the spin-wave modes with k �= 0, such as

1
Ns

∑
k �=0 J̃k�

qq

k (t ) and similar terms in Eq. (50). In contrast
to the feedback from the zero-mode fluctuations, these latter
terms have a finite limit as N → ∞. For this reason, they have
been properly taken into account in Sec. III and, thereafter,
while the feedback from the quantum fluctuations of the k = 0
mode has been neglected throughout this paper.

In view of the above argument, all the results based
on the time-dependent spin-wave theory assume that the
thermodynamic limit is taken at fixed time. The neglected
finite-size effects typically set in at the (divergent) Ehrenfest
timescale TEh ∼ O(

√
N ) discussed in Sec. II C. Thus, in

Eqs. (50) and (54), as well as in all simulations reported in
Sec. IV, the parameter N plays the role of a discretization
of the Brillouin zone integrals such as 1

Ns

∑
k �=0 J̃k�

qq

k (t ) ∼∫ π

−π
dk

2πs
J̃k�

qq

k (t ), rather than properly accounting for actual
finite-size effects.

The spin-wave analysis carried out in the previous sec-
tions predicts the occurrence of a chaotic dynamical phase
in perturbed mean-field models in the thermodynamic limit
N → ∞, which corresponds to a transient paramagnetic evo-
lution followed by localization of the collective spin within
one of the two ferromagnetic wells. It is then important to
estimate how large N should be in practice for this phe-
nomenon to occur. In order to do this, we resort both to
semiclassical arguments (cf. Sec. II C) as well as to MPS-
TDVP simulations (cf. Sec. V). As explained in Sec. II C,
within the lowest-order semiclassical expansion or TWA [76],
the quantum corrections to the classical motion amount to
the replacement of the classical trajectory with the classical
(Liouville) evolution of a Gaussian wave packet in phase
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FIG. 21. Nonequilibrium phase diagram for quenches with fixed
postquench parameters g/λ̄ = 1.03, J/λ̄ = 0.25 as a function of the
direction on the Bloch sphere of the prequench fully polarized spin-
coherent initial state, parametrized by the canonically conjugated
phase-space coordinates φ0 and cos θ0 (cf. Sec. III C). As in Fig. 7,
this plot is obtained via numerically integrating the evolution equa-
tions of the time-dependent spin-wave theory in the thermodynamic
limit, with the same graphical conventions thereof. The lowest-order
finite-size correction consists in replacing a classical, uncertainty-
free initial condition, specified by (φ0, cos θ0 ), with a Gaussian wave
packet in phase space centered around it, with linear extension√

h̄eff = 1/
√

Ns, which takes into account the quantum uncertainty
at the lowest order in the semiclassical expansion, as discussed in
Sec. II C. The circles superimposed to the diagram indicate the width
of these Gaussian distributions centered around (0,0) for various
values of N , corresponding to quenches from a ground state of the
prequench Hamiltonian with g0 = 0 considered in all simulations
reported in this work. We see that for N � 102 the corresponding
wave packet encompasses initial conditions eventually belonging
to all possible phases of the model. Accordingly, one expects the
chaotic dynamical phase to be blurred by these quantum fluctuations
when N is sufficiently small. This effect is more severe when N

is in the range �16 accessible to full exact diagonalization of the
Hamiltonian (61), which makes it hard to observe signatures of the
chaotic dynamical phase via this exact method. The latter is observed
in MPS-TDVP simulations with N in the range 102–103 and stronger
perturbation J/λ̄ ≈ 0.5, as reported in Sec. V, in correspondence
of which the extension of the regions with a uniform sign of the
asymptotic magnetization becomes sufficiently large compared to the
coarse-graining scale 1/

√
N .

space centered around an initial condition θ0, φ0. The width
of this distribution is given by the quantum uncertainty of the
transverse components σ̃ X

k=0/N, σ̃ Y
k=0/N of the rescaled col-

lective spin, which amount to
√

q̃2
0 /

√
Ns and

√
p̃2

0 /
√

Ns, re-
spectively [see Eq. (26)], and hence are proportional to 1/

√
N .

The result of this approximation is visualized in Fig. 21,
where the asymptotic magnetization is shown for quenches to
g/λ̄ = 1.03, J/λ̄ = 0.25 as a function of the initial condition
(φ0, cos θ0), with the same color conventions as in Fig. 7: The
dynamical order parameter for a system of finite size N cor-
responds to replacing the asymptotic magnetization of each
point in this nonequilibrium phase diagram with its average
over a Gaussian distribution centered at (φ0 = 0, cos θ0 = 0)
with width of order 1/

√
N , pictorially represented by the

circles in Fig. 21, corresponding to various values of N .
This width can be viewed as a phase-space coarse-graining
scale in the presence of a system with finite size N . We
see that within the chaotic dynamical phase, for small N ,
the wave packet encompasses several initial conditions θ0, φ0

whose evolutions end up into distinct ferromagnetic sectors.

Accordingly, after a transient, the actual many-body wave
function is expected to realize a quantum superposition of
two wave packets localized in the two distinct ferromagnetic
sectors, i.e., a so-called cat state. Hence, for sufficiently small
N , this quantum superposition is expected to blur the critical
region C in the diagram. A classical-like behavior charac-
terized by a nonvanishing average magnetization is expected
to be seen only when the size of the initial wave packet
becomes smaller than the distance between the phase-space
boundaries of regions with a definite sign of the asymptotic
magnetization, which happens for sufficiently large N . Esti-
mates based on the spin-wave approximation in Sec. IV and
in particular on the size of the largest spots of region C in
Fig. 7 and in analogous diagrams for a range of parameters
suggest that the minimal system size N required in order to
observe localization of the wave packet within a single sector
should lie in the range 102–103. This agrees with the observed
convergence of the MPS-TDVP simulations within this region
upon raising the bond dimension, as shown in Sec. V and in
Ref. [66].

For smaller N , the remnant of the chaotic dynamical phase
is expected to be the formation of cat states, which can in
principle be detected by inspecting the evolution of the full
statistics of the order parameter, rather than only of its the
average. This study can actually be carried out via exact diag-
onalization of the Hamiltonian for a system size N up to 16. In
this regime, however, finite-size effects are predominant (cf.
Fig. 6). This can be easily understood within the semiclassical
picture illustrated in Fig. 21, by observing that the order of
magnitude O(1/

√
N ) of the width of a spin-coherent wave

packet is comparable with the global width O(1) of the whole
phase space when N = 16, whereby the evolution results in a
complicated superposition and interference of ferromagnetic,
paramagnetic, and “chaotic” classical trajectories. For this
reason, we do not report the relative results here, and we
leave a detailed investigation of this issue via finer numerical
techniques to future studies.

We emphasize, however, that by tuning continuously the
parameters across a phase boundary, one should observe cat
states for arbitrarily large N : in fact, the evolution governed
by a finite matrix has to depend smoothly on the parameters,
and the time-evolved wave function cannot undergo “discon-
tinuous” transitions at finite N , as is well known from general
theory. However, by the above semiclassical arguments, such
cat states are expected to be confined within thin “layers”
around the phase boundaries, whose width should shrink upon
increasing N .

We conclude with two remarks on the crossover between
quantum-mechanical behavior and its classical limit in the
phenomena presented in this work as well as in Ref. [66].
First, we note that the scale 1/

√
N , which is associated with

the extension of the Wigner function of spin-coherent states,
clearly represents the characteristic distance in phase space
beyond which two spin-coherent states become effectively
orthogonal in Hilbert space. In fact, two initial spin-coherent
configurations separated by a smaller distance in phase space
cannot localize in two distinct sectors after a certain time
t because they have nonvanishing initial overlap and hence
cannot become orthogonal at any time due to unitarity of
quantum time evolution. Accordingly, the “collective chaotic
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behavior” unveiled in this work can arise in this quantum sys-
tem only when the phase-space coarse-graining scale 1/

√
N

provides a sufficiently fine resolution for resolving the dif-
ferent classical outcomes. There is no basic contradiction in
the emergence of a classical-like chaos in a quantum system,
as long as two nearby initial conditions, whose classical
evolution undergoes exponentially fast separation, correspond
to orthogonal initial vectors in Hilbert space. In this work, we
have shown that this can occur in systems with competition of
long- and short-range interactions driven close to a dynamical
phase transition, provided the system size N is sufficiently
large.

The second, related, remark is that, although the emergence
of a classical-like collective chaotic behavior involves a sub-
tle interplay between the thermodynamic limit and the time
evolution, in practice there is no sharp distinction between
cat states and classical sensitivity of the asymptotic magneti-
zation with respect to the parameters of the system. In fact,
in both cases, experimental measurements of the collective
magnetization will result in a distribution characterized by
two peaks, and understanding whether the origin of such
a macroscopic superposition is quantum coherent (as in a
cat state) or classical incoherent (as would result from un-
avoidable experimental errors) would actually be unfeasible,
due to fast decoherence of the cat state (as for the original
Schrödinger’s cat!).

VII. CONCLUSIONS

This paper has been devoted to the analysis of the impact
of nonequilibrium fluctuations on mean-field dynamical phase
transitions. We have considered as unperturbed Hamiltonian a
spin model with all-to-all couplings (2), whose dynamics in
the thermodynamic limit is equivalent to the classical evolu-
tion of the collective spin orientation (see Sec. II). This has
allowed us to analyze the effect of any integrability-breaking
interaction in terms of a systematic spin-wave expansion (see
Sec. III). Through this time-dependent spin-wave theory we
have found a general phenomenon concerning perturbations
of dynamical critical points: fluctuations dominate the dy-
namics and act as a self-generated quantum friction, which
makes the order parameter eventually remain trapped in one
of them in a pseudorandom fashion. We refer to this phase

as chaotic since the asymptotic sign of the order parameter
depends with extreme sensitivity on the initial conditions and
on the Hamiltonian parameters (see Secs. IV A and IV B). The
existence of this peculiar dynamical behavior has been bench-
marked with numerical methods based on a time-dependent
variational principle developed on the matrix product state
manifold, and shown to persist even for stronger integrability-
breaking couplings (see Sec. V). We have also studied the sig-
natures of this dynamical phase on the space-time-dependent
correlation functions (see Sec. IV C), as well as demon-
strated that for sufficiently slow ramps of the transverse
magnetic field the chaotic phase gradually fades away (see
Sec. IV D).

A straightforward and interesting extension of our anal-
ysis would consist in considering the sudden quench of
integrability-breaking terms in the Dicke model, describing
the interaction of several two-level atoms (spins) with a
collective cavity photonic mode. The Dicke model possesses
a rich dynamical phase diagram resulting from a quantum
quench of the light-matter coupling [42,88–90]. The potential
onset of a similar chaotic dynamical phase, monitored by
photonic observables directly accessible in cavity quantum-
electrodynamics experiments, could represent a welcome
experimental verification of the phenomena discussed in this
work.

Finally, it would be interesting to inspect the effect
on mean-field dynamical critical phases of a weak spatial
disorder, which can be accounted for in the time-dependent
spin-wave treatment: a natural, intriguing question would
be to establish whether the competition of quantum fluc-
tuations and classical spatial inhomogeneities would en-
hance or suppress the nonequilibrium phase discussed in this
paper.
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